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Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are 
heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of 
them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symp-
tomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a 
patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are ‘var-
iants of uncertain significance’. To safely enrol patients in precision medicine clinical trials, it is important to increase 
our knowledge about which regions in NDD-associated proteins can ‘tolerate’ missense variants and which ones are 
‘essential’ and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in 
the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants.
We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 
3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experi-
mentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs 
and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consen-
sus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified 
Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered 
key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest 
autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and popu-
lation controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients.
In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites 
in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant 
interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance 
clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.
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Introduction
Neurodevelopmental disorders (NDDs) are a group of congenital or 
early-onset conditions that affect about 2–5% of children worldwide.1,2

NDDs are characterized by neurocognitive deficits with symptoms 
ranging from mild impairments, allowing those affected to live reason-
ably everyday lives, to severe disorders that require lifelong care.3,4

Diverse factors such as gestational infection and maternal alcohol con-
sumption contribute to NDDs.5,6 However, inherited genetic variants 
that disrupt genes, encoding instructions for neuronal development 
and functioning, are major contributors to individual risk for NDDs 
and can, in fact, be causal for the disorder.3,7 A few hundreds of such 
genes have been reported,7-13 but most of them have only recently 
been identified. This novelty opens an avenue to extend the frontier 
of knowledge about these NDD-associated genes and their disease me-
chanisms; for example, identifying regions in the corresponding hu-
man proteins that are conserved for their molecular functions and 
should be constraint against deleterious mutations.

Previous studies have estimated that around 42–48% of patients 
with a severe developmental disorder carry a pathogenic de novo mu-
tation in a protein-coding gene, with missense de novo mutations (i.e. 
a single nucleotide change leading to a single amino acid substitution) 
being more common compared to protein-truncating de novo muta-
tions (PTVs; nonsense, frameshift and essential splice site variants13). 
In contrast to PTVs, interpretation of missense variants is challenging 
due to their variegated functional outcomes depending on the amino 
acid substituted and the protein domain affected. Missense variants 
in the same NDD-associated gene can possess a range of pathogen-
icity,3 causing mild-to-severe phenotypes and often leading to mul-
tiple clinically distinct disorders due to differences in the protein’s 
altered molecular function. For example, different pathogenic SCN1A 
variants can lead to Dravet syndrome, a severe epilepsy syndrome, 
or generalized epilepsy with febrile seizures plus (GEFS+), a milder epi-
lepsy manifestation.14,15 Molecular effects of missense variants such 
as gain- (GoF) or loss-of-function (LoF) can further determine the 
phenotype observed and even affect pharmacological treatment. For 
example, in SCN2A-related epileptic encephalopathies, GoF missense 
variants are associated with an earlier seizure onset and respond to so-
dium channel blockers. In contrast, LoF missense variants in SCN2A 
are associated with autism and do not benefit from antiepileptic 
drugs.16 This varying effect of missense variants in the same 
NDD-associated gene complicates their clinical interpretation, which 
cannot fully be addressed by existing bioinformatic tools that have 
been fairly successful in classifying variants into discrete categories, 
e.g. benign and pathogenic.17 Instead, evolutionarily and structurally 

informed methods for identifying important regions in protein 3D 
structures would be a critical help to selectively nominate positions 
for further experimental assays, deepening the insights into varying 
molecular effects of mutations, and subsequently apply the outcome 
to patient stratification and precision care.

It has been previously shown that 3D structural information of 
proteins helps prioritize mutational hotspots and can unveil per-
turbed biological pathways by missense variants.18-22 For example, 
distinct positional clustering of missense variation on the 3D struc-
ture of sodium channel and calcium channel proteins are found to 
be associated with LoF and GoF mechanisms underlying different 
NDDs.14,16 3D clusters of NDD-associated missense mutations in the 
GTP-binding domain of the GNAO1 protein highlight the importance 
of G-protein signalling in neurodevelopment.23 Mutations in the cata-
lytic and regulatory 3D sites of the CDKL5 structure, affecting the 
phosphorylation signalling pathways, are shown to be implicated in 
CDKL5-related NDDs.24,25 This evidence, along with missense var-
iants being predominantly causal for NDDs,13 suggests that it will 
be paramount to generate a resource of protein structures with anno-
tation of important 3D sites, underpinned by genomic indications (e.g. 
known positions of pathogenic variants), for a comprehensive collec-
tion of NDD-associated genes, which is precisely the aim of our study.

