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abstract: The G matrix is a statistical summary of the genetic
basis of a set of traits and a central pillar of quantitative genetics.
A persistent controversy is whether G changes slowly or quickly
over time. The evolution ofG is important because it affects the abil-
ity to predict, or reconstruct, evolution by selection. Empirical stud-
ies have found mixed results on how fast G evolves. Theoretical
work has largely been developed under the assumption that the re-
lationship between genetic variation and phenotypic variation—the
genotype-phenotype map (GPM)—is linear. Under this assump-
tion, G is expected to remain constant over long periods of time.
However, according to developmental biology, the GPM is typically
complex and nonlinear. Here, we use a GPM model based on the
development of a multicellular organ to study how G evolves. We
find that G can change relatively fast and in qualitative different
ways, which we describe in detail. Changes can be particularly large
when the population crosses between regions of the GPM that have
different properties. This can result in the additive genetic variance
in the direction of selection fluctuating over time and even increas-
ing despite the eroding effect of selection.

Keywords: quantitative genetics, G matrix, genotype-phenotype
map, evo-devo, mathematical modeling.

Introduction

Variation is a requisite for evolution. It is on the existing
phenotypic variation that natural selection acts. Under-
standing the properties of phenotypic variation is therefore
key to explaining evolutionary dynamics. In the framework
of quantitative genetics, the properties of variation of a set of
polygenic traits in a population are summarized by variance
and covariance matrices. The most important of these are
P andG, the phenotypic and additive-genetic (co)variance
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matrices, respectively (Falconer and Mackay 1996; Mc-
Guigan 2006).
TheGmatrix is a statistical summary of the additive ge-

netic relationships between traits. The diagonal elements
of G are the additive genetic variances of the traits, and
the off-diagonal elements are the additive genetic covar-
iances between traits. Additive genetic covariation arises,
for example, from traits sharing part of their genetic, de-
velopmental, and physical bases. Because of these shared
bases, the evolution of these traits is entangled: direct se-
lection on one trait can lead to indirect selection on
covarying traits. This is most clearly summarized by the
multivariate breeder’s equation (Lande 1979), D�z p Gb,
which provides a prediction of the response to selection
of trait means (D�z) as the product of G and b, the vector
of partial regression coefficients of relative fitness on traits.
A persistent controversy in quantitative genetics is

whether the Gmatrix changes slowly or quickly over time
(Steppan et al. 2002; Arnold et al. 2008; Aguirre et al.
2014). The G matrix can be used to reconstruct past nat-
ural selection (e.g., Merilä et al. 1994) and to predict the
response to selection and, thus, future evolution. Estimat-
ing G is costly and time-consuming. If G changes quickly,
the G estimated at a given time can lead to inaccurate
predictions of the response to selection at other times.
In other words, change reduces the predictive value of
G (Eroukhmanoff 2009). Moreover, knowledge of the
ways in which G can change is important to understand-
ing how future evolution will proceed.
Empirical studies of the evolution of G have found

mixed results for whether G changes quickly or slowly.
Some comparisons of Gmatrices between natural popula-
tions found no evidence of change in G even for hundreds
of generations (Delahaie et. al. 2017; Hangartner et al.
2020; others reviewed in Arnold et al. 2008), while others
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have found significant change in G, even in only a few
generations (Cano et al. 2004; Doroszuk et al. 2008; Eroukh-
manoff and Svensson 2011; Wood and Brodie 2015;
Walter et al. 2018; Chakrabarty and Schielzeth 2020). Ar-
tificial selection experiments in controlled settings also
show contrasting results (Shaw et al. 1995; Blows and
Higgie 2003; Phelan et al. 2003; Careau et al. 2015; Penna
et al. 2017). An important limitation of these studies is
that because of the difficulties of estimating G, there are
usually only a few estimates of G available, generally only
two. Moreover, these estimates are typically associated with
large sampling variance, making comparisons difficult and
contributing to the inconsistency of empirical results.
TheGmatrix is a statistical abstraction, estimated from

the phenotype without direct knowledge of the underly-
ing gene networks and developmental biology. Theoreti-
cal research on the evolution of G follows a similar ap-
proach: the gene product interactions, gene networks,
and epigenetic factors underlying phenotypes and their
variation are not explicitly considered. Indeed, models
are purposely kept simple for analytical tractability. Thus,
the relationship between the genetic variation and the
phenotypic variation, or the genotype-phenotype map
(GPM), has typically been assumed to be linear (Lande
1979; Turelli 1985; Jones et al. 2003, 2012) or to include
certain regular patterns of epistasis (Jones et al. 2014).
The complexity and structure of the GPM is of particular

interest for the field of evolutionary developmental biology.
Research from this field suggests that the GPM is typically
highly nonlinear and complex and that this has important
consequences for evolutionary dynamics in general (Alberch
1982; Raff 1996; Newman and Müller 2000; Müller 2007)
and for evolutionary quantitative genetics in particular
(Houle 1991; Rice 2004, 2008a, 2008b; Hansen 2006; Gjuvs-
land et al. 2011; Milocco and Salazar-Ciudad 2020). Some of
these authors show that genetic covariances can change un-
der a nonlinear GPM and that this change is often not what
we would expect for a linear GPM (Houle 1991; Rice 2004).
However, the mode and tempo of these changes for realistic
GPMs is still not known.
In this study, we perform an exhaustive exploration of

the evolution of G under the complex and nonlinear
GPMs found in the study of development. For that pur-
pose, we combine a computational GPM model that is
based on our current understanding of the development
of a complex organ, the mammalian tooth (Salazar-
Ciudad and Jernvall 2010), and a population model with
mutation, recombination, and directional selection. In
brief, we have a population of genotypes and simulate
the development of each individual in the population us-
ing the developmental model (see figs. 1, S1; figs. S1–S11
are available online). We then apply selection on the
three-dimensional morphology resulting from the devel-
opment of each individual. We also apply mutation and
recombination in each generation. We estimate G in each
generation to measure how it changes over time.
trait 1

trait 3

trait 2

trait 5

trait 4

Figure 1: A shows the algorithm of the evolutionary simulations. Each individual in the population is modeled explicitly and has a set of
genetic values, which additively determine the values of the developmental parameters. These parameters are mapped to a phenotype using
our development model. Selection, recombination, and mutation are applied in each generation. Gi and Mi, the G and M matrices at gen-
eration i, respectively, are estimated with high precision in each generation (see “Methods”). B shows an example of a phenotype produced
by the developmental model and the location of the three landmarks on the three tallest cusps of the tooth. C shows the traits measured and
the coordinates of the landmarks in each individual’s phenotype.
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The mathematical model of tooth developmental is
well suited for our objective because it is one of the few
developmentmodels that has been able to reproducemul-
tivariate morphological variation in a natural population
(Salazar-Ciudad and Jernvall 2010) and has been previ-
ously used to simulate microevolution (Salazar-Ciudad
and Marin-Riera 2013; Milocco and Salazar-Ciudad 2020).
A scheme of the model is shown in figure S1. The model
explicitly simulates a sheet of epithelial cells that fold and
divide to produce a tooth morphology, recapitulating the
process of tooth development. The model incorporates
both the gene network known to be involved in tooth de-
velopment and the mechanical interactions and cellular
behaviors required for the formation of teeth. Mathe-
matically, the model is a set of differential equations that
describe how gene expression, cell position, andmechan-
ical properties change in time for each cell during devel-
opment. The initial condition of the tooth model is a
small sheet of epithelial cells expressing a set of extracel-
lular diffusible gene products. As developmental time
proceeds, these gene products regulate the expression
of other gene products, as well as cell behaviors like cell
division and adhesion. As a result, the epithelium folds
and tooth morphology changes. These changes in the mor-
phology of the tissue in turn affect the spatial distribution of
the gene products and consequently result in further changes
in gene expression, cell behaviors, and ultimately how the
tooth continues to fold. The result of the developmental
simulation is a complex three-dimensional morphology,
described as the specific distribution of cells in space.
The dynamics of the tooth development model depend

