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A B S T R A C T   

The emergence and development of next-generation sequencing technologies (NGS) has made the analysis of the 
water microbiome in drinking water distribution systems (DWDSs) more accessible and opened new perspectives 
in microbial ecology studies. The current study focused on the characterization of the water microbiome 
employing a gene- and genome-centric metagenomic approach to five waterworks in Finland with different raw 
water sources, treatment methods, and disinfectant. The microbial communities exhibit a distribution pattern of 
a few dominant taxa and a large representation of low-abundance bacterial species. Changes in the community 
structure may correspond to the presence or absence and type of disinfectant residual which indicates that these 
conditions exert selective pressure on the microbial community. The Archaea domain represented a small 
fraction (up to 2.5%) and seemed to be effectively controlled by the disinfection of water. Their role particularly 
in non-disinfected DWDS may be more important than previously considered. In general, non-disinfected DWDSs 
harbor higher microbial richness and maintaining disinfectant residual is significantly important for ensuring low 
microbial numbers and diversity. Metagenomic binning recovered 139 (138 bacterial and 1 archaeal) 
metagenome-assembled genomes (MAGs) that had a >50% completeness and <10% contamination consisting of 
20 class representatives in 12 phyla. The presence and occurrence of nitrite-oxidizing bacteria (NOB)-like mi
croorganisms have significant implications for nitrogen biotransformation in drinking water systems. The 
metabolic and functional complexity of the microbiome is evident in DWDSs ecosystems. A comparative analysis 
found a set of differentially abundant taxonomic groups and functional traits in the active community. The 
broader set of transcribed genes may indicate an active and diverse community regardless of the treatment 
methods applied to water. The results indicate a highly dynamic and diverse microbial community and confirm 
that every DWDS is unique, and the community reflects the selection pressures exerted at the community 
structure, but also at the levels of functional properties and metabolic potential.   

1. Introduction 

Despite considerable improvements in treatment processes and 

disinfection practices, outbreaks associated with drinking water have 
been consistently reported worldwide (WHO, 2021). As a result, effec
tive monitoring of microbial contamination in drinking water 
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distribution systems (DWDSs) is critical to reduce health risks, particu
larly for immunocompromised members of populations (Prüss-Üstün 
et al., 2008; Ashbolt, 2015; Yates, 2019). Culture-based methods are 
primarily used to assess the microbial quality of drinking water, but 
these assays are selective in nature, providing a limited view of relevant 
issues (Gomez-Alvarez et al., 2015), such as: (1) intrinsic microbial di
versity within DWDSs; (2) metabolic potential that might enhance the 
survival of pathogens; (3) presence of antibiotic resistance genes and 
antimicrobial resistance mechanisms; and (4) microbes responsible for 
the deterioration of distribution system infrastructure and water quality. 
The implementation of next generation sequencing technology (NGS) to 
study the water microbiome has provided a better understanding of the 
taxonomic affiliation, functional potential, and overall microbial di
versity in DWDSs (Tan et al., 2015; Zhang and Liu, 2019; Garner et al., 
2021; Tiwari et al., 2022). More recently, advanced metagenomic sur
veys have documented that DWDSs support a complex microbial 
network (Douterelo et al., 2018; Brumfield et al., 2020; Gomez-Alvarez 
et al., 2021). Therefore, a more complete characterization of the mi
crobial community structure of DWDSs using molecular tools is critical 
to address public health research questions (e.g., conditions promoting 
the emergence of pathogens), which may be more difficult to answer 
using traditional methods. 

Most of the Finnish population (up to 90%) is served by centralized 
DWDSs with the rest of the population using an alternate source of 
drinking water such as private drinking water wells (Ikonen et al., 
2017). In 2018, there were 153 large EU-regulated waterworks in 
Finland that met the reporting criteria of the Drinking Water Directive, 
which supplied domestic water to about 4.5 million users with 43% of 
domestic water produced from groundwater, 38% from surface water 
and the remaining 19% from artificially recharged groundwater 
(Zacheus, 2013). The disinfection methods in Finnish waterworks 
include non-disinfection and combinations of UV-light, ClO2, Cl, NH2Cl 
and NaOCl in other systems. Since water source, treatment processes 
and disinfectant play a key role in shaping the bacterial community in 
the distribution system, we hypothesize that the bulk water at each 
service area will harbor distinct and diverse bacterial communities as 
well as unique water functional potential. This study reports on the 
characterization of the bulk phase water microbial community, based on 
16S rRNA gene, metagenome and metatranscriptome libraries, from five 
waterworks in Finland with different raw water sources, treatment 
methods, and disinfectant. This study provides information regarding 
microbial community diversity influenced by different raw water sour
ces and different water treatment technologies. It also provides a win
dow into the functional properties and metabolic potential of the water 
microbiome. 

2. Material and methods 

2.1. DWDS sites, sample collection and nucleic acid extraction 

A detailed description of the sample locations, details, and process
ing as well as specific details and characteristics of the five drinking 
water distribution systems (DWDS) can be found in our previous 
research papers focusing on the water microbiome (Inkinen et al., 2019, 
2021) and the physico-chemical characteristics of DWDSs (Ikonen et al., 
2017). The flowchart methodology of this research is available in Sup
plementary file: Fig. S1. Briefly, bulk water samples were collected from 
five different DWDSs (A to E) with the aim to cover the main treatment 
processes that are used in drinking water production in Finland 
(Table S1). Each waterwork varies regarding raw water source, treat
ment method, and disinfection treatment as follows: artificial ground
water production without any disinfection (DWDSs A and B, same 
geographical location), surface water with chlorine dioxide (ClO2) and 
chlorine (Cl2) disinfection (DWDS C), surface water with chloramine 
(NH2Cl) disinfection (DWDS D), and groundwater treated with sodium 
hypochlorite (NaOCl) (DWDS E). DWDS C to E included UV disinfection 

before chlorination. 
Large volume bulk water samples (n = 10) were collected in two 

consecutive weeks during the summer season (August-September) at 
each location. The measured physico-chemical water quality and nu
trients are available in Supplementary file: Table S2. Briefly, 100 L from 
the cold-water system was collected and filtered on-site using a dead-end 
ultrafiltration method (DEUF) using a Rexeed-25A hollow-fiber poly
sulfone filter (Asahi Kasei Medical Co., Ltd., Tokyo, Japan) attached to a 
tap (Inkinen et al., 2021). The average flow of water during sample 
collection was 3 L/min. The filters were stored and transported on ice for 
elution and DNA/RNA processing in the laboratory. Detailed informa
tion on sample collection, nucleic acid extraction, and complementary 
DNA (cDNA) synthesis from the purified RNA can be found in Supple
mentary file: Materials and Methods. 

