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Chapter 20

Herglotz functions and applications in
electromagnetics

Mitja Nedic1, Casimir Ehrenborg2, Yevhen Ivanenko3,
Andrei Ludvig-Osipov4, Sven Nordebo5, Annemarie Luger6,

Lars Jonsson7, Daniel Sjöberg8, and Mats Gustafsson9

Herglotz functions inevitably appear in pure mathematics, mathematical physics, and
engineering with a wide range of applications. In particular, they are the pertinent
functions to model passive systems, and thus appear in modeling of electromagnetic
phenomena in circuits, antennas, materials, and scattering. In this chapter, we review
the basic theory of Herglotz functions and its applications to determine sum rules and
physical bounds for passive systems.

20.1 Introduction

Holomorphic mappings between certain half-planes appear in areas such as spectral
theory [1,2], moment problems [3,4], passive systems [5,6], circuit synthesis [7,8],
dispersion relations [9,10], and homogenization [11,12]. These functions, here
referred to as Herglotz functions, are also known as Nevanlinna, Herglotz-Nevanlinna,
Pick, R- [13], and positive real (PR) [7] functions. In this chapter, we review mathe-
matical properties of Herglotz functions and discuss their applications in the modeling
of passive systems, derivation of sum rules, and physical bounds.

Herglotz functions can be represented by an integral representation solely depend-
ing on scalar parameters and a positive measure. This representation is very powerful
and is the starting point for many results on Herglotz functions. In particular, we
use the integral representation to derive identities that relate weighted integrals of a
Herglotz function with its asymptotic expansion [3]. These identities are often referred
to as sum rules and have many applications in electromagnetics [14].
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Passivity is instrumental in the modeling of electromagnetic phenomena. It is
used to describe objects and systems that do not produce energy. Here, a system per-
spective is employed where passivity characterizes systems where the energy leaving
the system does not exceed the energy that has entered the system for all signals and
times. Linear, time-translational invariant, and passive systems have transfer func-
tions that either are or can be transformed to Herglotz and PR functions [6]. This
implies that Herglotz functions constitute a generic way to model all passive systems
regardless of the complexity of the system.

Sum rules are useful in many branches of physics and engineering as they
relate dynamic parameter values with their low- and high-frequency expansions [9].
Properties of the dynamic response can hence be inferred by the, in many cases
much simpler, static response. These types of identities and physical bounds are
of great interest in many areas of electromagnetic theory. They provide physical
insight of the relation between design parameters and are useful in optimization as
they provide upper bounds on the design. The approach is based on the identifica-
tion of a passive system where a parameter of interest is the imaginary part of a
Herglotz function. This has, e.g., been used for lossless matching networks [15],
radar absorbers [16], extinction cross section [17], antennas [18], high-impedance
surfaces [19,20], metamaterials [21], and array antennas [22,23].

In this chapter, we show that the integral identities for Herglotz functions consti-
tute a unified approach to derive sum rules and illustrate the approach for the input
impedance of lumped circuit networks, temporal dispersion of metamaterials, and
radar absorbers.

Convex optimization can be used together or as an alternative to sum rules to
determine physical bounds [24,25]. This greatly extends the class of solvable problems
for the price of numerical solutions. This approach is based on the linearity and
positivity of the measure in the integral representation implying that the set of Herglotz
functions is a convex cone. Convex optimization can also be used to characterize
rational PR functions and passive systems via the PR Lemma [5,26] and in conjunction
with Nevanlinna–Pick interpolation [27].

This chapter starts with a review of the definitions, basic properties, and integral
identities of Herglotz functions in Section 20.2. Passive systems in electromagnetics
and their relation to Herglotz functions are discussed in Section 20.3. Sum rules and
physical bounds are investigated in Section 20.4. The application of Herglotz functions
in convex optimization for obtaining physical bounds is reviewed in Section 20.5.

20.2 Basics about Herglotz functions

In this section, we introduce some standard notations and review some classical results
about Herglotz functions. Throughout this text, we denote the open upper and right
half-planes, respectively, by

C
+ := {z ∈ C | Im[z] > 0} and C+ := {z ∈ C | Re[z] > 0} (20.1)

The open lower and left half-planes are defined analogously and are denoted by C
−

and C−, respectively (see Figure 20.1). In connection with these particular subsets
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Figure 20.1 A Herglotz function maps the upper half-plane C
+ (green) to the

closed upper half-plane C
+ ∪ R (red)

of the complex plane C, we are interested in the following classes of holomorphic
(cf. [28]) functions.

Definition 20.1. A function h : C
+ → C is called a Herglotz function if it is

holomorphic with Im[h(z)] ≥ 0 for all z ∈ C
+. �

Example 20.1. Some basic examples of Herglotz functions are the following:

h1(z) = 1, h2(z) = z, h3(z) = i, and h4(z) = −1

z
(20.2)

A few less trivial Herglotz functions (cf. [29]) are

h5(z) = tan (z), h6(z) = − cot (z), and h7(z) = �′(z)

�(z)
(20.3)

where � denotes Euler’s gamma function (cf. [30]) and �′ is its derivative. �
New Herglotz functions can be constructed using the following properties:

a. The set of all Herglotz functions is a convex cone; that is, any positive linear
combination of Herglotz functions is again a Herglotz function.

b. For any two Herglotz functions hI and hII, such that the function hI does not
attain a real value, we can form the composition z �→ hII(hI(z)), which is again
a Herglotz function.

For example, using only the known Herglotz functions from Example 20.1 and the
two properties (a) and (b) stated previously, we can conclude that the function

z �→ 1 + z − 1

2z − 3
z + 4i

(20.4)

is also a Herglotz function.
A common special case is to consider the composition of a Herglotz function

with the function z �→ Log(z), as in the following example.

Example 20.2. First, let Log be the function defined as

Log : z �→ ln |z| + i Arg(z) (20.5)

where the argument of complex number is taken from the interval [−π , π ). Observe
that with this definition, the complex logarithm becomes a Herglotz function.