on a set of developmental parameters. There are 21 of these
parameters, and they specify different aspects like diffusion
rates and cell mechanical properties (for details, see “Meth-
ods”; Salazar-Ciudad and Jernvall 2010). The values of
these parameters are determined by the genotype of each
individual, so genetic variation results in phenotypic vari-
ation by affecting the values of these parameters. However,
the correspondence between developmental parameters
and genes is largely unknown, and we do not explicitly
simulate such relationship per se. For example, cell adhe-
sion depends on the expression of multiple adhesion and
cytoskeletal proteins (e.g., Jernvall and Thesleff 2012).
Interactions between gene products and cell behaviors as

represented in the tooth model are a common feature of
mathematical models of development (Oster and Alberch
1982; Raspopovic et al. 2014; Osterfield et al. 2017; Glen
et al. 2019). On the basis of these models and what is
known about organ development, it has been suggested
that the dynamics of interaction among gene products, cell
behaviors, and morphology is, overall, of a similar com-
plexity in most organs and body parts and that, thus, the
overall complexity and properties of their GPM should
be similar (Alberch 1982; Salazar-Ciudad et al. 2003; Urdy
2012). Hence, although the GPM of the tooth model may
differ from those of other systems in many aspects, its
overall complexity is informative of that of several other
systems, at least compared with a linear GPM. This is es-
pecially the case for morphological phenotypes, particu-
larly for those that, like teeth, form by the folding of epi-
thelia. This includes organs like heads, early brain, kidneys,
genitalia, limbs, lungs, and insect wings (Gilbert and Barresi
2016).
In our population model, each individual has a geno-

type, a set of values of the developmental parameters, a
phenotype, and a fitness. In each individual morphology
wemeasure five traits describing tooth shape, shown in fig-
ure 1. Individual fitness is a function of the distance be-
tween the values of the traits of the individual and a set
of optimal values. A different optimal morphology is used
in each evolutionary simulation. We explore all possible
combinations of upward and downward selection per trait,
leading to 25 p 32 optima. The distance to the optimum is
used to determine which individuals are selected as parents
for the next generation. Mutation is applied to individuals
in each generation. The processes of development, selec-
tion, and mutation are iterated over generations to simu-
late evolution.
Evolution in our simulation can be seen as occurring in

three different spaces: genotype space, developmental pa-
rameter space, and phenotypic space (see fig. 1). The ge-
notype of an individual can be represented as a point in
genetic space. This point is mapped linearly to a point
in developmental parameter space, since developmental
parameters are additively determined by genes. In turn,
this point in developmental parameter space is mapped
to a point in phenotype space through the developmental
model. Therefore, the nonlinearity in the GPM arises only
from the developmental model. Importantly, for different
regions in developmental parameter space, the mapping
to trait space can be different depending on the dynamics
of the toothmodel. In other words, the same change in the
value of a developmental parameter will result in different
magnitudes and directions of phenotypic changes, de-
pending on the region of developmental parameter space
in which an individual lies. The development model is de-
terministic and directly represents the GPM, without en-
vironmental effects.
For each generation, we estimate the G matrix by per-

forming an in silico parallel half-sib breeding design (Lynch
and Walsh 1998). We then measure how G changes over
generations. We use most of the summary statistics that
have been proposed in the literature to compareGmatrices.
These include the size of G (i.e., the sum of the eigenvalues
ofG; Jones et al. 2003; McGuigan 2006; Hansen and Houle
2008), the eccentricity of G (i.e., the proportion between
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the largest eigenvalue and the sum of the rest; Jones et al.
2003, 2012; Kirkpatrick 2009), the change in direction
of the main eigenvector of G (Eroukhmanoff and Svens-
son 2011; Johansson et al. 2012), and the amount of ad-
ditive genetic variance in the direction of selection (Walsh
and Blows 2009). We also use a method that directly com-
paresGmatrices as the difference in the predicted responses
using the breeder’s equation. The combined study of how
these matrix properties change gives a rich picture of Gma-
trix evolution, including different aspects in which G can
change. Because we compare pairs of G matrices, we do
not use other methods designed to compare several matri-
ces, such as the tensor method (Hine et al. 2009). In addi-
tion to our in-depth study of the evolution of G, we also
study how the M matrix evolves and how it is related to
G. TheMmatrix describes the variance and covariance be-
tween traits due to the mutations entering the population in
each generation, as opposed to G, which measures standing
additive genetic variation.
Methods

Evolutionary Simulations

Details of the simulations are given in a previous article
(Milocco and Salazar-Ciudad 2020). As briefly summa-
rized below, we ran a total of 32 evolutionary simula-
tions of 50 generations each using different optima to
explore the behavior of the system. The G matrix was es-
timated in every generation. All populations were com-
posed of 300 males and 300 females.
Genotypes are diploid with a total of 105 (haploid) loci.

The 21 developmental parameters are each additively de-
termined by five loci (i.e., the additive effects of 10 alleles
are added together to determine the value of each develop-
mental parameter). Each locus contributes to only one de-
velopmental parameter. The phenotype of each individual
is obtained by running the toothmodel on its developmen-
tal parameters. For details on the tooth developmentalmodel,
see the publication where it was introduced (Salazar-
Ciudad and Jernvall 2010). In brief, the model explicitly
simulates a sheet of epithelial cells, together with the gene
network known to be involved in tooth development. Sig-
naling (developmental) parameters numerically represent
how growth factors diffuse and affect each other’s expres-
sion. Growth factor also influence tissue dynamics by de-
termining the rate of cell proliferation. The resulting shape
of the tooth is additionally affected by other mechanical
(developmental) parameters, such as adhesion and repul-
sion. A scheme of the model is given in figure S1. The out-
put of the model is a tooth morphology. We measure five
traits, namely, the coordinates of three landmarks located
on the three tallest cusps of the tooth (see fig. 1).
Directional selection is applied on the population by
selecting the 150 males and 150 females (i.e., 50% of the
population) that are closest to an optimum morphology
defined at the beginning of each evolutionary simulation.
Selection is applied in this way for the 50 generations,
resulting in larger or smaller selection differentials de-
pending on the available variation at a given time. Each
evolutionary simulation has a different optimum mor-
phology (see “Supplementary Methods” in the supple-
mental PDF, available online). All possible combinations
of upward and downward selection for the five traits are
explored, leading to 25 p 32 optima. We only study di-
rectional selection, as the populations do not reach the
optimum within the 50 generations of the simulations.
Selected parents are paired randomly. Parents contrib-

ute one of their two alleles in each loci to the offspring
with equal probability. There is a 1023 chance that a loci
is mutated in the process. Mutation is implemented by
adding a random number to the value of an allele, drawn
from a normal distribution with a zero mean and a stan-
dard deviation equal to 0.1. Each parental couple pro-
duces two female and twomale offspring. This means that
all selected individuals contribute the same number of
offspring to the next generation, while unselected individ-
uals do not contribute. Once the genotypes of the off-
spring are determined, the cycle of generating each indi-
vidual’s morphology, measuring the traits, selection, and
mutation, is iterated for the next generation. The initial
population was generated by running the same iteration
of steps but with stabilizing selection for 400 generations.
Estimation of the G Matrix