2.2. 16S rRNA gene amplification, sequencing, and reads processing 

The highly variable V3–4 region of the bacteria 16S rRNA gene was 
amplified using the primer set 341F and 785R (Klindworth et al., 2013). 
The primers A340F (Gantner et al., 2011) and 915R (Stahl and Amann, 
1991) were used for the amplification of the archaea 16S rRNA gene. 
Paired-end 300 bp reads were generated using the MiSeq® platform 
(Illumina Inc., San Diego, USA) and screened following the procedure 
described in Gomez-Alvarez et al. (2016). Detailed information on PCR 
amplification, sequencing, and processing of reads can be found in 
Supplementary file: Materials and Methods. After quality control 
filtering and removal of artificial sequences, 138,073 and 54,534 reads 
were retained from 16S rRNA bacteria and archaea libraries, respec
tively. Archaea samples from sites C and D were excluded from further 
analysis due to a small number of recoverable reads. 

2.3. 16S rRNA microbial community assemblages 

Prior to community analysis, 16S rRNA gene libraries were rarefied 
to the smallest data set (4450 bacteria and 670 archaea reads). Bacteria 
and archaea analysis identified 6776 and 1176 operational taxonomic 
units (OTUs), respectively. Normalized libraries were used to calculate 
richness (S), richness estimators (ChaoI and SACE), Shannon diversity (H) 
and evenness (HE) with the software mothur v1.45.2 (Schloss et al., 
2009). 

Taxonomic classification was obtained using the reference database 
Genome Taxonomy Database (GTDB) release 95 (Parks et al., 2020). 
Phylogenetic trees were constructed from the alignments of 16S rRNA 
gene sequences based on the maximum likelihood method using the 
software MEGA X v10.1.7 (Kumar et al., 2018). 

2.4. Sequencing, processing, and assembly of metagenome and 
metatranscriptome libraries 

Paired-end standard metagenome libraries were prepared using the 
Illumina HiSeq in the NovaSeq 6000 S2 PE150 XP sequence mode. Li
braries were quality-checked using a 2100 Bioanalyzer Instrument 
(Agilent, Santa Clara, USA). Prior to assembly, the 150-nucleotide (nt) 
pair-end reads were subjected to quality filtering and cleaning from 
adapters and phiX artifacts, error corrected, normalized (≤100×), and 
filtered to a minimum length of 100-nt using the bioinformatics software 
package BBMap v38.22 (http://sourceforge.net/projects/bbmap) with 
the following parameters: ktrim=r, k = 23, mink=11, hdist=1, tbo, tpe, 
maxns=0, trimq=10, qtrim=r, maq=12, minlength=100, ecco=t, 
eccc=t, ecct=t, and target=100. The libraries contained an average 
(±SD) of 35,428,802 ± 3956,065 reads per sample. 

To recover the active functional and metabolic information from the 
RNA extracted from the water samples, metatranscriptome of cDNA 
from the purified RNA were sequenced and processed following the 
same procedure as for the metagenome libraries. Then, ribosomal RNA 
was removed in silico by mapping metatranscriptomic reads to multiple 
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rRNA databases with default settings using the local alignment tool 
SortMeRNA (Kopylova et al., 2012). The libraries from Sample B2, and 
DWDS C and E were excluded from subsequent analysis due to poor 
recovery of filtered reads. Only the data sets from sites A (ND) and D 
(CHM) were used to determine which populations were metabolically 
active at the time of sampling. The libraries contained an average (±SD) 
of 4290,346 ± 316,333 reads per sample. 

2.5. Assembly, annotation, and OTU diversity of metagenomic reads 

Libraries were de novo assembled using MEGAHIT v1.2.9 (Li et al., 
2016) with default parameters but discarding contigs below 1500 nu
cleotides. Contigs were annotated with MetaProkka v1.14.6_1 (Telatin, 
2020) a modified version of Prokka (Seemann, 2014). The tool SingleM 
v0.13.2 (Woodcroft, 2020) was used to estimate the abundances of OTUs 
directly from metagenome data from each sample. Shannon diversity 
was calculated based on the average of the rarefied OTU table across 
each of the 14 single-copy marker genes. 

2.6. Taxonomic and metabolic inference of metagenomic and 
metatranscriptomic reads 

Taxonomy was assigned using Kraken2 v2.1.2 (Wood et al., 2019) 
with a confidence value of 0.05 for taxonomic assignment using the 
pre-built custom Genome Taxonomy Database (GTDB) release 95 
(http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release95/ 
kraken2). Taxonomy counts for each sample were summarized by 
collapsing taxonomic assignments to the phylum, class, order, family, 
and genus level with Bracken v.2.6.1 (Lu et al., 2017). A Sankey diagram 
was created using the online tool Pavian to illustrate the flow of reads 
from the root of the taxonomy to more specific ranks (Breitwieser et al., 
2020). Metabolic reconstruction and the relative abundance of genes 
involved in key biogeochemical pathways were determined by DiTing 
v0.9 (Xue et al., 2021). Hierarchical classification (BRITE, KO, modules, 
pathways) of metabolic functions was obtained using the online tool 
FuncTree2 (Darzi et al., 2019). Selected waterborne pathogens were 
identified at the genus level from samples using the 
Pathogen-fluctuations script (Ghosh, 2021). The input file was the 
output of a UniRef90 (Suzek et al., 2015) based functional gene classi
fication implemented through the HUMAnN v3.0.0 pipeline (Beghini 
et al., 2021). Detailed information on metabolic profiles and charac
terization can be found in Supplementary file: Materials and Methods. 

2.7. Metagenomic binning 

Prior to assembly, libraries were pooled (by location), and de novo 
co-assembly was performed with filtered reads using the assembler 
MEGAHIT. Contigs data was binned using anvi’o v6.1 (Eren et al., 2015) 
with the tools MaxBin2 v.2.2.6 (Wu et al., 2016) and MetaBat2 v.2.15 
(Kang et al., 2019). Bins were optimized and dereplicated using the tool 
DAS Tool v 1.1.2 (Sieber et al., 2018). Subsequently, the bins were 
consolidated using MetaWRAP v1.3.2 (Uritskiy et al., 2018). Clusters 
were manually refined, and contaminants removed using the tools 
RefineM v0.1.1 (Parks et al., 2017) and MAGpurify v2.1.2 (Nayfach 
et al., 2019). Bins were reassembled with MetaWRAP (Uritskiy et al., 
2018). The quality, coverage, and relative abundance in the community 
of metagenome-assembled genomes (MAGs) was assessed with CheckM 
v1.1.2 (Parks et al., 2015), and bins with ≥50% completeness, ≤10% 
contamination, and ≤10% strain heterogeneity were selected for 
downstream analysis (Bowers et al., 2017). MAGs were annotated with 
Prokka (Seemann, 2014), and their taxonomy was refined and 
confirmed by using GTDB-Tk v1.4.1 (Chaumeil et al., 2019) based on the 
GTDB release 95 database (Parks et al., 2020). Bins were de-replicated 
using dRep v3.2.0 (Olm et al., 2017) with default parameters. A 
phylogenetic tree of de-replicated MAGs was created with PhyloPhlAn 
v3.0.2 (Asnicar et al., 2020) using RAxML version 8.2.12 (Stamatakis 

et al., 2014). The tree was visualized with FigTree v1.4.4 (Rambaut, 
2018). Metabolic reconstruction of each MAG was performed with the 
module METABOLIC–C using the software METABOLIC v4.0 (Zhou 
et al., 2020) with the following parameters: in-gn, r, rt=metaG and 
taxa=order. A Sankey diagram was created using the online tool San
keyMATIC (https://sankeymatic.com/) to illustrate the metabolic en
ergy flow potential. Detailed information on MAG assemblies and 
characterization can be found in Supplementary file: Materials and 
Methods. 