Let now h be a Herglotz function such that h(z) �∈ (−∞, 0] for any z ∈ C
+.

The function z �→ Log(h(z)) is therefore well-defined and, in fact, is also a Herglotz
function, since Im[Log(h(z))] = Arg(h(z)) ≥ 0. �



494 Advances in mathematical methods for electromagnetics

An important subclass of Herglotz functions is given in the following definition.

Definition 20.2. A Herglotz function h, satisfying the additional condition that

h(−z∗) = −h(z)∗ (20.6)

is called a symmetric Herglotz function. �
Herglotz functions appear, for instance, in quantum mechanics, whereas in sys-

tem theory, as well as in other places, also the following class of functions is widely
used.

Definition 20.3. A holomorphic function p : C+ → C is called positive real (PR)
if it has Re[p(z)] ≥ 0 for z ∈ C+ and takes real values on the positive real line
(Figure 20.2). �

Any symmetric Herglotz function h gives rise to a PR function p by setting
p(z) := −i h(i z) and, conversely, any PR function p gives rise to a symmetric Herglotz
function h by setting h(z) := i p(−i z).

One of the most powerful tools in the theory of Herglotz functions is the classical
integral representation theorem. The theorem was first considered over 100 years ago
and has paved the way for many other results about Herglotz functions. Using modern
notation, we present the theorem in the following form (see also [13]).

Theorem 20.1. A function h : C
+ → C is a Herglotz function if and only if h can be

written as

h(z) = a + b z +
∫

R

(
1

τ − z
− τ

1 + τ 2

)
dμ(τ ) (20.7)

where μ is a positive Borel measure (cf. [32]) satisfying the growth condition∫
R

1

1 + τ 2
dμ(τ ) < ∞ (20.8)

and the constants a ∈ R and b ≥ 0. �

The following properties can be derived from the above theorem [13,31]:

i. If a Herglotz function attains a real value in the open upper half-plane, then it
is a real-constant function.

Re

Im

z Re

Im

p(z)

p

Figure 20.2 A PR function maps the right half-plane C+ (blue) to the closed right
half-plane C+ ∪ iR (yellow) and, in particular, R

+ := (0, ∞) into
R

+
0 := [0, ∞)
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ii. The number a from Theorem 20.1 is equal to a = Re[h(i)] while the number b
is given by

b = lim
z→̂∞

h(z)

z
(20.9)

Here, the symbol →̂ denotes a non-tangential limit (see Remark 20.1).
iii. The measure μ from Theorem 20.1 is given as the distributional boundary value

of Im[h]. More precisely, for any C1- (i.e., continuously differentiable) function
ϕ : R → R which satisfies the inequality |ϕ(x)| ≤ C(1 + x2)−1 for some C ≥ 0
and all x ∈ R, we have that

lim
y→0+

1

π

∫
R

ϕ(x)Im[h(x + i y)] dx =
∫

R

ϕ(τ ) dμ(τ ) (20.10)

iv. The measure μ has a point mass at the point τ0 ∈ R if and only if the limit

μ({τ0}) = lim
z→̂τ0

(τ0 − z)h(z) (20.11)

is positive, [13].
v. If the measure μ is purely absolutely continuous with respect to the Lebesgue

measure λR and the boundary value μ′(x) := limy→0+ 1
π

Im[h(x + iy)] exists as
a square integrable function, i.e., μ′ ∈ L2(R), then

h(z) = ã + b z +
∫

R

μ′(τ )

τ − z
dτ , where ã := a −

∫
R

τ μ′(τ )

1 + τ 2
dτ (20.12)

vi. Symmetric Herglotz functions (20.6) admit the integral representation

h(z) = b z + lim
R→∞

∫ R

−R

dμ(τ )

τ − z
= b z − c

z
+
∫

(0,∞)

2z

τ 2 − z2
dμ(τ ) (20.13)

where c = μ({0}).
Remark 20.1. The notation z→̂∞ denotes the non-tangential limit |z| → ∞, i.e.,
within some Stoltz domain {z ∈ C

+ | θ ≤ Arg(z) ≤ π − θ} with parameter θ ∈ (0, π

2 ].
Similarly, z→̂τ0 denotes the non-tangential limit z → τ0 within {z ∈ C

+ | θ ≤
Arg(z − τ0) ≤ π − θ} with θ ∈ (0, π

2 ]. A Stoltz domain in the latter case is visualized
in the figure below.

Re

Im

τ0

θ

The integral representation offers also a way to synthesize Herglotz functions.

Example 20.3. The point measure δx0 at a point x0 ∈ R, along with suitably chosen
constants a and b, produces the rational Herglotz function h(z) = 1/(x0 − z) with a
simple pole at the point x0; see also (20.11). Here, we note that Im[h(x)] = 0 for



496 Advances in mathematical methods for electromagnetics

x ∈ R \ {x0} while h(x0) is undefined. Similarly, the sum of the point masses δ(n− 1
2 )π

at the points (n − 1
2 )π , n ∈ Z produces the tangent function, which is thus a Herglotz

function, i.e.,

tan (z) =
∞∑

n=−∞

(
1

(n − 1
2 )π − z

− (n − 1
2 )π

1 + (n − 1
2 )2π2

)
=

∞∑
n=1

8z

(2n − 1)2π2 − 4z2

(20.14)

where the first expression includes the convergence term in (20.7) and the symmetric
version (20.13) is used in the second expression. �

The class of Herglotz functions has a non-empty intersection with Hardy spaces
(cf. [33]). The Hardy space Hp, where 1 ≤ p ≤ ∞, is the space of holomorphic
functions in C

+ for which the norm

‖g‖Hp :=

⎧⎪⎨
⎪⎩

sup
y>0

(∫
R

|g(x + iy)|p dx
) 1

p 1 ≤ p < ∞
sup
z∈C+

|g(z)| p = ∞ (20.15)

is finite. In particular, for a function g ∈ Hp for almost all x ∈ R the boundary value
ĝ(x) := limy→0+ g(x + iy) exist and ĝ ∈ Lp(R).