First the evolutionary simulation was run for the 50 gen-
erations. Then the population at generation i (i p
1, 2, ::: , 50) was copied and used as the parental popula-
tion of a half-sib breeding design to estimate Gi, the G
matrix in generation i. The breeding design was made
without selection (i.e., random sampling of parental pop-
ulation) following four steps: (1) sample half of the males
from the parental population, (2) sample half of the fe-
males from the parental population, (3) form couples ran-
domly, and (4) generate four offspring per couple. Steps 1
through 4 were repeated a total of 10 times, generating a
data set composed of full sibs and half-sibs. This data set is
used for a single estimate of Gi (see fig. 1) using an animal
model. Restricted maximum likelihood estimates of Gi

were obtained using the software WOMBAT (Meyer
2007). The animal model used was the simplest possible,
yj p m1 aj 1 ej, where yj is the phenotype of individual
j, m is the population mean, aj is the additive genetic merit
of individual j, and ej is a random residual error.
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Estimation of the M Matrix

TheMmatrix for generation i was estimated by making a
copy of all individuals of generation i and introducing
single-locus mutations to all loci of all individuals (see
fig. 1). We then ran the tooth development model on
the one-locus mutants, obtaining a mutant phenotype.
We calculated the effect of the mutation as the difference
between the mutant phenotype and the original pheno-
type. TheMmatrix is then obtained as the covariance ma-
trix of these mutational effects.
Measures of Change in G

As explained in the introduction, there are several ways to
measure how G changes. In this work, we use many of
these measures, each capturing different aspects of change
in G. In what follows, we compare Gi and Gi2k, where Gi is
the G matrix at generation i and k is the number of gen-
erations separating the two compared G matrices, what we
call the “gap.”We refer to lj as the jth eigenvalue of G, from
largest to smallest (i.e., l1 is the largest eigenvalue). We note
thatmatrix comparisons in this work are done directly in the
scale that the traits are measured, since all traits considered
are distances of the same order of magnitude (see fig. 1).
The measurements of change in G used in this work are
listed below.
Change in response to selection. This measure is defined

as kGi2kbi2k 2 Gibi2kk=kGi2kbi2kk, where k:k is the Euclid-
ean vector norm and bi is b at generation i. This is an intu-
itive measure that describes the difference between Gi and
Gi2k as the relative difference in the responses to selection
they predict when used in the breeder’s equation, together
with the b acting on the population at time i2 k.
Change in size of G. Here, size is defined as

P
jlj

(Steppan et al. 2002; Arnold et al. 2008). This is a measure
of the total amount of additive genetic variance in G.
Change in direction of G. Here, the direction is defined by

gmax, the eigenvector ofGwith the largest eigenvalue. This is
the direction in trait space where there is the most additive
genetic variance. We calculate the change in gmax as the an-
gle between gmaxi and gmaxi2k

, where gmaxi is the gmax of Gi.
Change in effective dimension of G. This measure is de-

fined as
P

jlj=l1. It was proposed by Kirkpatrick (2009)
and considers how evenly distributed the genetic variance
is over the eigenvectors of G.
Change in eccentricity of G. This measure is defined as

l1=
P

jlj. This is the inverse of the effective dimension
and describes how much of the total additive genetic var-
iance is distributed along the main eigenvector.
Change in the amount of additive genetic variance in

the direction of b. Thismeasure is calculated as bTGb, with
the superscript T the transpose operator.
Element-by-element change. This measure is defined
as the absolute value of the difference between the cor-
responding elements of the compared G matrices.
Results

How Much Does G Change?

We found that the G matrix changes during our simula-
tions of phenotypic evolution. Figure 2A shows the change
in G for an example simulation (see fig. S2 for the rest of
simulations). In this figure, the change in the Gmatrix be-
tween generation i and generation i2 1 was measured as
the relative difference in the predicted response to selection
using the two corresponding G matrices in the multivari-
ate breeder’s equation, with the same selection gradient
(see “Methods”). For generation i, this was calculated as
kGi21bi21 2 Gibi21k, normalized by kGi21bi21k, where Gi

and bi are the G matrix and the selection gradient at gen-
eration i and k:k is the Euclidean norm (i.e., the vector
length). We call this measure the “change in G” in fig-
ure 2, and it provides an intuitive measure of the change
in the G matrix as how much that change affects the
predicted response to selection. We find that this change
can be large. In the simulation shown in figure 2A, change
is relatively large between generations 10 and 30. This cor-
responds to a period when the phenotypes in the popula-
tion change dramatically, as seen from the morphologies
included in the figure. Figure S3 shows the change for each
element of G for this simulation, with the largest changes
measured for the variance of trait 2 and its associated
covariances. We also measured change as the relative dif-
ference in the size of G and the angle change in gmax (i.e.,
the direction of greatest additive genetic variance) be-
tween consecutive generations. These other measure-
ments of change (fig. S4) show behavior similar to the
one based on the breeder’s equations.
The changes in G over generations can have different

magnitudes, and even in a single generation these changes
can be large. Figure 2B shows the distribution of change
in G between consecutive generations for all of the gen-
erations of all of our 32 evolutionary simulations. The
median relative change in G is 5% between consecutive
generations, and 10% of these single-generation changes
are larger than 24%.
We compared Gmatrices at different generation inter-

vals. We call this generation interval the “gap” (i.e., for a
gap of k, we compareGi andGi2k). Figure 2C shows the dis-
tribution of change in G as a function of the gap. As ex-
pected, when comparing G matrices separated by a larger
gap, the measured change is larger, since G has more
time to evolve. However, even for small gaps, G can change
appreciably. In some exceptional situations, large changes
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inG of even 100% can occur in only a few generations (see,
e.g., simulation 18 in fig. S2). Figure S5 shows the distribu-
tion of change in G against the gap for other measures of
change in G—namely, size and angle of gmax—displaying
distributions similar to the one shown in figure 2C.
The amount of change is related to the change in the

nonlinearity of the GPM, as shown in figure 2D. The most
dramatic changes in G occur when the nonlinearity of the
GPM changes more rapidly.Wemeasure the nonlinearity
of a region of the GPM as how well the map is locally ap-
proximated by a linear fit (i.e., the nonlinearity of the
GPM is the norm of the residuals of the best linear fit: if
it is small, it means that the GPM is locally described by
a linear map; see “Supplementary Methods” in the sup-
plemental PDF). We then calculate the change in this
measurement between consecutive generations, captur-
ing how the local characteristics of the GPM are chang-
ing. Both the median and the spread of the changes in
G increase with the change in nonlinearity. The increase
in the median change in G indicates that larger changes
in G can occur when the nonlinearity changes more rap-
idly. The increase in the spread of change in G indicates
B C D

A

Figure 2: G changes in time. The changes can be large, and they are related to the genotype-phenotype map (GPM). We compare the re-
sponse to selection predicted using Gi and Gi2k, with k being the generation gap. A shows the change with a gap of 1 for an example sim-
ulation (simulation 6; all simulations are shown in fig. S1). The teeth represent the morphologies closest to the population mean at different
generations. In red we show the part of the morphology that undergoes a relatively large change. This change is associated with the relatively
large changes in G in those generations. B shows the distribution of the change in G for a gap of 1, for all generations of all simulations.
C shows the distribution of the change in G as a function of the gap for all generations and all simulations. The black line is the median
change for each gap, and the light gray area and the dark gray area contain 40% and 20% of the distribution of change, respectively. Note
that the variance of the distribution tapers off for large gap sizes, since there are fewer comparisons that can be made for larger gaps.
D shows that there is a relationship between the change in nonlinearity of the GPM (see “Supplementary Methods” in the supplemental
PDF) and the magnitude of the change in G.
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that both large and small changes occur when nonlinear-
ity changes rapidly. The same relationship with the non-
linearity of the GPM is seen with other measures of
change in G, as shown in figure S5.
Classifying the Change in G

The G matrix changes in several qualitative different
ways. These can be studied by following the behavior of
three measurements (see “Methods”). The first measure-
ment is the size of G, which is the sum of the eigenvalues
of G and describes the total amount of additive genetic
variance. The second measurement is the direction of
gmax, which describes the orientation of the main axis of
variation. We measure it as the angles of gmax with each
of the vectors of an arbitrary orthogonal basis of five-
dimensional space. The third measurement is the eccen-
tricity of G, which is the leading eigenvalue divided by
the sum of eigenvalues. This describes how much of the
total additive genetic variance is distributed along the main
axis of variation.
The eccentricity and size of G are functions of its eigen-

values, shown for all simulations against the generations in
figure S6. Using these measurements, we define five cate-
gories for the change in G. Category A is constant G, char-
acterized by constant eccentricity and size. Category B is pro-
portional change in G, where the size of G changes while
keeping the same eccentricity. This means that G either
shrinks of expands. Category C is disproportional change
in G, where the eccentricity of G changes and the size may
or may not vary. Category D is rotation ofG, where the di-
rection of gmax changes. Category E is sudden changes in G,
which are relatively rapid changes in eccentricity, size, and/
or orientation of G that can occur in nonlinear regions of
the GPM. Note that categories A, B, C, and E are mutually
exclusive. Category D can be combined with A, B, or C.