2.8. Multivariable ordination and statistical analysis 

Non-metric multidimensional scaling (nMDS) was used to describe 
the relationships among microbial communities. The nMDS was based 
on the Square Root Jensen-Shannon Divergence coefficient (dissimi
larity) matrix. The Jensen-Shannon divergence is a method of measuring 
the similarity between two probability distributions based on relative 
abundance. A one-way permutational multivariate analysis of variance 
(PERMANOVA) test was applied on the distance matrix with 9999 
permutations to determine if there were significant differences (α =
0.05) between the microbial communities (Anderson, 2001). Similarity 
Percentage (SIMPER) analysis was conducted to determine the per
centage contribution of species to the differences observed in 
non-disinfected to treated waters (Clarke, 1993). A Mann-Whitney U test 
(α = 0.05) was used to evaluate the differences in diversity indices 
(non-disinfected vs. treated waters), whereas the relationship between 
metabolic processes (e.g., genes) and DWDSs were examined using the 
non-parametric Kruskal-Wallis test for equal medians (α = 0.05). Ordi
nation plots, PERMANOVA, SIMPER, Mann-Whitney U test, and 
Kruskal-Wallis analysis was performed with the software PAST v4.06 
(Hammer et al., 2001). Statistical comparisons between total and active 
community profiles were calculated based on the Fisher’s exact test with 
corrected q-values (Storey’s FDR multiple test correction approach) 
using the software package STAMP v2.1.3 (Parks et al., 2010). 

2.9. Data availability 

The sequence data for this study have been deposited in the Euro
pean Nucleotide Archive (ENA) at EMBL-EBI under accession number 
PRJEB40814 with the following BioSample numbers: SAMEA7465213 
(Accession: ERS5222917) to SAMEA7465227 (ERS5222931). A single 
zip folder (THL_MAGs_selected_bins.zip) including all the selected MAGs 
is provided as a supplementary file. 

3. Results and discussion 

3.1. Microbial community assemblages were associated with disinfectant 
treatment 

Large volume bulk water samples were collected in two consecutive 
weeks during the summer season from each of the five DWDS locations. 
Raw water source and disinfection were the main differences between 
the systems (Ikonen et al., 2017). Metagenomic-based microbial di
versity (Chao I index) was significantly higher in DWDSs (Man
n-Whitney U test: z = 2.5, p = 0.0142) with no disinfectant (median: 
2766, range from 2434 to 3334, n = 4) and decreased in chlorine and 
chloramine disinfected DWDSs (median: 641, range from 245 to 1601, n 
= 6) (Fig. 1A). The absence and decrease in disinfectant residual levels 
in conjunction with increasing distance from the waterworks enables 
regrowth and explains the increase in microbial growth at these distri
bution networks (Ikonen et al., 2017). Inkinen et al. (2019) observed a 
lower number of eukaryotic species in disinfected DWDSs as compared 
to nondisinfected water. Furthermore, Dai et al. (2020) established that 
the relative abundance of Archaea is dependent on the concentration of 
disinfectant residual. Maintaining disinfectant residual is significantly 
important for the mitigation of microbial contamination in DWDSs 

V. Gomez-Alvarez et al.                                                                                                                                                                                                                       

http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release95/kraken2
http://ftp.tue.mpg.de/ebio/projects/struo2/GTDB_release95/kraken2
https://sankeymatic.com/


Water Research 229 (2023) 119495

4

(USEPA, 2007). Although a few European countries require all water 
supplies to be disinfected and a disinfectant residual to be maintained, 
some countries do not require disinfection or the use of a disinfectant 
residual (Hydes, 1999). Finland offers guidance on disinfectant residuals 
(USEPA, 2007). 

The taxonomic composition of the metagenomes revealed that most 
of the Bacteria domain diversity was associated with the phylum Pro
teobacteria followed by, Nitrospirota, Omnitrophota, Patescibacteria, 
Planctomycetota, Bacteroidota, Desulfobacterota, and Actinobacteriota. The 
Archaea domain represent a small fraction (up to 2.5%) of the pro
karyote community (Fig. 1B). Results from previous shotgun meta
genomic DNA sequencing studies have indicated lower proportions of 
archaeal representatives in drinking water systems (Gomez-Alvarez 
et al., 2012a and 2021; Douterelo et al., 2018). Although the abundance 
of archaeal representatives is relatively low, our study confirmed the 
presence of a highly taxonomic diversity composed of at least twelve 
major classes (Fig. 1B). Their role, particularly in non-disinfected DWDS 

may be more important than previously considered (Inkinen et al., 
2021). The negative relationship between archaea abundance and 
disinfectant residual (i.e., treatment) is particularly evident for dis
infected DWDSs, where the archaea community seemed to be effectively 
controlled by disinfection of the water. Overall, the observed taxonomic 
composition in which the dominant phyla represented here (albeit not at 
the same ratios) and the small relative abundance of Archaea is 
consistent with a previous meta-analysis of DWDSs (Bautista-de los 
Santos et al., 2016). 

Moreover, the non-metric multidimensional scaling (nMDS) analysis 
formed three defined clusters (nMDS: stress = 0.11; PERMANOVA: F =
8.1, p = 0.0007) based on disinfectant treatment (Fig. 1C). The com
munity composition in the DWDSs shifted markedly with disinfectant 
(disinfectant: none, ND; chlorine, CHL; chloramine, CHM): the dominant 
class switched from Koll11, Paceibacteria, Binatia, Bacteroidia, Methyl
omirabilia, Thermodesulfovibrionia, Planctomycetes, Actinomycetia, Nitro
sosphaeria (archaea), Phycisphaerae, and Verrucomicrobiae in ND 

Fig. 1. Community composition profiles of five DWDS revealed by a gene-centric metagenomic approach. (A) A decreasing gradient in microbial diversity revealed 
by Chao 1 from non-disinfected to treated water. (B) Taxonomic distribution of bacteria and archaea at the class level. (C) nMDS of all samples based on Jensen- 
Shannon distance on the genus level. Contribution of classes that explained ≈90% (SIMPER analysis) of the dissimilarity within all samples are represent by the 
size and direction of vectors. Numbers 1 to 19 indicate the classes Gammaproteobacteria, Alphaproteobacteria, Nitrospiria, Paceibacteria, Actinomycetia, Bacteroidia, 
Binatia, Planctomycetes, Methylomirabilia, Thermodesulfovibrionia, Nitrososphaeria (archaea), Phycisphaerae, Verrucomicrobiae, Desulfuromonadia, Vampirovibrionia, 
Bdellovibrionia, Methanomicrobia (archaea), Zetaproteobacteria, and Koll11, respectively. Disinfectant: ND, none; CHL, chlorine; CHM, chloramine. 