Recently, DeepMind’s neural network-based method, AlphaFold,26

was shown to be able to predict the 3D structure of proteins at an ac-
curacy matching experimental methods, and subsequently, pre-
dicted structures for the entire human proteome were deposited in 
the AlphaFold protein structure database.27 Facilitated by this un-
precedented resource and the experimental structures available in 
the Protein Data Bank,28 here, we generated a new consensus anno-
tation of protein residues in 3D—referred to as ‘3D essential sites’ 
(Essential3D)—that are conserved across human gene paralogues, 
intolerant of missense variants and enriched for pathogenic var-
iants. We made all experimental and predicted structures of 242 
NDD-associated proteins annotated with Essential3D sites publicly 
available (https://es-ndd.broadinstitute.org), which will facilitate 
studies, both on individual NDD target genes and on a large scale, 
to generate testable hypotheses on the perturbed biological func-
tions by de novo variants and their mechanism of action in NDDs.

Materials and methods
Protein structure selection and filtering

Experimentally solved structures of 185 NDD proteins (out of 242) were 
collected from the Protein Data Bank (PDB)28 and were filtered based 
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on two criteria: (i) coverage of >30% of the full protein sequence; 
and (ii) >100 amino acid residues in the structure. We analysed 
2461 structures of 154 NDD proteins out of 2715 structures of 185 
proteins that met these criteria. Predicted structures obtained 
from the AlphaFold database were analysed only when the struc-
ture of the full-length protein was available as a single file, preclud-
ing proteins longer than 2700 amino acid residues. Structures of 
230 NDD proteins (out of 242) satisfied this criterion and were se-
lected for this study. Three sets of structures were generated 
from the available structures: (i) monomeric-PDB: monomeric 
structures from PDB; (ii) multimeric-PDB: protein complexes 
from PDB; and (iii) monomeric-AlphaFold: monomeric structures 
from AlphaFold (Supplementary Table 1).

Missense variant collection

Canonical transcripts for the 242 NDD genes were accessed from 
the UniProt database.29 All protein-coding missense ariants were 
collected for these canonical transcripts. All variants refer to the 
human reference genome GRCh37.p13/hg19.

Selection of variants for the generation of Essential3D site 
annotation

The general ‘population’ missense variants from the genome aggrega-
tion Database (gnomAD, public release 2.0.2)30 were downloaded as 
Variant Call Format (VCFs)31 files (http://gnomad.broadinstitute.org/ 
downloads). The extraction of missense variants was performed with 
vcftools (filter = ‘PASS’) using the pre-annotated ‘CSQ’ field. The patho-
genic and likely-pathogenic missense variants were collected from the 
ClinVar, release July 2021.32 Additionally, high confidence disease mu-
tations were collected from the Human Gene Mutation Database 
(HGMD, version 2020 professional release),33 with filters hgmd_confi-
dence = ‘HIGH’ and hgmd_variant_Type = ‘DM’. Variants from both 
ClinVar and HGMD databases were combined to generate the set of 
‘pathogenic’ variants. Altogether, we obtained 87 028 ‘population’ mis-
sense variants in 242 NDD genes and 9241 ‘pathogenic’ missense var-
iants in 207 NDD genes (Fig. 1) and used these variants to generate 
the Essential3D site annotation (Fig. 2 and Supplementary Fig. 1).

Selection of variants for the validation of Essential3D site 
annotation

The de novo variants were retrieved from the denovo-db database 
(http://denovo-db.gs.washington.edu; June 2019)34 and were filtered 
for missense variants. All variants flagged as ‘validated’ and ‘un-
known’ were collected. We obtained 848 variants labelled with one 
of the NDD-associated phenotypes within the ‘Primary Phenotype’ 
flag. The phenotypes that were included are: ‘schizophrenia’, 
‘developmental disorder’, ‘autism’, ‘intellectual disability’, 
‘Tourette-syndrome’, ‘epilepsy’, ‘early-onset-Parkinson’, ‘cerebral 
palsy’, ‘sporadic infantile spasm syndrome’ and ‘amyotrophic lateral 
sclerosis’. Of 848 variants, 322 were not exclusive of those present in 
ClinVar and HGMD databases, and therefore, were used as an inde-
pendent validation set (Fig. 3 and Supplementary Fig. 2). In addition, 
23 650 benign population variants were collected from the DiscovEHR 
(June 2019) database.35 Of these, 7854 were independent of the var-
iants in gnomAD and were used as the control group in validation.