Figure 3A shows a descriptive scheme of the catego-
ries; examples for each of the categories taken from the
simulations are shown in figure S7. The G matrices are
plotted as 95% confidence ellipses with the direction and
length of the axes determined by the two eigenvectors with
the largest eigenvalues (see “SupplementaryMethods” in the
supplemental PDF). This classification resembles the Flury
hierarchy for comparingGmatrices (Steppan et al. 2002; Ar-
nold et al. 2008). However, we do not use hypothesis testing
in our classification since we have very precise estimates of
Figure 3: G can change in several ways. A shows a schematic representation of the types of changes that can be observed in G in our sim-
ulations. Figure S7 shows examples of these dynamics found in the simulations. B shows the evolution of the G matrix in an example sim-
ulation. The plot shows the G matrix for five generations of simulation 6, also shown in figure 2. For this plot, we use the 3#3 submatrix of
G corresponding to traits 1, 2, and 3 (see fig. 1). We plot this submatrix for generations 7 (blue), 17 (purple), 27 (pink), 37 (red), and 47 (yel-
low). Each ellipsoid is also projected in the two-dimensional planes, where ellipses represent the 2#2 submatrix of G corresponding to a
pair of traits (i.e., traits 1 and 2, traits 2 and 3, or traits 1 and 3). The plot shows that in a single simulation G can change dramatically and
that it can exhibit several different types of changes described in the main text.
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G due to a lack of environmental effects and very large sam-
ple sizes.
Using the size, eccentricity, and angle of gmax in each

generation, we perform an automatic classification of the
dynamics of G (see “Supplementary Methods” in the sup-
plemental PDF). For the classification, we compareGma-
trices separated by a generation gap of 3, 6, and 9 because
single-generation comparisons are typically associated
with changes that are too small for reliable classifications.
We define thresholds for each measurement: if the differ-
ence in a measurement between compared G matrices is
larger than the threshold, we consider that aspect of G
to have changed. Table S1 (available online) shows the
frequency of each of the categories, using all data from
all simulations and different thresholds. Category A (i.e.,
constantG) is themost common in all gaps and thresholds
considered. This is expected, since we are not considering
large gaps. Importantly, all other dynamics appear in sig-
nificant proportions as well.
Several of the categories of changes in G can occur in a

single simulation run. Figure 3B shows an example simula-
tionwhere theGmatrices for three of thefive traits are plot-
ted as ellipsoids in time. The two-dimensional projections
of these ellipsoids are plotted on the side panels, describing
the Gmatrices for pairs of traits. During this simulation, G
changes rapidly in a nonlinear region (category E), rotates
(category D), and becomes more eccentric (category C) at
different generations as it evolves.
Our measure of eccentricity is the inverse of the effec-

tive dimension of G (Kirkpratrick 2009). The dimension
of G can be seen as the subspace of the phenotypic space
in which evolutionary change is possible. In most empir-
ical studies, the observed dimension is smaller than the
number of traits measured (Kirkpatrick and Lofsvold
1992; Hine and Blows 2006; McGuigan and Blows 2007;
but seeMezey andHoule 2005).We found that in our sim-
ulations, the effective dimension ofG can change (see fig. 4
for an example simulation and fig. S8 for the rest of sim-
ulations). To better visualize the change in dimension
(fig. 4B), we projected the Gmatrices in the three different
generations marked with arrows in figure 4A into a three-
dimensional space. The projection captures the overall
shape of G at all times, with more than 92% of variance
explained by the axes (see “Supplementary Methods” in
the supplemental PDF). At generation 2 G is quite flat
(i.e., effectively two-dimensional), but it becomes com-
pletely three-dimensional around generation 15. Then G
again becomes a (two-dimensional) disc by generation 23.
Additive Genetic Variance in the Direction of Selection

Figure 5A shows the evolution of additive genetic variance
in the direction of selection for simulation 10. Additive ge-
netic variance (VA) can increase, decrease, or remain con-
stant during the response to directional selection (other
simulations are shown in fig. S9). In the simulation shown
in figure 5, VA decreases from generation 2 to generation 15
and then remains constant until generation 30, when it
starts to increase. The dynamics are highly dependent
on the local characteristics of the GPM, as shown by the
representations of the GPM included in the figure. Indeed,
the increase in VA after generation 30 occurs because the
population enters a nonlinear region of the GPM where
much adaptive variation is suddenly available, leading to
an increase in VA in the direction of selection. Note, how-
ever, that the amount of nonadditive genetic variance in
those regions increases proportionally more.
Evolution of the M Matrix

TheMmatrix is the variance-covariance matrix of muta-
tional effect and summarizes the variation that enters the
population in a generation through mutations. Figure 5A
shows that mutational variance (VM) in the direction of
selection can increase, decrease, or stay constant de-
pending on the local GPM, for an example simulation
(the rest of the simulations are shown in fig. S9). We find
that G and M are similar in terms of the distribution of
variance and in the angle between the main directions
of variation (i.e., their first eigenvector), gmax andmmax, re-
spectively (fig. S10).
Temporal misalignment of gmax and mmax can occur

when the population crosses a nonlinear region of the
GPM (fig. 5C). TheM matrix describes variation entering
the population at a given generation, which immediately
changes when the population enters a nonlinear region
of the GPM. TheGmatrix, on the other hand, summarizes
standing genetic variation and therefore lags behind the
changes in M. That lag results in temporal misalignments
of gmax and mmax. The matrices realign because new muta-
tions become incorporated into standing genetic variation.
Discussion

G Can Change Rapidly

Our results show that the Gmatrix can evolve rapidly. We
simultaneously compared several measures of change inG,
giving a rich picture of the different aspects of G matrix
structure that can change. These measures include changes
in the total amount of additive genetic variance (the size of
G), changes in the distribution of variation along axes (ec-
centricity and effective dimension), changes the projection
of G in the direction of selection, changes in the direction
of the axes of variation (orientation of gmax), and differ-
ences in the response to selection predicted fromGmatrices
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estimated at different generations. For all of these mea-
surements we found that G can change quickly, with
changes of more than 100% in less than 10 generations.
However, we also found situations where all aspects of G
remained unchanged for several generations.
We have found that the evolution of G is determined

by an interplay between the GPM and selection. Selection
pushes the population to move in the trait space toward
the optimal phenotype. Moving in the trait space implies
moving across the developmental parameter and geno-
typic space too (see fig. 6). The dynamics of development
are different for different values of the developmental pa-
rameters, leading to different morphologies with different
trait values and a different relationship to genetic variation.
23