V. Gomez-Alvarez et al.                                                                                                                                                                                                                       



Water Research 229 (2023) 119495

5

communities to Alphaproteobacteria, Desulfuromonadia, Vampirovi
brionia, and Methanomicrobia (archaea) when CHL was used as disin
fectant. The DWDS treated with CHM was dominated by 
Gammaproteobacteria, Nitrospiria, Bdellovibrionia, and Zetaproteobacteria. 
This dissimilarity is explained by a small number of genus-level taxa (39 
out of 3368 representing 1.2% of the taxa) whose relative abundance 
varied significantly among the disinfectant treatment (PERMANOVA: F 
= 8.1, p = 0.0007). The 21 taxa are among the most abundant taxa (each 
representing >1% of the total distribution) and explained 69% (Simi
larity Percentage [SIMPER] analysis) of the dissimilarity within DWDSs. 
The dominant taxa (in the following order of contribution) in ND DWDSs 
were closely related to members of the genera UBA10183 (class Koll11), 
UBA9968 (class Binatia), Polynucleobacter, Immundisolibacter, Gallionella, 
UBA6249 (class Koll11), UBA1546 (class Thermodesulfovibrionia), 
CG2–30–66–27 (phylum Desulfobacterota), RBG-16–66–20 (order Bur
kholderiales), UBA9973 (class Paceibacteria), UBA5619 (order Syntro
phales), GWC2–42–12 (phylum Patescibacteria), and SXKJ01 (family 
Planctomycetaceae) (Figs. S2 and S3). Representatives of the genera 
UBA4765 (order Rhizobiales), Hyphomicrobium, Limnohabitans, Polar
omonas, Acidovorax, Thiobacillus, Rhodoferax, Sphingobium, Alicycliphilus, 
Giesbergeria, Hydrogenophaga, Bosea, Pseudomonas, and Sphingopyxis 
were overrepresented in the CHL DWDSs (Figs. S4 and S5). The CHM 
DWDSs were dominated by the genera Nitrosomonas, Nitrotoga, Nitro
spira, Palsa-1315 (family Nitrospiraceae), Sphingomonas, Hylemonella, 
PHCI01 (family Burkholderiaceae), Aquabacterium, Bradyrhizobium, and 
Reyranella (Fig. S6). These bacterial populations are ubiquitous mem
bers of DWDSs and may be considered part of the core microbiota of 
these ecosystems. 

Concurrently we used 16S rRNA-based analysis of the Bacteria and 
Archaea domain to confirm that DWDSs with no disinfectant harbor 
higher microbial diversity (Figs. S7A and S8A). The resulting analysis of 
OTUs corroborated that the DWDS communities displayed variations in 
their taxonomic composition (Figs. S7B and S8B) and that bacterial 
communities formed clear clusters (nMDS: stress = 0.07; PERMANOVA: 
F = 5.8, p = 0.0007) based on disinfectant treatment (Fig. S7C). In 
general, complex microbial communities are extremely diverse and 
typically exhibit a distribution pattern of a few dominant taxa and a 
large representation of low-abundance bacterial species (Nemergut 
et al., 2013). Furthermore, the observed changes in the structure of the 

microbial community may correspond to the presence/absence and type 
of disinfectant residual which indicates that these conditions exert se
lective pressure on the microbial community. 

3.2. Metabolic versatility of drinking water microbial communities 

We analyzed the metabolic potential of the DWDS metagenomes by 
focusing on KEGG-based pathways and modules (functional units of 
genes linked to specific metabolic capacities). The analysis of the 
metabolic potential revealed a total of 2990 KEGG orthologs (KOs) (ND 
= 2515; CHL = 2542; CHM = 2334) which were further categorized into 
45 BRITE (level 2) functional categories (ND = 44; CHL = 44; CHM =
45) comprising 344 pathways (ND = 307; CHL = 311; CHM = 326), and 
778 modules (ND = 688; CHL = 701; CHM = 708). Drinking water 
systems host a great microbial biodiversity and provide niche stability to 
a vast collection of microorganisms, and our study detected and iden
tified numerous functional processes comparable in numbers to complex 
ecosystems (Gomez-Alvarez et al., 2012a). These drinking water envi
ronments exhibit conditions that are favorable for the establishment of 
distinct communities harboring numerous biochemical processes 
(Fig. 2). Furthermore, the metagenomic analysis highlighted a moderate 
to high coverage (i.e., complete) of constructed KEGG pathways asso
ciated with core functions such as metabolism (energy, nucleotide, 
amino acid, xenobiotics), genetic processes (transcription, translation, 
replication, and repair), environmental processes (membrane transport, 
signal transduction), and cellular processes (growth, membrane func
tions) (Fig. S9). Among the energy metabolic processes (Fig. 2B), carbon 
fixation (chemolithotrophs and photosynthetic), oxidative phosphory
lation, nitrogen, sulfur, and methane metabolisms showed a greater 
estimated number of completed pathways (avg coverage [±SD] = 79.4 
± 16.1) suggesting the potential of the water microbiome to actively 
utilize these energetic processes (Fig. S9B). 

Functional analysis indicated differences in the metabolic charac
teristics of each DWDS at the KEGG pathways, modules, and KO levels. 
Cluster analysis grouped metabolic profiles (i.e., microbial commu
nities) into three distinct clusters (PERMANOVA: F = 11.9, p = 0.0007) 
(Fig. S10). Metabolic processes as well as sequences associated with 
diseases, environmental, and cellular information processing were 
enriched in disinfected drinking water systems (CHL and CHM) 

Fig. 2. Metabolic potential of five DWDSs revealed by a gene-centric metagenomic approach. Relative abundance of KEGG orthologs (KOs) in (A) biological pro
cesses and (B) energy metabolic pathways. Disinfectant: ND, none; CHL, chlorine; CHM, chloramine. 
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compared to non-disinfected samples (Fig. 2A). In particular, the energic 
metabolic pathways constituting cellular respiration (oxidative phos
phorylation) and carbon fixation (photosynthetic and non- 
photosynthetic [e.g., chemolithotrophs]), as well as metabolic path
ways for nitrogen, sulfur, and methane were overrepresented in dis
infected systems (Fig. 2B). The ecosystem characteristics of each DWDS 
may have led to differences in the ability to use carbon and nitrogen 
sources by their respective microbiome. These results, however, sug
gested that a higher taxonomic diversity did not accompany higher 
metabolic gene diversity (Figs. 1A and 2). For example, metabolic di
versity was not significantly different between no disinfectant and dis
infected DWDSs (Mann-Whitney U test: z = 1.2, p = 0.24095). The 
inconsistency between the metabolic and taxonomic diversities might 
suggest a higher functional redundancy of the microbial community in 
non-disinfected (ND) systems. Distinct species in similar niches might 
perform similar metabolic roles in biogeochemical cycles and over
lapping niches may increase the functional redundancy of the ecosystem 
(Wang et al., 2017). In general, this study provided insight into the ef
fects of disinfectant (as selective pressure) and water source on the 
metabolic potential of the DWDS microbial community. Similarly, Dai 
et al. (2020) suggests that selection pressures exerted within disinfected 
systems are not only evident at the community structure, but also 
evident at the community metabolic potential level. 