Hardy spaces are also related to the Hilbert transform [9]. The Hilbert transform
of a function u is defined as

H {u}(x) := 1

π
p.v.

∫
R

u(τ )

x − τ
dτ (20.16)

where p.v. means the Cauchy principal value of the integral. The operator H is
bounded in Lp for 1 < p < ∞; see [9] for a discussion of the L1 and L∞ cases.

The real and imaginary parts of the boundary value of a function g ∈ Hp are
related by the Hilbert transform, i.e., for u(x) := Re[ĝ(x)] and v(x) := Im[ĝ(x)] it
holds that

u = −H {v} and v = H {u} (20.17)

Functions g ∈ Hp with Im[g(z)] ≥ 0 are Herglotz functions and the corre-
sponding Hilbert transform relations are often referred to as the Kramers–Kronig
relations or dispersion relations [10]. On the contrary, some Herglotz functions do
not belong to any space Hp, some examples being the functions h2, h4, h5, h6, and h7

from Example 20.1.
Another feature of Herglotz functions is that they, under certain conditions,

provide integral identities closely connected to the moments of the measures with
interesting applications to electromagnetic theory. Let us begin with some necessary
definitions.

Definition 20.4. Let h be a Herglotz function. If for K ≥ −1, there exist real numbers
b1, b0, b−1, . . . , b−K such that h can be written as

h(z) = b1z + b0 + b−1

z
+ · · · + b−K

zK
+ o

(
1

zK

)
as z→̂∞ (20.18)

then we say that h admits at z = ∞ an asymptotic expansion of order K . �
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Remark 20.2. This means that

lim
z→̂∞

zK

(
h(z) − b1z − b0 − b−1

z
− · · · − b−K

zK

)
= 0 (20.19)

Moreover, the coefficients b−j are given by

b−j = lim
z→̂∞

z j

(
h(z) − b1z − b0 − b−1

z
− · · · − b−( j−1)

z j−1

)
(20.20)

Expansions at z = 0 are defined analogously. This can either be done explicitly, as
in the following, or via the expansion at ∞ for the Herglotz function h̃(z) := h(−1/z).
The above remark applies then accordingly.

Definition 20.5. Let h be a Herglotz function. If for K ≥ −1, there exist real numbers
a−1, a0, a1, . . . , aK such that h can be written as

h(z) = a−1

z
+ a0 + a1z + · · · + aK zK + o(zK ) as z→̂0 (20.21)

then we say that h admits at z = 0 an asymptotic expansion of order K . �
Remark 20.3. Note that every Herglotz function has asymptotic expansions both at
z = ∞ and at z = 0 of order −1. Indeed, by equalities (20.9) and (20.11), the numbers
b1 and a1 always exist and are equal to the numbers b fromTheorem 20.1 and −μ({0}),
respectively.

The following two theorems are the central statements in this context, [14]. We
start with the version with positive exponents, which are related to expansions at ∞.

Theorem 20.2. Let h be a Herglotz function. Then, for some integer N∞ ≥ 0, the
limit

lim
ε→0+ lim

y→0+

∫
ε<|x|< 1

ε

x2N∞ Im[h(x + iy)] dx (20.22)

exists as a finite number if and only if the function h admits at z = ∞ an asymptotic
expansion of order 2N∞ + 1. In this case,

lim
ε→0+ lim

y→0+
1

π

∫
ε<|x|< 1

ε

xnIm[h(x + iy)] dx =
{

a−1 − b−1 n = 0

−b−n−1 0 < n ≤ 2N∞

(20.23)

holds. �

The corresponding result for negative exponents, which are related to the
expansions at 0, reads as follows.

Theorem 20.3. Let h be a Herglotz function. Then, for some integer N0 ≥ 1, the limit

lim
ε→0+ lim

y→0+

∫
ε<|x|< 1

ε

Im[h(x + iy)]

x2N0
dx (20.24)
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exists (as a finite number) if and only if h admits at z = 0 an asymptotic expansion
of order 2N0 − 1. In this case,

lim
ε→0+ lim

y→0+
1

π

∫
ε<|x|< 1

ε

Im[h(x + iy)]

xp
dx =

{
a1 − b1 p = 2

ap−1 2 < p ≤ 2N0
(20.25)

holds. �

The above integral identities (20.23) and (20.25) are often called sum rules.

Remark 20.4. The proof of the above two theorems relies on a version of formula
(20.10) for noncontinuous test functions; see, e.g., [34].

Example 20.4. The Herglotz function h(z) = tan (z) has the asymptotic expansion

tan (z) = z + z3

3
+ 2z5

15
+ · · · as z→̂0 (20.26)

and tan (z) = i + o(1) as z→̂∞. We thus find that a1 = 1, a3 = 1/3, a5 = 2/15, and
b1 = 0, and the following sum rules

lim
ε→0+ lim

y→0+
1

π

∫
ε≤|x|≤1/ε

Im[ tan (x + iy)]

xp
dx =

⎧⎪⎨
⎪⎩

1 p = 2

1/3 p = 4

2/15 p = 6

(20.27)

apply. �

Remark 20.5. Note that the case of p = 1 is not included in Theorem 20.3. In order
to guarantee this limit to be finite, it is required that h admits both at ∞ and at the
point zero asymptotic expansions of order 1. In this case, the limit equals a0 − b0.

Remark 20.6. Note that the exponents in (20.22) and (20.24) are even. A correspond-
ing statement for odd exponents, meaning that the existence of the limit is equivalent to
the existence of the expansion, does not hold. A counterexample is given in [14, p. 9].