Selection of variants for testing the Essential3D site 
annotation

For testing, we collected data from exome sequencing studies on 
autism spectrum disorder (ASD; 35 584 individuals7) and 

developmental disorders (DD; 31 058 individuals13), and epilepsy 
(Epi25 collaborative; 9170 individuals12). From the epilepsy cohort, 
we selected the developmental and epileptic encephalopathy 
(DEE; n = 1476) subset since this early onset drug-resistant from of 
epilepsy is considered as NDD with the highest clinical genetic 
test diagnostic rate among epilepsies. We obtained 498, 2370 and 
2865 variants associated with ASD, DD and DEE, respectively. Two 
hundred and twenty-eight ASD variants, 879 DD variants and 464 
DEE variants were independent of the pathogenic variants used 
for generating Essential3D site annotation and were used as an in-
dependent set of NDD variants for testing Essential3D sites 
(Table 1). As a control group, we collected 53 989 variants from the 
UK Biobank (UKBB; 281 852 individuals36), of which 25 116 were ex-
clusive of variants used for generating Essential3D site annotation 
and were used for testing. The gene-wise counts of variants are 
summarized in Supplementary Table 1. All variant counts reported 
above and in the Supplementary material correspond to unique 
amino acid substitutions.

Selection of the radius of 3D window

The 3D window around each amino acid residue (target residue) in 
the protein structure was defined by the residues located within a 
certain radius (r) from it (neighbouring residues), i.e. residues that 
meet the criteria:

d =
����������������������������������������

(xt − xn)2 + (yt − yn)2 + (zt − zn)2


< r (1) 

Here, d is the Euclidian distance between the 3D coordinates of 
the Cα-atom of the target residue (xt, yt, zt) and neighbouring residues 
(xn, yn, zn). We adopted this approach based on the hypothesis that a 
structurally and functionally important and variant-intolerant resi-
due (i.e. Essential3D site) is likely to be proximal to other residues 
forming direct and higher-order contacts37,38 and that are with 
known pathogenic variants.19

We tuned the value of r to maximize the enrichment of patho-
genic variants compared to population variants around 
Essential3D sites in experimental structures (monomeric-PDB set; 
Fig. 1). For this analysis, we selected 50% of available pathogenic 
(ClinVar and HGMD) and population (gnomAD) variants by random 
bootstrapping and separated them out as a test set. With the re-
maining 50% variants, we generated Essential3D site annotation 
and evaluated the enrichment on the test set (two-sided Fisher’s 
exact test). We repeated this analysis for r-values ranging from 6 
to 18 Å and observed the highest enrichment of pathogenic variants 
around Essential3D sites for r = 12 Å [odds ratio (OR) = 12.6, P = 4.3 × 
10−74; Supplementary Fig. 3]. Subsequently, r = 12 Å was used to de-
fine the 3D window for the generation of all structure-based scores 
across all structure sets (Fig. 2 and Supplementary Fig. 1).

Collection of features from UniProt

The UniProt database29 was mined to collect the annotations of re-
gions or sites of interest in proteins in terms of 26 features related to 
protein function (referred to as functional features; https://www. 
uniprot.org/help/sequence_annotation). These features were: ac-
tive site, metal-binding site, binding site, site, zinc finger, DNA 
binding domain, nucleotide phosphate-binding region, calcium- 
binding region, region of interest, repeat, a coiled-coil region, motif, 
domain, topological domain, transmembrane domain, intramem-
brane domain, peptide, transit peptide, signal peptide, propeptide, 
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modified residues, lipidation, disulphide bond, cross-link, glycosy-
lation and compositional bias.

Statistical analysis

Statistical enrichment of pathogenic variants versus population 
variants was computed using two-tailed Fisher’s exact tests 
(Fig. 3, Table 1 and Supplementary Fig. 2). The same test was per-
formed to find functional features associated with Essential3D sites 
(Fig. 5). We corrected for multiple testing by Bonferroni correction.

Implementation of the ES-NDD browser

The server is implemented as a JavaScript application running over 
the data generated by the pipeline. These include both residue- 
level annotations and predicted 3D structures. To visualize the an-
notations, the essential sites-NDD (ES-NDD) browser relies on the 
MolArt tool,39 which enables visualization of sequence annotations 
in the context of available structural data. The annotations for the 
selected gene and structure are passed on to MolArt, displaying the 
annotations as colour overlays over the structure. In the case of ex-
perimental structures, the structure definition is fetched on the fly 
from the PDB. The data are fetched from the server for predicted 

structures and passed to MolArt together with the residue-level 
sequence-structure mapping.

Code availability

Our in-house scripts for 3D-score generation are available on our 
GitHub page: https://github.com/dlal-group/Essential3D_NDD.

Data availability

Precalculated annotations are available on our GitHub page (https:// 
github.com/dlal-group/Essential3D_NDD).