3.3. Prevalence of antimicrobial resistance and occurrence of 
pathogenicity traits in DWDSs 

Despite the drinking water in Finland being regularly monitored and 
showing excellent water quality, several antimicrobial resistance (AMR) 
and pathogenicity traits were identified in the DWDS metagenomes 
(Fig. 2A). The average proportion of genes associated with arsenic 
resistance (ars operons) was higher in the microbial communities in the 
CHL and CHM systems compared to ND water systems. A parallel study 
of these DWDSs revealed that most of the ARGs were associated with 
resistance to several antibiotic classes such as bacitracin, mupirocin, 
tetracycline, polymyxin, beta-lactam, aminoglycoside, glycopeptide, 
fosmidomycin, and fluoroquinolone (Tiwari et al., 2022). The DWDSs 
studied herein are considered pathogen-free but still might contain 
opportunistic waterborne pathogens. Preliminary results using the 
Pathogen-fluctuations script (Ghosh, 2021) identified functional genes 
of selected waterborne pathogens that are representatives of the genera 
Acinetobacter, Aeromonas, Burkholderia, Campylobacter, Citrobacter, 
Enterobacter, Enterococcus, Escherichia, Haemophilus, Helicobacter, Kleb
siella, Legionella, Mycobacterium, Proteus, Providencia, Pseudomonas, Sal
monella, Serratia, Shigella, Staphylococcus, Stenotrophomonas, 
Streptococcus, and Vibrio. These approaches only identified the presence 
of genes associated with resistance mechanisms and pathogenicity traits, 
and not whether these are actively transcribed genes, or whether their 
associated hosts are active members of the water microbiome at these 

Fig. 3. Relative abundances of the pathways involved in the (A) nitrogen and (B) sulfur cycle. The pie chart indicates the relative abundance of each pathway in each 
disinfectant group and the size of the pie chart is proportional to the relative abundance of the gene involved in the pathway. Disinfectant: ND, none; CHL, chlorine; 
CHM, chloramine. Nitrogen pathways: ANRA, assimilatory nitrate reduction to ammonium; DNRA, Dissimilatory nitrate reduction to ammonium; Anammox, 
anaerobic ammonium oxidation. Sulfur pathways: ASR, assimilatory sulfate reduction; DSR, dissimilatory sulfate reduction. 
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sites. 
The presence of these or other genes associated with AMR mecha

nisms and opportunistic waterborne pathogens does not imply evidence 
of water contamination or represent a risk to the public health. None
theless, these results may illustrate the ubiquity of these genes and 
public health-relevant or closely relate microorganisms in manufactured 
water systems (Sanganyado et al., 2019; Gao et al., 2021). The estab
lishment and growth of waterborne pathogens (including resistance 
mechanisms to disinfectants and antibiotics) in drinking water systems 
may have significant impacts on human health as well as serious eco
nomic consequences. 

3.4. Microbiome-level differences in biogeochemical processes between 
non-disinfected and disinfected systems 

The complexity of biogeochemical processes (at the level of meta
bolic gene organization) of the water microbiome is evident in DWDSs 
(Figs. 3 and S11). The normalized relative abundance of genes involved 
in nitrogen and sulfur metabolism was higher in disinfected systems 
than in non-disinfected systems and is consistent with previous com
parisons of drinking water samples from disinfected and non-disinfected 
systems (Bautista-de los Santos et al., 2016; Dai et al., 2020). This 
indicated that compared with the microbes in the non-disinfected sys
tems, those in the disinfected waters tended to rely on nitrogen (deni
trification, DNRA, ANRA, nitrification, comammox) and sulfur 

(assimilatory sulfate reduction, dissimilatory sulfate reduction to sulfite, 
thiosulfate oxidation, and sulfide oxidation) compounds more heavily as 
an energy source (Fig. 3). In DWDSs, the nitrogen and in some extent the 
sulfur pathway play a significant role in the ecosystem, and the pop
ulations engaged in these pathways are part of a complex and highly 
diverse microbial community. The transformation of nitrogen into its 
many redox states is key to ecosystem productivity and is driven by 
microbially mediated reactions. Evidence of the importance of the ni
trogen biogeochemical cycle is derived from several studies of DWDSs 
(Dai et al., 2020; Gomez-Alvarez et al., 2012a, 2020 and 2021). Sulfur is 
another essential element in drinking water ecosystems that is cycled by 
microbes between oxidized and reduced forms (Fig. 3B). The wide range 
of annotated functions associated with several sulfur pathways may be 
indicative of the availability of several electron donors at drinking water 
distribution pipes undergoing corrosion (Gomez-Alvarez et al., 2012b). 
Concrete corrosion of distribution systems is a significant cause of 
deterioration and premature failure. 

Nitrogen reduction pathways (denitrification, dissimilatory nitrate 
reduction to ammonium [DNRA], nitrogen fixation, and assimilatory 
nitrate reduction to ammonium [ANRA]) and oxidation pathways 
(nitrification, and complete ammonia oxidation [comammox]) were 
reconstructed from the bulk water samples (Fig. 3A). Genes related to 
nitrogen metabolism were identified and included those involved in (i) 
denitrification: cytoplasmic nitrate reductase (narGHI), periplasmic ni
trate reductase (napAB), nitrite reductase (nirKS), nitric oxide reductase 