Example 20.5. Note that the assumption that the coefficients in expansions (20.18)
and (20.21) are real is essential. Consider, e.g., the function h(z) = i for z ∈ C

+, which
admits expansions of arbitrary order if non-real coefficients are allowed. However,
neither of the limits (20.22) nor (20.24) do exist. Note that this example also shows
that not every Herglotz function does admit a sum rule. �

For symmetric Herglotz functions, we note that the non-zero odd and even ordered
coefficients within an asymptotic expansion of a symmetric Herglotz function (20.6)
are necessarily real-valued and purely imaginary, respectively. Thus based on Theo-
rems 20.2, 20.3 and Remark 20.5, we stop our expansion at the appearance of the first
imaginary term, or the first non-existing term. If the assumptions in both theorems are
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satisfied, i.e., that both asymptotic series exist, are real-valued to order 2N0 − 1 and
2N∞ + 1, respectively, we can summarize Theorems 20.2, 20.3 and Remark 20.5 as

2

π

∫ ∞

0+

Im[h(x)]

x2n
dx := lim

ε→0+ lim
y→0+

2

π

∫ 1/ε

ε

Im[h(x + iy)]

x2n
dx = a2n−1 − b2n−1

(20.28)

for n = −N∞, . . . , N0.

20.3 Passive systems

In this section, we show how symmetric Herglotz functions and the corresponding
PR functions are related to passive systems.

Physical objects that cannot produce energy are usually considered as passive.
However, these objects are not necessarily passive from a system point of view. The
crucial point is how the input and the output of the system are defined. For the most part
here, we constrain our viewpoint to one-port systems. These systems consist of one
input and one output parameter, which can be measured at the ports of these systems
(see Figure 20.3). Here, the signal enters the system and its response can be measured.
A common example of such a system is an electric circuit with two nodes to which we
can input a signal, e.g., a current, and measure a voltage. The one-port systems, we
regard in this section are linear, continuous, and time-translationally invariant. Time-
translation invariance means that the system does not explicitly depend on time; that
is, if a system produces the output v(t) from the input u(t) at time t, then a time-shifted
input u(t + τ ) gives a shifted output v(t + τ ). These properties characterize systems
in convolution form [6].

Definition 20.6. A system with input u(t) and output v(t) in the time-domain is in
convolution form if

v(t) = (w ∗ u)(t) :=
∫

R

w(τ )u(t − τ ) dτ (20.29)

where w(t) is the impulse response. �
In this chapter, we restrict ourselves to real-valued systems, i.e., the systems

where the impulse response w is real-valued.
There are two ways to define passivity for different types of systems: admittance

passivity and scattering passivity [6,35].

System

Input

Output

Figure 20.3 A one-port system
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Definition 20.7. Consider a convolution system with input signal u(t) and output
signal v(t), both of which in general can be complex valued. The system is called
admittance-passive if

Wadm(T ) := Re
∫ T

−∞
v(t)u(t)∗ dt ≥ 0 (20.30)

for all T ∈ R and all u ∈ C∞
0 (i.e., smooth functions with compact support). �

Here, Wadm(T ) represents all energy the system has absorbed until the time T .
By requiring this quantity to be positive, we say that the system absorbs more energy
than it emits, and thus, the system does not produce energy. Passivity also implies
that the system is causal [6].

The crucial connection to Herglotz and PR functions is given by the following fact.
It can be shown that the impulse response of a passive system has the representation [6]

w(t) = bδ′(t) + θ (t)
∫

R

cos (ξ t) dμ(ξ ) (20.31)

where b ≥ 0, δ′ denotes the derivative of the Dirac distribution (cf. [6]), θ is the
Heaviside step function (cf. [6]), and the measure μ satisfies the growth condition
(20.8). This implies that the Laplace transform of the impulse response (20.31),
Wadm(s), is a PR function and that the corresponding symmetric Herglotz func-
tion (20.13) has exactly the parameters b and μ.

Let us consider a few examples of passive systems in electromagnetics.

Example 20.6. Input impedance of electrical circuit networks Consider a simple
electric one-port circuit containing passive components, meaning that all lumped
element components have positive values, e.g., that each resistance R, inductance
L, and capacitance C are positive. The input signal to this system is the real-valued
electric current i(t) and its output signal is the voltage v(t); see Figure 20.4(a). As
an explicit example, consider the simple circuit in Figure 20.4(b). To verify that this
system is passive, we evaluate the integral (20.30).

i(t)

−

+

v(t) Circuit

(a)

i(t) L

R

−

+

v(t)

(b)

Figure 20.4 Two electrical one-port systems: (a) A general electric circuit. (b) A
simple circuit example
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Given the input current i(t), the voltage is given by v(t) = L di(t)
dt + Ri(t) =

(w ∗ i)(t), where w = Lδ′ + Rδ is the impulse response, cf. (20.31). Hence, the
integral (20.30) becomes

Wadm(T ) =
∫ T

−∞

(
L

di(t)

dt
i(t) + Ri(t)2

)
dt = L

2
i(T )2 + R

∫ T

−∞
i(t)2 dt ≥ 0

(20.32)

showing that the system is admittance-passive. The transfer function (input
impedance), which by definition is the Laplace transform of the impulse response,
becomes, in this case, the PR function

Wadm(s) := Zin(s) = sL + R (20.33)

The input and output can be interchanged, and by using the voltage as input, the input
admittance is given by Yin(s) = 1/Zin(s), which is also a PR function. This simple
example generalizes to circuit networks composed of arbitrary number and combi-
nations of passive resistors, capacitances, and inductances resulting in rational PR
functions [36]. Moreover, it is straightforward to include transformers and transmis-
sion lines as well as multiple input and output systems resulting in matrix-valued PR
functions [37]. �

In contrast to this example, in other situations, it is often less clear how to define
a system in a suitable way so that it becomes passive. For instance, consider the
constitutive relations.

Example 20.7. Constitutive relations Electromagnetic properties of isotropic mate-
rials are characterized through constitutive relations with quantities known as
permittivity ε and permeability μ, which relate the frequency domain electric E
and magnetic H field intensities to the electric D = εE and magnetic B = μH flux
densities, respectively. These constitutive relations are regarded as systems with field
intensities and flux densities as input and output signals, respectively. The class of lin-
ear, time-translationally invariant, continuous and passive constitutive relations are,
hence, related to PR and Herglotz functions. The energy relation in (20.30) is derived
by the Poynting’s theorem [38,39] and reveals that the pertinent passive systems are the
maps from the field intensities to the temporally differentiated flux densities [14,21].