A

B

2
15

Figure 4: The effective dimension of G changes in our simulation. A shows the effective dimension for each generation of example sim-
ulation 18 (other simulations are shown in fig. S8). Dotted lines are included at dimensions 1, 2, and 3 for reference. Between generations 10
and 20, G goes from having an effective dimension between 1 and 2 to having one between 2 and 3. The teeth closest to the population mean
at different generations are included. B shows the projection of G in three-dimensional space (see “Supplementary Methods” in the supple-
mental PDF), at the three different generations marked in A with arrows. The projections conserve most of the additive variance (92%, 98%,
and 94% for generations 2, 15, and 23, respectively). The same ellipsoid representing G in three-dimensional space is shown using slightly
different angles for each generation.
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For example, as shown in figure 6, a small change in the
value of a parameter can lead to a relatively large change
in the traits in some regions of the parameter space but
not in others. As the genetic makeup of the population
changes under selection, the population moves across the
developmental parameter space, and there can be a change
in the local GPM it experiences. Different local GPMs lead
to different morphological variation and covariation (see
fig. S11) and therefore to different G matrices. If the local
GPM changes rapidly, so will the G matrix. In turn, if
A

B

C

Figure 5: Evolution of M and G. A shows the evolution of additive genetic variance (VA) and mutational variance (VM) in the direction of
selection for simulation 10 (other simulations are shown in fig. S9). These amounts can increase, decrease, or remain constant during the
response to directional selection. The dynamics are highly dependent on the local characteristics of the genotype-phenotype map (GPM), as
can be seen from the marginal GPMs at the three time points shown in B. Marginal GPMs were constructed by tinkering with the two
developmental parameters (xy-plane) that explain most phenotypic variance around their mean value. The z-axis in these maps is the de-
viation of the tinkered phenotypes away from the mean phenotype, projected in the direction of selection (see “Supplementary Methods” in
the supplemental PDF). C shows projections of M and G in two-dimensional space for the same simulation. The two matrices are largely
aligned, with G lagging behind M.
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the local GPM stays the samewhile the population is evolv-
ing, G will remain constant.
Previous Theoretical Approaches: Linear GPM Models
Do Not Show the Same Diversity of Changes

in G as Seen in Our Model

Previous studies of the evolution of G use GPM models
with assumptions that are quite different fromours (Turelli
1985; Slatkin and Frank 1990; Reeve 2000; Agrawal 2001;
Jones et al. 2003, 2012, 2014). The largemajority of theoret-
ical work on the evolution of G assumes a linear GPM,
where each allele is modeled as having a direct additive
genetic effect on traits (i.e., each allele increases or decreases
a trait in a given amount that is not affected by other
alleles). Trait values are then modeled as being deter-
mined by the sum of the additive effects of alleles on traits.
Jones and collaborators have a series of seminal articles
studying G evolution on a linear GPM using individual-
based simulations (Jones et al. 2003, 2012; Arnold et al.
2008). More recently, the authors expanded their investi-
gation including epistatic interactions (Jones et al. 2014)
using the multilinear model (Hansen and Wagner 2001),
which assumes a linear influence of the genetic back-
ground on the effect of an allele. The general expectation
coming from this body of work using linear GPMs is that
the expected shape of G is ultimately determined by selec-
tion, with random fluctuations around this expected shape
(Jones et al. 2003, 2012, 2014).
In our model, phenotypes are not defined as the sum

genetic effects. In contrast, phenotypes are determined by
networks of interactions between gene products, the regu-
lation of cell behaviors, and mechanical properties in-
volved in the development of a complex organ.Mathemat-
ically, this model consists of a set of coupled differential
equations, one per cell, that define how gene expression,
cell position, and mechanical properties change in time
for each cell. The equations have a set of developmental
parameters that in this study are additively determined
by alleles. The equations are nonlinear, and the total num-
ber of them varies during simulation time since there is cell
division. Furthermore, none of these equations is directly
Figure 6: The local characteristics of the genotype-phenotype map (GPM) change as the population evolves. The population at four dif-
ferent generations is plotted as a cloud of points. For every generation, each point on the genetic space represents the genetic values of one
individual. Genetic values additively determine the developmental parameters, so each individual is mapped linearly to developmental pa-
rameter space. The developmental parameters determine the phenotype through the dynamics of the development model. This results in the
mapping from developmental parameters to phenotype to be locally different as the population evolves. We include linear approximations
of the GPM at the different generations, represented as a tangent plane plotted in black. This is the linear approximation of the GPM that is
assumed in G matrix models (see Rice 2008b). The orientation of this plane changes dramatically as the population evolves. The same
change in genetic values results in a different phenotypic change in different regions of the GPM. These different regions of the GPM also
result in different ways in which traits covary, as shown in figure S11. Note that this figure is a simplification. As the population evolves, all
21 developmental parameters change, not only two, as plotted here.
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assigned to the traits that we measure. Cells push each
other in complex patterns over developmental time. Thus,
we do not know a priori which cells will be in the tallest
cusps, which define the traits we measure. Furthermore,
the fact that cells push each other during development
implies that all equations (i.e., all cells) can have an effect
on trait values, even if such an effect is indirect and com-
plex. In other words, none of our equations prespecifies
the phenotype. Phenotypes and, thus, the values of the
traits emerge from the dynamics of the model.
As a result of affecting a developmental parameter, an

allele can have an effect on phenotypic variation, but this
effect varies depending on the values of the other develop-
mental parameters. In other words, alleles do not have in-
trinsic or fixed phenotypic effects. Thus, we do not im-
pose the distribution of allelic effects, as other models of
the evolution of G usually do. On the contrary, this distri-
bution emerges from the development model. Even if one
can statistically estimate the additive effect of an allele in a
population, such an effect can be defined only for a given
generation and population (i.e., a given region of the de-
velopmental parameter space), since there is no guarantee
that it would not change, even dramatically, in one or a
few generations. Similarly, the development model does
not specify epistasis or pleiotropy among alleles. Instead,
both epistasis and pleiotropy arise from the dynamics of
the developmental model and can vary for different re-
gions of the parameter space.
The nature of the GPMwe use in our simulations results

in changes in G that can be larger than those reported un-
der the assumption of a linear GPM. We also find a large
diversity of types of changes that cannot be found in sim-
ulations using a linear GPM but have been found in nature
and experimentally (see “Comparison with Empirical Mea-
sures of G Evolution” below). Most importantly, as further
explained below, the evolution of G in our model depends
not only on selection but also on the GPM the population
experiences as it evolves.
Should G Align with Natural Selection?

An aspect of G andM that has received special attention is
their projection on the direction of selection. This is the
amount of additive genetic (VA) and mutational (VM) var-
iance in the direction of selection, respectively.When prop-
erly standardized, these amounts are called evolvability
(Hansen and Houle 2008). Some authors suggest that these
quantities should increase in evolution as a direct result
of selection (Pavlicev 2011; Jones et al. 2012, 2014). This
would occur by selection increasing the frequency of the
alleles associated with favorable correlations among traits
and decreasing the frequency of those associated with un-
favorable correlations. As a result, G and M would reori-
ent to increase their projection in the direction of selec-
tion (Pavlicev 2011; Jones et al. 2014). This assumes
that there can be genetic variation for any direction of
change in G—in other words, that mutations can change
G in any conceivable direction. However, realistically,
there are some rules on how the GPM—and as a result,
G—can change. As in the case of morphological variation
(Alberch 1982), not all directions of variation are neces-
sarily possible or equally likely for a given G. Each region
of the developmental parameter space can lead to differ-
ent morphologies, a different GPM, a differentG, and dif-
ferent types of change in G.
In our case, the rules of change in G come from the

tooth development model itself. An alignment among
G,M, and the direction of selection is likely to occur only
in models where there are no specific rules of change or
evolution in the GPM. In this scenario, selection is able
to shape the structure of variation without restrictions.
In contrast, in our model an alignment among G, M,
and selection is not to be expected in general. The popu-
lation simply moves in the developmental parameter
space to reachmore adaptive phenotypes, and this will re-
sult in differentGmatrices. These matrices will reflect the
local characteristics of the GPM where the population is
at that point in time (fig. 6). Here, it is important to re-
member that the properties of the GPM depend on the
tooth model and are not themselves affected by natural
selection (at least on the timescale we consider; see
“Caveats” below). Natural selection does affect what re-
gions of the GPM the population is crossing, but only in-
directly through selection on the phenotype.
In fact, we have found that VA and VM in the direction