Fig. 3. (continued). 
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(norBC), and nitrous oxide reductase (nosZ); (ii) DNRA: cytoplasmic 
nitrate reductase (narGHI), periplasmic nitrate reductase (napAB), 
ammonia-forming dissimilatory nitrite reductase (nrfAH), and nitrite 
reductase (nirBD); (iii) nitrogen fixation: nitrogenase reductase 
(nifDHK); (iv) ANRA: assimilatory nitrate reductase (nasAB) and 
ferredoxin-nitrite reductase (nirA); (v) nitrification: ammonia mono
oxygenase (amoCAB), hydroxylamine dehydrogenase (hao), and nitrite 
oxidoreductase (nxrAB); and (vi) comammox: ammonia monooxygenase 
associated with comammox (amoCAB). The total abundance of N- 
metabolism genes was significantly higher in CHM (relative abundance 
[±SD] = 856 ± 108) compared with ND (296 ± 22) and CHL (376 ± 52) 
systems (Kruskal-Wallis: H = 9.7, p = 0.0072). The relative abundance 
of genes associated with denitrification (nirK/nirS and norBC) was 
higher in the microbial communities in CHM systems (mean = 333 and 
17, respectively) than those in ND (68 and 8) and CHL systems (17 and 
6). In CHM systems, excess free ammonia from the source water, and 
chloramine formation and/or decay may support an active nitrifying 
community (Gomez-Alvarez et al., 2021). This assumption is supported 
by increased levels of amoCAB and hao genes associated with nitrifica
tion in CHM systems of this study (Fig. 3A). Moreover, denitrification 
couples with an increased detection of amoCAB (ammonia mono
oxygenase) genes associated with comammox, suggest a strong potential 
of nitrogen removal in CHM systems. In contrast, the genes encoding 
nirBD and nrfAH, as well as narB, nasAB, and nirA, which are associated 
with the ANRA and DNRA pathways (respectively), were present in a 
higher proportion in the microbial communities from the CHL systems 
(Fig. 3A). Meanwhile, the proportion of genes associated with nitrogen 
fixation (nifKDH) in ND systems were significantly higher than those in 
CHL or in CHM systems (Kruskal-Wallis: H = 6.0, p = 0.0240). 

Analysis of metagenome libraries identified key genes associated 
with the sulfur pathway (Fig. 3B). These functions were found to be 
abundant in the metagenomes, although we observed differences in the 
enrichment of specific gene families within the sulfur cycling. For 
example, the relative abundance of genes related to the processes of 
assimilatory sulfate reduction, dissimilatory sulfate reduction to sulfite, 
thiosulfate oxidation, and sulfide oxidation were significantly higher in 
the CHL systems (Kruskal-Wallis: H = 7.9, p = 0.0193) with sporadic 
difference observed in other processes (Fig. 3B). In contrast, the genes 
encoding dsrAB and phsABC, which are associated with dissimilatory 
sulfite reduction to sulfide and thiosulfate disproportionation pathways, 
respectively, were present in a higher proportion in the microbial 
communities from the ND systems than from the disinfected systems. 
CHM systems showed a higher representation of genes involved in sul
fite oxidation, as well the genes hydADGB (sulfhydrogenases) and 
ETHE1-like sulfur dioxygenase, which are associated with sulfur- 
reducing and sulfur-oxidation activities, respectively (Fig. 3B). 

Lastly, carbon is one of the most essential elements to living organ
isms and the carbon cycle illustrates the connection and exchange be
tween heterotrophs and autotrophs in DWDS ecosystems. The presence 
and differences in the proportion of genes involved in carbon meta
bolism in the results suggest different carbon use strategies (Fig. S11). 
Overall, changes in water quality and the characteristics of the envi
ronment drive the variation of microbial communities which regulate 
core biogeochemical processes such as carbon, sulfur, and nitrogen 
metabolism in DWDSs. Finally, we need to understand how these 
biogeochemical cycles interact with one another in DWDS environments 
(Rousk et al., 2014). 

3.5. Recovered metagenome assembled genomes 

Genome-centric metagenomic analysis yielded 144 genomes (143 
bacterial and 1 archaeal) with 139 bins representing metagenome- 
assembled genomes (MAGs) that had a >50% completeness and <10% 
contamination consisting of 20 class representatives in 12 phyla 
(Table S3). The MAGs accounted for 43%, 83%, and 45% of reads 
mapping to the metagenomic data set for ND, CHL, and CHM systems, 

respectively (Table S4). From this data set, 88 MAGs were identified to 
the genus level with 7 of the MAGs having a >95% average nucleotide 
identity (ANI) to a reference genome, with the rest of the MAGs possibly 
representing new candidate species. MAGs analyzed with GTDB-Tk 
identified them as members of the phyla Acidobacteriota (class Blasto
catellia), Bacteroidota (Bacteroidia), Bdellovibrionota (Bacteriovoracia and 
Bdellovibrionia), Chloroflexota (Dehalococcoidia), Cyanobacteria (Vampir
ovibrionia), Desulfobacterota (Binatia), Nitrospirota (Nitrospiria), Omni
trophota (Koll11), Patescibacteria (ABY1, Doudnabacteria, Gracilibacteria, 
Microgenomatia, Paceibacteria, and Saccharimonadia), Planctomycetota 
(Phycisphaerae and Planctomycetes), Proteobacteria (Alphaproteobacteria 
and Gammaproteobacteria) (Fig. S12). Only one archaea MAG was 
recovered and identified as member of the phylum Nanoarchaeota (class 
Nanoarchaeia), a phylum composed of small obligate symbionts that lack 
most genes involved in major biosynthetic pathways (St. John and 
Reysenbach, 2019). The representation of archaeal genomes in the 
reference database GTDB release 95 is much less complete than the 
representation of bacterial genomes (Parks et al., 2020). These are the 
first MAG representatives (including an archaeal MAG) assembled from 
waterworks from Finland. The MAGs data set captured the prevalent 
bacterial and archaeal lineages revealed by metagenome and 16S rRNA 
gene analysis (Figs. 1, 4, S7 and S8). 

MAGs corresponding to the classes Paceibacteria, Alphaproteobacteria, 
Gammaproteobacteria, and Nitrospiria were differentially enriched with 
disinfectant treatment, consistent with their dominance at each DWDS 
(Fig. 4A). Among these, the MAG with the highest percentage of mapped 
reads belong to the class Paceibacteria (phylum Patescibacteria) and made 
up of approximately 26% of the ND microbial community. The analysis 
of 16S amplicon sequencing data supported this statement as Pace
ibacteria, belonging to different families, was among the most abundant 
taxa found in ND systems. This highly abundant group of common in
habitants of freshwater (Proctor et al., 2018) and groundwater envi
ronments (Brown et al., 2015) consists of small size and low-nucleic acid 
content bacteria of which most lack numerous biosynthetic pathways 
(Fig. 4B). Tian et al. (2020) proposed that the reduced functional and 
metabolic features combined with genomic simplicity are adaptations of 
Patescibacteria to the extreme conditions (e.g., low or lack of nutrients 
and oxygen) in groundwater environments. 