Time-domain admittance passivity implies that in the Laplace domain, the cor-
responding transfer function is a PR function or, equivalently, a symmetric Herglotz
function after some suitable transformations; see Section 20.2. In this domain, time
differentiation results in a multiplication with the angular frequency. The constitu-
tive relation D(s) = ε(s)E(s) is a passive system if sε(s) is a PR function. Similarly,
permeabilities μ, such that sμ(s) are PR functions, can be used to model all linear,
time-translationally invariant, continuous, and passive models for magnetic media.�

Let us now consider the second definition of passivity, scattering passivity.
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Definition 20.8. Consider a convolution system with input signal u(t) and output
signal v(t). The system is called scattering-passive if

Wscat(T ) :=
∫ T

−∞
(|u(t)|2 − |v(t)|2) dt ≥ 0 (20.34)

for all T ∈ R and all u ∈ C∞
0 . �

Requiring a system to be scattering-passive corresponds to the energy of its output
signal always being less than that of its input signal. It can be shown that the transfer
function Wscat(s) of a scattering-passive system satisfies the relation |Wscat(s)| ≤ 1
for all s ∈ C+ [6,14]. Then a suitable rational (Cayley) transformation of the transfer
function, namely the function s �→ (1 + Wscat(s))/(1 − Wscat(s)), is a PR function.

Let us consider an example of a scattering-passive system.

Example 20.8. Reflection from an isotropic slab placed above a ground plane
The reflection coefficient Γ from an isotropic slab characterized by passive permit-
tivity εr , passive permeability μr , thickness d > 0, and placed above a perfect electric
conducting (PEC) plane, see the figure below, can describe a scattering-passive sys-
tem. Let the incident wave Ei be the input signal and the reflected wave Er be the
output signal of the system. Assume the reference plane is placed in front of the slab,
i.e., x ≤ 0.

ε, μ PEC

Ei

Er

x
0 d

The reflection coefficient for an isotropic slab corresponds to the reflected wave
Er = Γ Ei and is calculated as

Γ (k) = Γ0 − e2iknd

1 − Γ0e2iknd
(20.35)

where Γ0 = (η − 1)/(η + 1) is the reflection coefficient at the air–slab interface, k is
the wave number, n = √

εr
√

μr is the refractive index of the slab, and η = √
μr/εr is

the relative wave impedance of the slab. This function can be shown to map the open
right-half of complex plane to the closed unit disk. �

Admittance-passive and scattering-passive systems are in close correspon-
dence; namely given an admittance-passive system, it is possible to construct a
new scattering-passive system, and conversely (see Theorem 5 in [35], as well
as [37,40,41]).
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20.4 Sum rules and physical bounds

The integral identities in Theorems 20.2 and 20.3 have a very useful application in the
derivation of physical bounds on passive systems; see, e.g., [14]. In the engineering
and physics literature, these integral identities appear in various forms and are also
often referred to as sum rules [9,14]. Typically, the appropriate Herglotz function
h is the Fourier transform of a physically realizable real-valued convolution kernel,
and which, hence, possesses the symmetry h(−z∗) = −h(z)∗, or p(z∗) = p(z)∗ for
a PR function. For Herglotz functions, the integral identities are given on the real
axis where z = x is commonly interpreted as angular frequency ω (in rad/s), wave
number k = ω/c0 (in m−1), or as wavelength λ = 2π/k (in m). For PR functions, the
imaginary axis z = iy is instead playing this role.

In many practical electromagnetic applications, it is reasonable to assume
(or even to acquire by measurements) some partial knowledge regarding the low-
and/or high-frequency asymptotic expansions of the corresponding Herglotz func-
tion, such as the static and the optical responses of a material, or a structure. In these
cases, the sum rules and the corresponding integral identities can be used to obtain
inequalities by constraining the integration interval to a finite bandwidth in the fre-
quency (or wavelength) domain, and thereby yielding useful physical limitations in
a variety of applications. Typical examples are with matching networks [15], radar
absorbers [16], high-impedance surfaces [20], passive metamaterials [21], scatter-
ing [17,42], antennas [18,22,23,43], reflection coefficients [44], waveguides [45],
periodic structures [46], etc.

Three examples are given next to illustrate typical situations where sum rules
can be used to derive physical limitations on passive electromagnetic systems. In
special situations, such results have previously been derived using residue calculus
and Kramers–Kronig relations [16,36,38,47–49], whereas here, we consistently use
the general result (20.28).

Example 20.9. The resistance-integral theorem Consider a passive circuit consist-
ing of a parallel connection of a capacitance C and an impedance Z1(s) that does
not contain a shunt capacitance (i.e., Z1(0) is finite and Z1(s) does not have a zero at
s = ∞); see the figure below. Then the input impedance of this circuit is given by
Z(s) = 1/(sC + 1/Z1(s)), which is a PR function in the Laplace variable s ∈ C+, and
hence the system is admittance passive.