of selection can increase, decrease, or remain constant de-
pending on the trajectory of a population across the GPM
in our simulations (see fig. 5). This has been previously
suggested for the single-trait case and in specific terms
of the directionality of epistasis (Carter et al. 2005; Han-
sen 2006).
That VA can sometimes increase during the evolution-

ary simulations, even in the direction of selection, may
seem counterintuitive. Natural selection leads to the fix-
ing of alleles that move the phenotype toward the optimum
and, thus, decrease phenotypic and genetic variation in
this direction (Zhang and Hill 2005). This is certainly
the case, but as allelic frequencies change the population
also crosses different regions of the GPM. As explained
above, these regions have different properties (i.e., a dif-
ferent local GPM) that lead to different G matrices and,
in turn, changes VA.
In some cases, VA can even increase quickly for a small

number of generations and decrease shortly after (see
fig. 5A for an example). This occurs when the population
is crossing a region of the developmental parameter space
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where further change of a developmental parameter leads
to a relatively large change, or a “jump,” in one or several
traits. Note that this relatively large change is still gradual
to the eye, as shown with the morphologies in figure 5B,
for example. When the population is in this region, some
of the individuals will be distributed before the jump, and
others will be distributed after the jump. As a result, both
VA and VP peak. In fact, VP increases more than VA be-
cause there is also an increase in nonadditive genetic var-
iance. Once the whole population has crossed the jump,
however, both VA and VP will decrease.
Comparison with Empirical Measures of G Evolution

There is a large body of empirical work studying the evo-
lution of G (reviewed in Steppan et al. 2002; Arnold et al.
2008; Wood and Brodie 2015). Empirical studies of the
evolution of G are typically of one of two types. The first
type comprises studies comparing G matrices among
closely related natural populations that have experienced
different environments for a certain amount of time. These
studies are very diverse in the timescales considered (from
tens to thousands of generations separating the compared
populations). The second type comprises studies in labora-
tory populations under controlled conditions, typically with
the objective of assessing the impact of specific experimental
treatments onG. Our results are most directly comparable
to the results from this second type of study, since our sim-
ulations are for 50 generations with persistent directional
selection and other factors controlled, similar to an exper-
imental setup. Unlike empirical work, however, we are able
to estimate G with high precision in every generation, and
in that sense our results cannot be directly compared to ex-
isting data. Indeed, because of the logistic difficulty in esti-
mating G, most empirical studies include only two estimates
of G.
There is empirical evidence for all of the types of changes

in G we found in our study. Category A (no change in G)
was clearly shown, for example, by Hangartner et al.
(2020) for four traits in Drosophila melanogaster popula-
tions that have locally adapted along a latitudinal cline
over approximately 100 years. Category A was also found
by Delahaie et al. (2017), who studied changes in G for
seven traits among four populations of blue tits (Cyanistes
caeruleus).
Category B (proportional changes in G) has been

reported in Blows and Higgie (2003) for eight traits in
an experimental treatment with Drosophila serrata for
nine generations. Category C (nonproportional changes
in G) was reported by Doroszuk et al. (2008) for three life
history traits of the soil nematode Acrobeloides nanuswas
in response to benign and stress conditions for 20 years.
The authors additionally found evidence of category D
(rotation inG) in their data. Categories C and D were also
found together in a study by Walter et al. (2018) of an
Australian native wildflower, Senecio lautus, for 10 traits,
among populations that have diverged less than half a
million years ago and that occupy four distinct habitats.
Eroukhmanoff and Svensson (2011) studied the change

in G matrix between two ecotype populations (ancestral
and derived) of an aquatic isopod, Asellus aquaticus. The
authors measured seven traits and found evidence for
changes in theGmatrix in categories C andD. The authors
also found evidence of change in the dimension of G. Spe-
cifically, they found a reduction in the dimension of G in
the recently derived ecotype.
Rapid changes inG (category E in this work) have been

reported in natural settings by Björklund et al. (2013).
They found rapid and large changes in G in a 25-year-
long study of the collared flycatcher (Ficedula albicollis)
for four morphological traits. They found large changes
in size, shape, and orientation of the estimated G matri-
ces. The authors suggest that the temporal changes in G
could be explainable by environment-by-genotype ef-
fects, which have been found to have the potential to alter
genetic covariances as fast as in a single generation (Sgró
and Hoffmann 2004; Wood and Brodie 2015; Sniegula
et al. 2018).
An important clarification is that in our simulations we

can estimate theGmatrix with high precision in each gen-
eration, since there are no environmental effects in our
model, sample sizes are large, and we have negligible mea-
surement error. Empirical studies instead are associated
with much larger sample variances. This is particularly
the case for studies in the wild, where the availability of
data is more restricted. This means that part of the
changes in the G matrix from empirical studies could be
explained by sampling variance.
Caveats

We do not include environmental effects in our simula-
tions. Morphology arises during development, and the en-
vironment can affect such morphology by affecting the
developmental dynamics. Environmental effects in our
model can be introduced, for example, as noise added to
the developmental parameters before generating the phe-
notype using the development model. In a previous study
using the same simulations of evolution (Milocco and
Salazar-Ciudad 2020), we show that the inclusion of envi-
ronmental effects does not change the dynamics of evolu-
tion in our simulations. Environmental effects do not
change the GPM, but they can affect the regions of the de-
velopmental parameter space over which the individuals
in a population are spread. A possible future study of en-
vironmental effects could model environmental effects in
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a more realistic way than noise. Interestingly, that would
result in amapping from genotype-by-environment space to
developmental parameters.
Another caveat of our work is that the GPM model we

use is based on a tooth development model. Other sys-
tems develop in different ways and, hence, result in GPMs
that are different from the one in teeth. In that sense, our
results should be regarded as indicative of the general
properties that many GPMs may have or, at least, as an
alternative to a linear view of the GPM. By “general prop-
erties”wemean that there will be regions of the GPM that
are flat, while others will show large nonlinearities. For
the focus of this article, which is the evolution of G, this
means that for the GPM of other organs we can also ex-
pect G to evolve differently in these different regions—
show abrupt changes in some regions, remain constant
in others, show changes in dimension, and so on.
A further limitation of our approach is that we consider

genetic variation only within the genetic and cellular in-
teractions included in our model (i.e., the developmental
model itself does not change). The reason for this choice
is that our study is focused on a relatively short timescale,
on the order of 101–102 generations. On this timescale, we
can expect that changes in the structure of the develop-
mental process are unlikely. This is because changing
the development process would imply acquiring new gene
interactions or the regulation of additional cell behaviors
(e.g., a change in the topology or logic of the underlying
developmental process). On longer timescales, however,
we expect our results to hold. This is because we expect
that for complex phenotypes such as teeth, the GPMs
are unlikely to evolve to be more linear. This expectation
stems from two lines of reasoning, explained below.
First, morphologies have to be physically constructed

during development (e.g., from a zygote) through com-
plex networks of gene and cell interactions and a limited
set of cell behaviors (e.g., cell division, cell contraction,
cell adhesion, cell secretion; Alberch 1982; Salazar-Ciudad
et al. 2003; Urdy 2012). Many of these interactions are in-
trinsically nonlinear (Alberch 1982; Newman and Müller
2000), and thus development is an intrinsically nonlinear
process.
Second, theoretical work supports the view that the

when development evolves to be able to produce com-
plex morphologies it leads, as a side effect, to quite com-
plex GPMs (Newman and Müller 2000; Salazar-Ciudad
et al. 2001; Hagolani et al. 2021). Related theoretical work
suggests that GPMs can become more linear over evolu-
tionary time but that this is very unlikely for complex
morphologies (Salazar-Ciudad et al. 2001; Salazar-Ciudad
and Jernvall 2004). Essentially building a complex mor-
phology that has a simple GPM, when possible, requires
a very complex development (with many genes and gene
interactions), while complex morphologies with a com-
plex GPM can be built by simpler developmental net-
works. We then expect complex morphologies with sim-
ple GPMs to evolve rarely because they require the
accumulation of many mutational changes.
Conclusions