On the other hand, MAGs corresponding to the classes Gammapro
teobacteria (Polaromonas spp.) and Alphaproteobacteria (Sphingo
rhabdus_B spp., Rhizobiales spp. UBA4765, and Hyphomicrobium spp.) 
were differentially enriched in CHL systems in comparison to ND and 
CHM samples. These ecologically diverse microorganisms are common 
inhabitants in freshwater systems but are also widespread in drinking 
water systems (Bautista-de los Santos et al., 2016). The dominant MAG 
in CHL systems was the Polaromonas spp. comprising an average of 42% 
of the microbial community. Polaromonas is generally not observed in 
natural freshwater systems, but the nutritional versatility microor
ganism is prevalent in oligotrophic environments such as bottled min
eral water (Carraturo et al., 2021). In a previous study, Polaromonas was 
identified as the predominant genus in granular activated carbon (GAC) 
filters from full-scale water treatment plants in the Netherlands (Mag
ic-Knezev et al., 2009). The contribution of this taxon to the microbial 
community in DWDSs requires further examination. The MAGs Sphin
gorhabdus_B, Rhizobiales spp. UBA4765, Hyphomicrobium spp. represent 
an average of 16%, 9%, and 7% of the population in CHL systems, 
respectively. Members of these Alphaproteobacteria genera represent 
typical freshwater bacteria and are highly physiologically diverse 
(Jogler et al., 2013; Parks et al., 2017). Despite chemical disinfection, 
genomic annotation revealed that the group of MAGs harbors numerous 
biosynthetic pathways related to carbon, nitrogen, and sulfur com
pounds (Fig. 4B). It is evident from our analysis that the CHL community 
contained taxa that are metabolically diverse with lower functional 
redundancy compared to the ND and CHM communities, where distinct 
species might perform distinct metabolic roles (Fig. 2B). 

The Nitrotoga-like MAG exhibited the highest relative abundance in 
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Fig. 4. Phylogenetic assignment of 
MAGs and contribution to metabolic and 
biogeochemical processes. (A) Phyloge
nomic tree of de-replicated MAGs using 
RAxML based on the concatenated 
alignment of single-copy genes specific to 
the Archaea and Bacteria. Numbers 1 to 
13 indicate the phyla (class) Nano
archaeota (Nanoarchaeia), Desulfobacter
ota (Binatia), Acidobacteriota (Blastoca 
tellia), Bdellovibrionota (Bdellovibrionia), 
Bdellovibrionota (Bacteriovoracia), Pates
cibacteria (Microgenomatia), Patescibac
teria (Doudnabacteria), Patescibacteria 
(ABY1), Patescibacteria (Saccharimona 
dia), Patescibacteria (Gracilibacteria), 
Chloroflexota (Dehalococcoidia), Plancto
mycetota (Phycisphaerae), Planctomyce
tota (Planctomycetes), and Bacteroidota 
(Bacteroidia), respectively. MAGs are 
colored based on disinfectant treatment. 
Disinfectant: ND, none; CHL, chlorine; 
CHM, chloramine. (B) Metabolic energy 
flow potential Sankey diagram at the 
phylum-level resolution. The three col
umns from left to right represent taxo
nomic groups scaled by the number of 
genomes, the contribution to each meta
bolic function by microbial groups 
calculated based on genome coverage, 
and the biogeochemical cycle.   
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the CHM system comprising 23% of the metagenomic data set followed 
by a Nitrospira-like MAG (phylum Nitrospirota) comprising 7%. Both 
MAGs were identified as nitrite-oxidizing bacteria (NOB) which play a 
critical role in the biogeochemical nitrogen cycle by metabolizing nitrite 
to nitrate (Fig. 4B). NOB are physiologically versatile, widely distrib
uted, and may have diverse ecological functions within and beyond the 
nitrogen cycle, including carbon, hydrogen, and sulfur biogeochemical 
metabolism (Daims et al., 2016). The known phylogenetic diversity of 
NOB (classes Alphaproteobacteria and Gammaproteobacteria and the 
phyla Nitrospirota and Nitrospinota) has been now expanded by the 
description of several new NOB lineages including the genus Nitrotoga 
(Alawi et al., 2007). Boddicker and Mosier (2018) estimated the relative 
abundance of Nitrotoga-like sequences to be as high as 10% of the total 
microbial community across globally distributed freshwater habitats. 
Nitrotoga may play a critical role in the biogeochemical nitrogen cycle (i. 
e., nitrite oxidation) in engineered environments (Alawi et al., 2009; 
Lücker et al., 2015). Moreover, the genomic characterization of Nitro
toga has revealed potential alternative energy metabolisms and a 
broader spectrum of physiological adaptations which may explain their 
competitive adaptation in engineered environments (Kitzinger et al., 
2018). Further research is needed to understand which environmental 
conditions allow the coexistence of Nitrotoga with Nitrospira (or other 
NOB) and which factors lead to their dominance in CHM DWDSs. 
Overall, the presence and occurrence of NOB-like microorganisms have 
significant implications for nitrogen biotransformation in drinking 
water systems (Gomez-Alvarez et al., 2015, 2016 and 2020), particularly 
in storage tanks (Gomez-Alvarez et al., 2021). 

3.6. Active populations in non-disinfected and disinfected systems 

We compared the relative abundance of metagenomic (DNA) and 
metatranscriptomic (cDNA) reads to determine the extent to which the 
total taxonomic and functional potential abundance of the microbial 
community correlated with its active population. Herein, for the purpose 
of this discussion, the relative abundance obtained from the meta
genome and metatranscriptome libraries will be referred to as the total 
and active fraction of the community, respectively. Only the data sets of 
sites A (ND) and D (CHM) sets were used to determine which pop
ulations were metabolically active at the time of sampling. While the 
sequencing depth in this study compensated in part for the limited 
number of samples that were analyzed (n = 8), additional 16S rRNA and 
metagenomic surveys are needed to better understand the total micro
bial genetic potential of these systems. However, through randomization 
procedures (i.e., Fisher’s exact test with Storey’s FDR multiple test 
correction approach) we found statistically distinct taxonomic and 
functional groups in each of the DWDS samples. Similar taxonomic 
groups (i.e., membership) were identified in the total and active com
munity at the phylum and class level for the dominant taxa but of these 
dominant taxa showed different structure patterns (i.e., distribution) in 
their active community (Fisher’s exact test, q < 0.0001). For example, in 
ND systems the class Paceibacteria dominated the total community 
(36%), but a shift was observed to the classes Alphaproteobacteria (from 
15% to 21%), Gammaproteobacteria (13% to 28%), and Nitrospiria (1% to 
9%) in the active community (Fig. S14A). Paceibacteria was reduced to 
only 5% of the active ND community. It is important to emphasize that 
members of the class Paceibacteria consists of small size cells with low- 
nucleic acid content that lack numerous biosynthetic pathways (Tian 
et al., 2020). To avoid predation and endure at these environments these 
microorganisms with highly reduced genomes may adjust their meta
bolism and rely on simple intermediate metabolites from a 
host-associated lifestyle for energy. Similarly, a moderate shift in the 
structure of the CHM community was observed with an increase of the 
classes Gammaproteobacteria (from 45% to 56%) and Nitrospiria (14% to 
25%) while the rest of the classes decreased in the active community 
(Fisher’s exact test, q < 0.0001) (Fig. S16A). 