1

sC
Z1(s)
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The asymptotic expansions are Z(s) = Z1(0) + o(s) as s→̂0 and Z(s) = 1/(sC) +
o(s−1) as s→̂∞. Here, the corresponding Herglotz function is h(ω) := iZ(−iω) where
s = −iω and ω ∈ C

+. Its low- and high-frequency asymptotics are

h(ω) = o(ω−1) as ω→̂0 and h(ω) = − 1

ωC
+ o(ω−1) as ω→̂∞ (20.36)

In terms of (20.21) and (20.18), we have a−1 = 0 and b−1 = −1/C, and thus the sum
rule (20.28) with n = 0 gives

2

π

∫ ∞

0+
Re[Z(−iω)] dω = 2

π

∫ ∞

0+
Im[h(ω)] dω = a−1 − b−1 = 1

C
(20.37)

By integrating only over a finite frequency interval � := [ω1, ω2], and estimating
this integral from the following, we obtain the bound

�ω inf
ω∈�

Re[Z(−iω)] ≤
∫ ∞

0+
Re[Z(−iω)] dω = π

2C
(20.38)

where �ω := ω2 − ω1. Consequently, inequality (20.38) limits the product between
the bandwidth and the minimum resistance over the given frequency interval; see
also [47]. �

Compositions of Herglotz functions can be used to construct new Herglotz func-
tions and, hence, also new sum rules. Here, we illustrate this for a case where the
minimal temporal dispersion for metamaterials is determined. The problem is first
transformed to the problem of determining the minimum amplitude of a Herglotz
function over a bandwidth [14,21].

Example 20.10. Metamaterials and temporal dispersion When a dielectric
medium is specified to have inductive properties (i.e., has negative permittivity) over
a given bandwidth, it is regarded as a metamaterial. A given negative permittivity
value at a single frequency is always possible to achieve. For instance, the plasmonic
resonances in small metal particles can be readily explained by using common Drude
or Lorentz models, etc. However, when a constant negative permittivity value is
prescribed over a given bandwidth, the passivity of the material will imply severe
bandwidth limitations; see, e.g., [21].

To derive these limitations based on the general theory of Herglotz functions,
we start by considering the following general situation: Let F(x) := −h0(x) be the
negative of a fixed Herglotz function h0 that can be extended continuously to a neigh-
borhood of the compact interval � ⊂ R and has the large argument asymptotics
h0(z) = b0

1z + o(z) as z→̂∞. Let h denote an arbitrary Herglotz function with the same
continuity property on the real line and satisfying the asymptotics h(z) = b1z + o(z)
as z→̂∞. We aim to derive a lower bound for the error norm

‖h − F‖L∞(�) := sup
x∈�

|h(x) − F(x)| (20.39)
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To this end, an auxiliary Herglotz function hΔ(z), cf. [21], is defined by

hΔ(z) := 1

π

∫ Δ

−Δ

1

ξ − z
dξ = 1

π
Log

z − Δ

z + Δ
=
⎧⎨
⎩

i + o(1) as z→̂0
−2Δ

πz
+ o(z−1) as z→̂∞

(20.40)

Note that Im[hΔ(z)] ≥ 1
2 for |z| ≤ Δ and Im[z] ≥ 0. Next, consider the composite

Herglotz function h1(z) := hΔ(h(z) + h0(z)), where h(z) + h0(z) = (b1 + b0
1)z + o(z)

as z→̂∞ yields the asymptotics

h1(z) = o(z−1) as z→̂0 and h1(z) = −2Δ

π (b1 + b0
1)

z−1 + o(z−1) as z→̂∞
(20.41)

The sum rule (20.28) with n = 0 is given by

2

π

∫ ∞

0+
Im[h1(x)] dx = a−1 − b−1 = 2Δ

π (b1 + b0
1)

(20.42)

Choosing Δ := supx∈� |h(x) + h0(x)|, the following integral inequalities follow

1

π
|�| ≤ 2

π

∫
�

Im[h1(x)]︸ ︷︷ ︸
≥ 1

2

dx ≤ 2

π

∫ ∞

0+
Im[h1(x)] dx = 2 supx∈� |h(x) + h0(x)|

π (b1 + b0
1)

(20.43)

or

‖h + h0‖L∞(�) ≥ (b1 + b0
1)

1

2
|�|, where |�| =

∫
�

dx (20.44)

Consider now a dielectric metamaterial with a constant, real-valued, and negative tar-
get permittivity εt < 0 to be approximated over an interval �. In this case, F(z) = zεt

and h0(z) = −F(z) with b0
1 = −εt . Let ε(z) be the permittivity function of the approx-

imating passive dielectric material, and h(z) = zε(z) the corresponding Herglotz
function with b1 = ε∞, the assumed high-frequency permittivity of the material, and
the approximation interval � = ω0[1 − B/2, 1 + B/2], where ω0 is the center fre-
quency and B the relative bandwidth with 0 < B < 2. The resulting physical bound
obtained from (20.44) is given by

‖ε( · ) − εt‖L∞(�) ≥ (ε∞ − εt)B

2 + B
(20.45)

see also [21]. Note that the variable x corresponds here to angular frequency, also
commonly denoted as ω (in rad/s). �

Scattering passive systems have transfer functions that map C
+ to the unit disk.

To use (20.28), we first construct a Herglotz (or PR) function by mapping the unit
disk to C

+. This map can be made in many different ways and the particular choice
depends on the asymptotic expansion and the physical interpretation of the system.
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The Cayley transform, logarithm, and addition are most common in applications.
Here, the reflection coefficient of a radar absorber is considered. It is desired to
bound the magnitude of the reflection coefficient and, hence, the logarithm is used to
construct a Herglotz function.

Example 20.11. Sum rules for passive radar absorbers The reflection coefficient
Γ (k) for an isotropic slab with permeability μ(k) and permittivity ε(k) was derived in
Example 20.8, where k = ω/c0 is the wave number. Assuming that μ(k) = μs + O(k)
and ε(k) = εs + O(k), where μs and εs are the corresponding static values, it can be
shown that the reflection coefficient has the following asymptotic expansions

Γ (k) = −1 − i2kdμs + O(k2) as k→̂0 and Γ (k) = O(1) as k→̂∞ (20.46)

The function Γ (k) is the Fourier transform of a scattering passive convolution kernel,
so Γ (k) is an analytic function with |Γ (k)| ≤ 1 for k ∈ C

+. Hence it has a representa-
tion of the form Γ (k) = −B(k)eih(k), where B(k) is a Blaschke product (cf. [50]) and
h(k) a Herglotz function [14]. With an appropriately chosen branch of the logarithm,
h can thus be written

h(k) := −i log

(
−Γ (k)

∏
n

1 − k/k∗
n

1 − k/kn

)
(20.47)

where kn are the zeros of Γ (k) with Im[kn] > 0. The Blaschke product is used to
remove these zeros from the upper half plane and the negative sign is chosen here to
make the Herglotz function h(k) symmetric.