Our results indicate that complex GPMs lead to different
qualitative and quantitative theoretical expectations of
how G evolves compared with those of linear GPMs. Se-
lection moves the population through different regions of
the GPM. The different regions of the GPM that the pop-
ulations explore have different characteristics, resulting
in different phenotypic variation being produced as well
as a different local GPM and therefore determining how
selection can further proceed. This dialectical interaction
between selection and the GPM determines how the G
matrix evolves.
In agreement with other researchers (e.g., Eroukhmanoff

2009; Björklund et al. 2013), our results suggest that one
should be very careful when using the G estimated in a
generation to infer evolution at later generations (or for
related populations). In fact, contrary to what previous
theoretical studies suggest, our expectation should be that
G can change relatively fast and thus that these kind of
inferences are unlikely to be reliable. Our study also
provides a detailed description of the qualitatively differ-
ent ways in which G could evolve. Most of these types of
change have not been previously reported in theoretical
work. Thus, by using a more realistic GPM model, we
can obtain a richer and more detailed view of the rates
and modes of G evolution.
Acknowledgments

We thank Pascal Hagolani,Miguel Brun-Usan, Hugo Cano
Fernández, Carlos Mora, Renske Vroomans, and Aleksa
Ratarac for useful comments. This research was funded
by the Center of Excellence in Experimental and Compu-
tational Developmental Biology, the Finnish Academy
(project 315740), the Spanish Ministry of Science (PGC2018-
096802-B-I00), and the Doctoral Programme in Integra-
tive Life Science of the University of Helsinki.
Statement of Authorship

L.M. and I.S.-C. collaborated in the conceptualization,
funding acquisition, and writing (review and editing).
L.M. wrote the original draft and performed the data
analysis and visualization. I.S.-C. supervised the study.



434 The American Naturalist
Data and Code Availability

The G matrices for all generations and simulations used
in this work have been deposited in the Dryad Digital
Repository (https://doi.org/10.5061/dryad.z34tmpgck; Mi-
locco 2021).
Literature Cited

Agrawal, A. F., E. D. Brodie, and L. H. Rieseberg. 2001. Possible
consequences of genes of major effect: transient changes in
the G-matrix. Genetica 112/113:33–43.

Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. 2014.
Comparing G: multivariate analysis of genetic variation in mul-
tiple populations. Heredity 112:21–29.

Alberch, P. 1982.Developmental constraints in evolutionary processes.
Pages 313–332 in Evolution and development. Springer, Berlin.

Arnold, S. J., R. Bürger, P. A. Hohenlohe, B. C. Ajie, and A. G.
Jones. 2008. Understanding the evolution and stability of the
G-matrix. Evolution 62:2451–2461.

Björklund, M., A. Husby, and L. Gustafsson. 2013. Rapid and un-
predictable changes of the G-matrix in a natural bird population
over 25 years. Journal of Evolutionary Biology 26:1–13.

Blows, M. W., and M. Higgie. 2003. Genetic constraints on the
evolution of mate recognition under natural selection. Ameri-
can Naturalist 161:240–253.

Cano, J. M., A. Laurila, J. Palo, and J. Merilä. 2004. Population dif-
ferentiation in G matrix structure due to natural selection in
Rana temporaria. Evolution 58:2013–2020.

Careau, V., M. E. Wolak, P. A. Carter, and T. Garland. 2015. Evo-
lution of the additive genetic variance–covariance matrix under
continuous directional selection on a complex behavioural phe-
notype. Proceedings of the Royal Society B 282:20151119.

Carter, A. J. R., J. Hermisson, and T. F. Hansen. 2005. The role of ep-
istatic gene interactions in the response to selection and the evo-
lution of evolvability. Theoretical Population Biology 68:179–196.

Chakrabarty, A., andH. Schielzeth. 2020. Comparative analysis of the
multivariate genetic architecture of morphological traits in three
species of Gomphocerine grasshoppers. Heredity 124:367–382.

Delahaie, B., A. Charmantier, S. Chantepie, D. Garant, M. Porlier,
and C. Teplitsky. 2017. Conserved G-matrices of morphological
and life-history traits among continental and island blue tit
populations. Heredity 119:76–87.

Doroszuk, A., M. W. Wojewodzic, G. Gort, and J. E. Kammenga.
2008. Rapid divergence of genetic variance-covariance matrix
within a natural population. American Naturalist 171:291–304.

Eroukhmanoff, F. 2009. Just how much is the G-matrix actually
constraining adaptation? Evolutionary Biology 36:323–326.

Eroukhmanoff, F., and E. I. Svensson. 2011. Evolution and stability
of the G-matrix during the colonization of a novel environment.
Journal of Evolutionary Biology 24:1363–1373.

Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quan-
titative genetics. 4th ed. Pearson, London.

Gilbert, S. F., and M. J. F. Barresi. 2016. Developmental biology.
Sinauer, Sunderland, MA.

Gjuvsland, A. B., J. O. Vik, J. A.Woolliams, and S.W. Omholt. 2011.
Order-preserving principles underlying genotype-phenotype
maps ensure high additive proportions of genetic variance. Jour-
nal of Evolutionary Biology 24:2269–2279.
Glen, C. M., M. L. Kemp, and E. O. Voit. 2019. Agent-based mod-
eling of morphogenetic systems: advantages and challenges.
PLoS Computational Biology 15:e1006577.

Hagolani, P. F., R. Zimm, R. Vroomans, and I. Salazar-Ciudad.
2021. On the evolution and development of morphological
complexity: a view from gene regulatory networks. PLoS Com-
putational Biology 17:e1008570.

Hangartner, S., C. Lasne, C. M. Sgrò, T. Connallon, and K. Monro.
2020. Genetic covariances promote climatic adaptation in Aus-
tralian Drosophila. Evolution 74:326–337.

Hansen, T. F. 2006. The evolution of genetic architecture. Annual
Review of Ecology, Evolution, and Systematics 37:123–157.

Hansen, T. F., and D. Houle. 2008. Measuring and comparing
evolvability and constraint in multivariate characters. Journal
of Evolutionary Biology 21:1201–1219.

Hansen, T. F., and G. P. Wagner. 2001. Modeling genetic architec-
ture: a multilinear theory of gene interaction. Theoretical Pop-
ulation Biology 59:61–86.

Hine, E., andM.W. Blows. 2006. Determining the effective dimension
of the genetic variance-covariancematrix. Genetics 173:1135–1144.

Hine, E., S. F. Chenoweth, H. D. Rundle, and M. W. Blows. 2009.
Characterizing the evolution of genetic variance using genetic
covariance tensors. Philosophical Transactions of the Royal So-
ciety B 364:1567–1578.

Houle, D. 1991. Genetic covariance of fitness correlates: what ge-
netic correlations are made of and why it matters. Evolution
45:630–648.

Jernvall, J., and I. Thesleff. 2012. Tooth shape formation and tooth
renewal: evolving with the same signals. Development 139:3487–
3497.

Johansson, F., M. I. Lind, P. K. Ingvarsson, and F. Bokma. 2012.
Evolution of the G-matrix in life history traits in the common
frog during a recent colonisation of an island system. Evolution-
ary Ecology 26:863–878.