To determine whether there were any patterns in microbial activity 

distinguishing ND and CHM systems at various taxonomic levels, we 
generated a flow diagram based on their respective patterns of relative 
abundance. The analysis of ND systems indicated that the top ten group- 
level taxa (at various taxonomic levels) decreased in the active com
munity (Fig. S14B). A similar pattern occurred for the MAGs recovered 
from ND systems, where 91% (31 out of 34) experienced an average of 
0.4-fold change decrease (Fig. 5A). Paceibacteria MAGs, which were the 
most abundant in the total community were among those with lower 
significance abundance in the active fraction of the community (Fisher’s 
exact test, q = 0.0236), while Gammaproteobacteria-assigned MAGs 
expressed higher relative abundance in the active community (Fisher’s 
exact test, q = 0.0007). For example, the MAG members Bin.07 A 
(Polynucleobacter spp.) and Bin.02 A (Nitrospira spp.) increased from a 
relative abundance of 3.4% to 18.5% and 1.5% to 3.2%, respectively. 
Polynucleobacter is a bacterioplankton and member of the family Bur
kholderiaceae widely detected in freshwater environments (Watanabe 
et al., 2009). It is unclear why these taxonomic group showed higher 
abundances in ND systems (Waak et al., 2019). It can be speculated that 
recharge water (i.e., artificial groundwater) brings along nutrients that 
specifically favors these microorganisms (Abiriga et al., 2021). 

Contrary to the ND systems, the analysis of the CHM system indi
cated an increase in the active community for most of the dominant 
group-level taxa at various taxonomic levels (Fig. S16B). This was 
confirmed by the increase of the top dominant MAGs, where 33% (9 out 
of 27) experienced an average of 2.7-fold change increase in the active 
community (Fig. 5B). Compared to the CHM system, only 3 MAGs (9% of 
the total set) from ND systems showed an increased in relative abun
dance in the active community with an average of 3.9-fold increase (up 
to 290% change), while only 67% (18 out of 27) in the CHM system 
experienced an average of 0.3-fold change decrease (Fig. 5B). These 
MAGs conserved similar levels of distribution in the total and active 
communities (Fisher’s exact test, q = 1.0). The MAGs Nitrotoga (Bin.03 
D), Burkholderiaceae PHCI01 (Bin.22 D), Sphingomonas (Bin.06 D), and 
Nitrospira (Bin.11 D) maintained their dominance in the active CHM 
community. Nitrotoga and Nitrospira are the main NOB populations in 
aquatic environments (Spieck et al., 2021). In chloraminated-treated 
drinking water distribution systems, Nitrotoga coexists together with 
the Nitrospira populations (Waak et al., 2019) which also co-occurs with 
heterotrophic bacteria classified as Rhizobiales and Sphingomonas (Pot
gieter et al., 2020). The current study suggested the relevance of 
co-occurrence relationships which may be important for understanding 
community assembly and ecosystem functions in DWDS. 

In addition to community-level taxonomic analysis, we also exam
ined and compared the relative abundance of metabolic processes in the 
active fraction of the community. In ND systems metabolic genes were 
universally present but only a significant increase in genes related to 
nitrification and methane oxidation were detected at higher relative 
abundances in the active ND community (Fisher’s exact test, q < 0.0001) 
(Fig. S13). For example, an increase of ammonia monooxygenase 
(amoCAB) and hydroxylamine dehydrogenase (hao) genes in the nitri
fication pathway was detected (Fig. S14C). This is consistent with 
changes in the taxonomic composition in the active ND population 
where the NOB group Nitrospiria increased in relative abundance from 
1.2% to 9.1% (Fisher’s exact test, q < 0.0001) (Figs. S14A and B). 
Contrary to the ND systems, the analysis of the CHM system indicated a 
noticeably difference in operational metabolic pathways between the 
total and active community (Fig. S15). In CHM systems genes related to 
nitrification and DNRA were detected at higher relative abundances in 
the active CHM community (Fisher’s exact test, q < 0.0001) (Fig. S16C). 
This corresponds to an increase of the genera Nitrosomonas (Fig. S16B), a 
chemoautotrophic bacterium responsible for the biological oxidation of 
ammonia/ ammonium to nitrite. To determine whether there were any 
patterns in microbial activity distinguishing ND and CHM systems at the 
population level, we compared the coverage of the metabolic and 
biogeochemical functional traits of the recovered MAGs with their 
respective metagenomic and metatranscriptomic data sets. MAG 
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coverages in ND and CHM systems accounted for only 19% and 43% of 
the metabolic pathways in total and active communities (Fig. S17). In 
general, recovered MAGs from the CHM system may represent a 
considerable proportion of the active bacterial population, where MAGs 
from the ND systems represent only a reduced portion of the active 
community. Given these results, the broader set of genes transcribed in 
both drinking water ecosystems (i.e., DWDS) may indicate an active and 
diverse community regardless of the treatment methods applied to the 
water (Table S1). 

4. Conclusions  

• The microbial communities in the DWDS sites exhibit a distribution 
pattern of a few dominant taxa and a large representation of low- 
abundance bacterial species.  

• Metagenomes and 16S rRNA-based analysis of the Bacteria and 
Archaea domain confirmed that DWDSs with non-disinfected water 
harbor higher microbial richness and composition. This suggest that 
maintaining disinfectant residual is significantly important for 
ensuring low microbial numbers and diversity. 

Fig. 5. Relative abundance of MAGs recovered from ND and CHM contributing to the total and active fraction of the community. MAGs are ordered from top to 
bottom by the most abundant MAGs in the total community. Bubble size indicates the relative abundance of the MAG in the total community in orange (●) and the 
active population in red (●). The relative abundance (%) in the total community was estimated as a proportion of a bin relative to the number of reads mapped to 
assembled contigs from metagenome and adjusted for the size of the bin, while the active fraction of the community was calculated as a proportion of metatran
scriptome reads mapping to a MAG. Taxonomic classification and coverage for each MAG is listed in Table S4. 
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• The observed changes in the structure of the microbial community 
correspond to the presence or absence and type of disinfectant re
sidual suggesting that these conditions exert selective pressure on the 
microbial community.  

• The archaea domain in DWDSs represents a small fraction of the 
prokaryote community and seemed to be effectively controlled by 
disinfection of water. One archaea MAG was recovered and was 
identified as Nanoarchaeota, a phylum composed of small obligate 
symbionts that lack most genes involved in major biosynthetic 
pathways. Their role particularly in non-disinfected DWDS may be 
more important than previously considered.  

• Selection pressures exerted within disinfected systems are not only 
evident at the community structure level, but also evident at the 
functional and metabolic potential level. 

• The presence of a diverse group of opportunistic pathogens com
bined with the occurrence of microbial resistance mechanisms may 
constitute a significant challenge for drinking water treatment effi
ciency and affect drinking water safety.  

• Comparative analysis of the community suggested the relevance of 
co-occurrence relationships in the biological stability of drinking 
water systems. The presence and occurrence of NOB-like microor
ganisms have significant implications for nitrogen biotransformation 
in drinking water systems.  

• The broader set of genes annotated and transcribed in non- 
disinfected and disinfected systems may indicate an active and 
diverse community regardless of the treatment methods applied to 
the water. 
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