The asymptotic expansions of h(k) are given by

h(k) = k

(
2dμs + 2

∑
n

Im
[

1

kn

])
+ o(k) as k→̂0 (20.48)

and h(k) = o(k) as k→̂∞. Therefore, there is a sum rule (20.28) yielding

2

π

∫ ∞

0+

Im[h(k)]

k2
dk = 2dμs + 2

∑
n

Im
[

1

kn

]
(20.49)

Since Im[1/kn] < 0, the following inequality is obtained:

2

π

∫ ∞

0+

− ln |Γ (k)|
k2

dk ≤ 2dμs, or
∫ ∞

0+
− ln |Γ (λ)| dλ ≤ 2π2dμs (20.50)

where we used λ = 2π/k to arrive at the final formulation, which was originally
given in [16]. Note that the inequality in (20.50) gives also the following bound on
the absorption parameter 1/|Γ (λ)| over the interval [λ1, λ2]

Δλ inf
λ∈[λ1,λ2]

ln
1

|Γ (λ)| ≤
∫ ∞

0+
ln

1

|Γ (λ)| dλ ≤ 2π 2dμs (20.51)

where Δλ = λ2 − λ1.



Herglotz functions and applications in electromagnetics 507

The derivation above is, for simplicity, presented for homogeneous slabs sim-
ilar to the multilayer case originally presented in [16]. The sum rule and physical
bounds are generalized to arbitrary inhomogeneous periodic structures using the low-
frequency expansion in [20] together with passivity and expansion of the reflected
field in Floquet modes. This derivation shows that (20.51) is valid for the general case.
An extension of the result (20.51) has applications in the evaluation of bandwidth
performance of array antennas [22,23]. �

20.5 Convex optimization and physical bounds

Convex optimization [27,51] based on the Herglotz function representation (20.7)
can be used to approximate and identify passive systems. However, to facilitate the
computation of a numerical solution using a software such as CVX [51], it is neces-
sary to first impose some a-priori constraints on the class of approximating Herglotz
functions. In particular, we are interested here in Herglotz functions that are known
to be locally Hölder continuous on some given intervals on the real line. Hence,
a passive approximation problem is considered where the target function F is an
arbitrary complex-valued continuous function defined on an approximation domain
� ⊂ R consisting of a finite union of closed and bounded intervals of the real axis.
The norms used, denoted by ‖ · ‖Lp(w,�), are weighted Lp(�)-norms [50] which are
defined here by using a positive continuous weight function w on �, and where
1 ≤ p ≤ ∞.

Here, the approximating function h is the Hölder continuous extension (to �)
of some Herglotz function generated by an absolutely continuous measure μ having
a density μ′ which is Hölder continuous on the closure U of an arbitrary neigh-
borhood U ⊃ � of the approximation domain. The function μ′ is Hölder continuous
with Hölder exponent α, meaning that |μ′(τ ) − μ′(ς )| ≤ C |τ − ς |α for all τ , ς ∈ U ,
where 0 < α < 1 is fixed, and C > 0 is an arbitrary constant. The correspond-
ing Hölder space is denoted C0,α(U ); see, e.g., [52, pp. 94–104]. It can be shown
that the Hilbert transform integral operator H , defined similarly as in (20.16), is a
bounded operator H : C0,α(U ) → C0,α(�); cf., e.g., Theorem 7.6 and Corollary 7.7
on pp. 101–102 in [52] and see also [9]. By assumption, both the real and the imagi-
nary parts of h are continuous functions on �. Moreover, it holds that Im[h] = πμ′

on U (cf. [13, p. 7]) and, due to the Hölder continuity of the density μ′ on U , the real
part is given by the associated Hilbert transform [52], similar as in (20.17). Now, the
impulse response of a passive system can usually be considered as real-valued. In this
case, the approximating Herglotz function h can be assumed to be symmetric and its
real part admits the representation

Re[h(x)] = bx + p.v.

∫
R

μ′(τ )

τ − x
dτ for x ∈ � (20.52)

where Im[h(x)] = πμ′(x) for x ∈ �.
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The continuity of h on � implies that the norm ‖h‖Lp(w,�) is well-defined for
1 ≤ p ≤ ∞. An approximation problem of interest can now be formulated in terms
of the greatest lower bound on the approximation error, defined by

d := inf
h

‖h − F‖Lp(w,�) (20.53)

where the infinum is taken over all Herglotz functions h generated by a measure
having a Hölder continuous density on U .

In general, a best approximation achieving the bound d in (20.53) does not exist.
In practice, however, the problem is approached by using numerical algorithms such
as CVX [51], solving finite-dimensional approximation problems using B-splines,
with the number of basis functions N fixed during the optimization, cf. [24,25]. Here,
a B-spline of order m ≥ 2 is an m − 2 times continuously differentiable and compactly
supported positive basis spline function consisting of piecewise polynomial functions
of order m − 1, i.e., linear, quadratic, cubic, etc., and which is defined by m + 1 break
points [53]. Let us now consider a discretization of the problem expressed in (20.53),
which is based on an arbitrary, finite partition of the approximation domain �. Let

πμ′(x) =
N∑

n=1

ζn (pn(x) + pn(−x)) (20.54)

for x ∈ R be a finite B-spline expansion of Im [h(x)], where ζn are optimization
variables for n = 1, . . . , N , and pn(x) are B-spline basis functions of fixed order m
which are defined on the given partition. The real part Re[h(x)] for x ∈ � is then
given by (20.52), and can be expressed as

Re[h(x)] = bx − ζ0

x
+

N∑
n=1

ζn

(
p̂n(x) − p̂n(−x)