Jones, A. G., S. J. Arnold, and R. Bürger. 2003. Stability of the G-
matrix in a population experiencing pleiotropic mutation, stabi-
lizing selection, and genetic drift. Evolution 57:1747–1760.

Jones, A. G., R. Bürger, and S. J. Arnold. 2014. Epistasis and nat-
ural selection shape the mutational architecture of complex
traits. Nature communications 5:1–10.

Jones, A. G., R. Bürger, S. J. Arnold, P. A. Hohenlohe, and J. C.
Uyeda. 2012. The effects of stochastic and episodic movement
of the optimum on the evolution of the G-matrix and the re-
sponse of the trait mean to selection. Journal of Evolutionary
Biology 25:2210–2231.

Kirkpatrick, M. 2009. Patterns of quantitative genetic variation in
multiple dimensions. Genetica 136:271–284.

Kirkpatrick, M., and D. Lofsvold. 1992. Measuring selection and
constraint in the evolution of growth. Evolution 46:954–971.

Lande, R. 1979. Quantitative genetic analysis of multivariate evolu-
tion, applied to brain∶body size allometry. Evolution 33:402–416.

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantita-
tive traits. Sinauer, Sunderland, MA.

McGuigan, K. 2006. Studying phenotypic evolution using multi-
variate quantitative genetics. Molecular Ecology 15:883–896.

McGuigan, K., and M. W. Blows. 2007. The phenotypic and genetic
covariance structure of drosphilid wings. Evolution 61:902–911.

Merilä, J., M. Björklund, and L. Gustafsson. 1994. Evolution of
morphological differences with moderate genetic correlations
among traits as exemplified by two flycatcher species (Ficedula;

https://doi.org/10.5061/dryad.z34tmpgck


G Changes 435
Muscicapidae). Biological Journal of the Linnean Society 52:19–
30.

Meyer, K. 2007. WOMBAT: a tool for mixed model analyses in
quantitative genetics by restricted maximum likelihood (REML).
Journal of Zhejiang University Science B 8:815–821.

Mezey, J. G., and D. Houle. 2005. The dimension of genetic var-
iation for wing shape in Drosophila melanogaster. Evolution
59:1027–1038.

Milocco, L. 2021. Data from: Evolution of the Gmatrix under non-
linear genotype-phenotype maps. American Naturalist, Dryad
Digital Repository, https://doi.org/10.5061/dryad.z34tmpgck.

Milocco, L., and I. Salazar-Ciudad. 2020. Is evolution predictable?
quantitative genetics under complex genotype-phenotype maps.
Evolution 74:230–244.

Müller, G. B. 2007. Evo-devo: extending the evolutionary synthe-
sis. Nature Reviews Genetics 8:943–949.

Newman, S. A., and G. B. Müller. 2000. Epigenetic mechanisms of
character origination. Journal of Experimental Zoology 288:304–
317.

Oster, G., and P. Alberch. 1982. Evolution and bifurcation of de-
velopmental programs. Evolution 36:444–459.

Osterfield, M., C. A. Berg, and S. Y. Shvartsman. 2017. Epithelial
patterning, morphogenesis, and evolution: Drosophila eggshell
as a model. Developmental Cell 41:337–348.

Pavlicev, M., J. M. Cheverud, and G. P. Wagner. 2011. Evolution of
adaptive phenotypic variation patterns by direct selection for
evolvability. Proceedings of the Royal Society B 278:1903–1912.

Penna, A., D. Melo, S. Bernardi, M. I. Oyarzabal, and G. Marroig.
2017. The evolution of phenotypic integration: how directional
selection reshapes covariation in mice. Evolution 71:2370–2380.

Phelan, J. P., M. A. Archer, K. A. Beckman, A. K. Chippindale,
T. J. Nusbaum, and M. R. Rose. 2003. Breakdown in correlations
during laboratory evolution. I. Comparative analyses of Drosophila
populations. Evolution 57:527–535.

Raff, R. A. 1996. The shape of life: genes, development, and the
evolution of animal form. University of Chicago Press, Chicago.

Raspopovic, J., L. Marcon, L. Russo, and J. Sharpe. 2014. Digit pat-
terning is controlled by a Bmp-Sox9-Wnt Turing network mod-
ulated by morphogen gradients. Science 345:566–570.

Reeve, J. P. 2000. Predicting long-term response to selection. Ge-
netics Research 75:83–94.

Rice, S. H. 2004. Developmental associations between traits: co-
variance and beyond. Genetics 166:513–526.

———. 2008a. Theoretical approaches to the evolution of de-
velopment and genetic architecture. Annals of the New York
Academy of Sciences 1133:67–86.

———. 2008b. The G-matrix as one piece of the phenotypic evo-
lution puzzle. Evolutionary Biology 35:106–107.

Salazar-Ciudad, I., and J. Jernvall. 2004. How different types of
pattern formation mechanisms affect the evolution of form
and development. Evolution and Development 6:6–16.
———. 2010. A computational model of teeth and the develop-
mental origins of morphological variation. Nature 464:583–586.

Salazar-Ciudad, I., J. Jernvall, and S. A. Newman. 2003. Mecha-
nisms of pattern formation in development and evolution. De-
velopment 130:2027–2037.

Salazar-Ciudad, I., S. A. Newman, and R. V. Solé. 2001. Phenotypic
and dynamical transitions in model genetic networks. I. Emer-
gence of patterns and genotype-phenotype relationships. Evolu-
tion and Development 3:84–94.

Salazar-Ciudad, I., and M. Marín-Riera. 2013. Adaptive dynamics
under development-based genotype-phenotype maps. Nature
497:361–364.

Sgrò, C. M., and A. A. Hoffmann. 2004. Genetic correlations,
tradeoffs and environmental variation. Heredity 93:241–248.

Shaw, F. H., R. G. Shaw, G. S. Wilkinson, and M. Turelli. 1995.
Changes in genetic variances and covariances: G whiz! Evolu-
tion 49:1260–1267.

Slatkin, M., and S. A. Frank. 1990. The quantitative genetic conse-
quences of pleiotropy under stabilizing and directional selec-
tion. Genetics 125:207–213.

Sniegula, S., M. J. Golab, S. M. Drobniak, and F. Johansson. 2018.
The genetic variance but not the genetic covariance of life-history
traits changes towards the north in a time-constrained insect. Jour-
nal of Evolutionary Biology 31:853–865.

Steppan, S. J., P. C. Phillips, and D. Houle. 2002. Comparative
quantitative genetics: evolution of the G matrix. Trends in Ecol-
ogy and Evolution 17:320–327.

Turelli, M. 1985. Effects of pleiotropy on predictions concerning
mutation-selection balance for polygenic traits. Genetics 111:165–
195.

Urdy, S. 2012. On the evolution of morphogenetic models:
mechano-chemical interactions and an integrated view of cell dif-
ferentiation, growth, pattern formation and morphogenesis. Bio-
logical Reviews of the Cambridge Philosophical Society 87:786–
803.

Walsh, B., and M. W. Blows. 2009. Abundant genetic variation 1
strong selection p multivariate genetic constraints: a geometric
view of adaptation. Annual Review of Ecology, Evolution, and
Systematics 40:41–59.

Walter, G. M., J. D. Aguirre, M. W. Blows, and D. Ortiz-
Barrientos. 2018. Evolution of genetic variance during adaptive
radiation. American Naturalist 191:E108–E128.

Wood, C. W., and E. D. Brodie III. 2015. Environmental effects on
the structure of the G-matrix. Evolution 69:2927–2940.

Zhang, X. S., and W. G. Hill. 2005. Genetic variability under muta-
tion selection balance. Trends in Ecology and Evolution 20:468–
470.
Associate Editor: Stephen F. Chenoweth
Editor: Jennifer A. Lau

https://doi.org/10.5061/dryad.z34tmpgck