)
, x ∈ � (20.55)

where p̂n(x) is the (negative) Hilbert transform of the B-spline function pn(x) and
where a point mass at x = 0 with amplitude c0 has been included; see (20.13). Any
other a-priori assumed point masses can be included in a similar way. Explicit formulas
for general B-splines and their Hilbert transforms are given in [24]. As an example,
a piecewise linear (“roof-top”) B-spline on a uniform partition is given by pn(x) =
p(x − n�), where

p(x) =
{

1 − |x|/� |x| ≤ �

0 |x| > �
(20.56)

for x ∈ R and � > 0, and its (negative) Hilbert transform p̂n(x) = p̂(x − n�), where

p̂(x) = 1

π�
(2x ln |x| − (x − �) ln |x − �| − (x + �) ln |x + �|) (20.57)

for x ∈ R. Note that the logarithmic singularities in (20.57) cancel, and the function
p̂(x) is a continuous function on R.
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Consider now the following convex optimization problem:

minimize ‖h − F‖Lp(w,�)

subject to ζn ≥ 0, for n = 0, . . . , N
b ≥ 0,

(20.58)

where the optimization is over the variables (ζ0, ζ1, . . . , ζN , b). Note that the objective
function in (20.58) above is the norm of an affine form in the optimization variables.
Hence, the objective function is a convex function in the variables (ζ0, ζ1, . . . , ζN , b).

The uniform continuity of all functions involved implies that the solution to
(20.58) can be approximated within an arbitrary accuracy by discretizing the approx-
imation domain � (and the computation of the norm) using only a finite number
of sample points. The corresponding numerical problem (20.58) can now be solved
efficiently by using the CVX MATLAB® software for disciplined convex program-
ming [51]. The convex optimization formulation (20.58) offers a great advantage in
the flexibility in which additional or alternative convex constraints and formulations
can be implemented; see also [24,25].

Example 20.12. A canonical example of convex optimization is with the passive
approximation of metamaterials; see also [21,24,25]. As in Example 20.10, the vari-
able x corresponds here to angular frequency, also commonly denoted as ω (in rad/s).
A typical application is with the study of optimal plasmonic resonances in small
structures (or particles) for which the absorption cross section can be approximated by

σabs ≈ kIm[γ ] (20.59)

where k = 2π/λ is the wave number of free space, λ the wavelength, and γ is the
electric polarizability of the particle; see [54]. As, e.g., the polarizability of a dielectric
sphere with radius a is given by γ (x) = 4πa3(ε(x) − 1)/(ε(x) + 2), where ε(x) is the
permittivity function of the dielectric material inside the sphere.

A surface plasmon resonance is obtained when ε(x) ≈ −2, and, hence, we specify
that the target permittivity of our metamaterial is εt = −2. However, a metamaterial
with a negative real part cannot, in general, be implemented as a passive material
over a given bandwidth, cf. [21]. Based on the theory of Herglotz functions and
associated sum rules, the physical bound in (20.45) can be derived, where ε∞ is the
high-frequency permittivity of the material, εt < ε∞, � = ω0[1 − B/2, 1 + B/2], ω0

the center frequency, and B the relative bandwidth with 0 < B < 2, cf. [21]. The
convex optimization formulation (20.58) can be used to study passive realizations
(20.54) and (20.55) that satisfies the bound (20.45) as close as possible. Here, the
approximating Herglotz function is h(x) = xε(x), the target function F(x) = xεt , ζ0

the amplitude of a point mass at x = 0, b = ε∞, and a weighted norm is used defined
by ‖ f ‖L∞(w,�) = maxx∈� | f (x)/x| assuming that 0 /∈ �.

In Figure 20.5 is shown the absorption cross section σ D
abs of a small (a = 5 nm)

gold nanosphere modeled by using a dielectric Drude model with static conductivity
σ0 = 4.52 · 107 S/m and collision frequency ν = 4.449 · 1012 Hz; see [55]. The plot
also shows the maximal bandwidth (MB) for the corresponding Drude peak resonance
based on the associated sum rule Δλ = 4π3a3/ max σ D

abs corresponding to a relative
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Figure 20.5 Absorption cross section σ D
abs of a small (a = 5 nm) gold nanosphere

modeled by using a dielectric Drude model. The red dashed line (MB)
gives the maximal bandwidth for the corresponding peak resonance
based on the associated sum rule �λ = 4π3a3/ max σ D

abs. Here, σ o1
abs

and σ o2
abs correspond to optimized permittivity functions for relative

bandwidths B = 2.5 · 10−3 and B = 1.25 · 10−3, respectively
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Figure 20.6 Real and imaginary parts of the optimized permittivity functions
approximating a metamaterial with εt = −2. Here, εo1 and εo2 are
optimized using (20.58) and linear B-splines, for the relative
bandwidths B = 2.5 · 10−3 and B = 1.25 · 10−3, respectively. UB1-2
and LB1-2 denote the corresponding upper and lower physical bounds
based on (20.45)

bandwidth of B = 2.5 · 10−3. Finally, the plot shows the absorption cross sections
σ o1

abs and σ o2
abs in two examples, where the permittivity functions have been optimized

using (20.58) and linear B-splines for the relative bandwidths B = 2.5 · 10−3 and
B = 1.25 · 10−3, respectively. The resulting optimal permittivity functions are plotted
in Figure 20.6 together with the fundamental bound (20.45). Note that there is also
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a point mass with amplitude ζ0 at x = 0 which is not seen in this plot. All plots are
made with respect to wavelength λ = 2π/k . �

20.6 Conclusions

We have illustrated how the theory of Herglotz functions provides essential informa-
tion about electromagnetic systems and engineering challenges, both by using this
theory on well-known problems and recent results. Sum rules and convex optimiza-
tion utilize the inherent constraints due to passivity, linearity, and time-translational
invariance of the electromagnetic applications to obtain fundamental physical bounds.
Furthermore, these techniques not only give physical bounds, but in several cases have
been shown to be predictive as a tool in the design of electromagnetic structures.
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