Results
To identify and benchmark functionally essential sites in 3D struc-
tures of proteins, termed Essential3D sites, we searched the litera-
ture for genes known to have a significant exome-wide association 
with NDDs, specifically from three recently published epilepsy9 and 
developmental disorder11,13 studies, and retrieved 302 genes. Our 
study was focused on the analysis of missense variants, therfore 
we filtered this set of genes based on their constraints for missense 
variants (missense z-score40 cut-off of 1.96) and obtained the final 

Figure 1 Overview of structure and variant level data in our dataset and related statistics. (A) Number of NDD genes with available protein structures in 
three different structure sets, and in total 3D structures. (B) Number of population (gnomAD) and pathogenic (ClinVar and HGMD) variants that were 
mappable onto different structure sets, and in total 3D structures. The number and percentage values correspond to variants mapped to 3D out of the 
total number of variants in genes included in the respective structure sets. (C) Relationship between per-protein sequence coverage (%residues) in ex-
perimental structures and fraction of high-quality residues in the corresponding AlphaFold-predicted structures. The locally fitted line (polynomial 
regression fitting) indicates that the greater the residue coverage in the experimental structure, the higher the fraction of high-quality residues in 
the predicted structure [r = 0.75 (95% CI: 0.67–0.81), P = 2.0 × 10−31, Pearson’s product-moment test]. (D) Fifty NDD genes (second quadrant in C) for which 
the sequence coverage (%residues) in experimental structures (x-axis) was <50%, while AlphaFold-predicted structures had over 50% of the protein 
residues (y-axis) predicted with a high quality.
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set of 242 NDD genes for this study (hereafter referred to as NDD 
genes or proteins; Supplementary Table 2). The majority of 
NDD-associated genes (73.2%, n = 177 genes) had a significant 
exome-wide association in only one of three epilepsy9 and develop-
mental disorder11,13 studies, whereas 5% (n = 14 genes) and 21% (n = 
51 genes) had a significant exome-wide association in two or all 
three studies, respectively (Supplementary Table 2).

Collection of protein structures and mapping 
of population and pathogenic variants

We collected structural data from two sources: (i) experimentally 
solved 3D structures from the Protein Data Bank (PDB)28; and (ii) highly 
accurate predicted 3D structures from the AlphaFold protein structure 
database.27 For 185 of 242 NDD genes, at least one protein structure 
was available in the PDB (a total of 2715 structures). After filtering 
these structures based on coverage (see the ‘Protein structure selec-
tion and filtering’ section), we obtained 2461 experimentally solved 
structures representing 154 genes (64% of 242 NDD genes). From the 
AlphaFold database, we collected predicted structures of the full- 
length proteins representing 230 genes (95% of 242 NDD genes). In to-
tal, we generated three datasets from the available structures: two 
sets of monomeric structures (PDB and AlphaFold) and a set of full 
protein complexes—to first compare the quality of experimental 
and predicted and structures—and then separately analyse structures 
where an NDD protein is present as a single molecule and structures 
where an NDD protein is in complex with itself or other partner pro-
teins, respectively. The two monomeric sets of structures were called: 
‘monomeric-PDB’ set (154 proteins) and ‘monomeric-AlphaFold’ (230 
proteins), and the set of protein complexes was named 
‘multimeric-PDB’ (homomeric or heteromeric structures of 92 pro-
teins) (Fig. 1A). Altogether, these three sets covered structural data 
for 242 NDD genes (Fig. 1A and Supplementary Table 1).

Next, to detect 3D sites that are enriched for pathogenic mis-
sense variants compared to those that are benign, we collected mis-
sense variants in these 242 NDD genes and mapped them onto their 
corresponding 3D protein structures. We obtained 87 028 ‘popula-
tion’ missense variants from the gnomAD database30; 82% of these 
variants were mappable onto 3D (71 479/87 028; Fig. 1B). At the 
same, we collected 9241 ‘pathogenic’ missense variants in 207 (of 
242) genes from ClinVar32 (pathogenic and likely-pathogenic) and 
HGMD33 databases, and could map about 81% of them onto 3D 
(7463/9241; Fig. 1B). The lack of pathogenic variants in 15% of known 
NDD genes can be explained because these NDD genes have only 
been identified recently7,11 and are not yet routinely screened or re-
ported clinically, therefore absent from clinical databases. 
Approximately 50% and 20% of pathogenic and population variants, 
respectively, could be mapped onto experimental structures 
(monomeric-PDB and multimeric-PDB sets; Fig. 1B), while 100% 
of all variants were mappable onto AlphaFold-predicted struc-
tures of full-length proteins (monomeric-AlphaFold set; Fig. 1B). 
The uniform mappability of both types of variants onto 
AlphaFold-predicted structures per protein (Supplementary Fig. 
1A), enabled us to perform an unbiased identification of 3D sites 
that are enriched for pathogenic variants, accounting for the pres-
ence of population variants as the comparison group.

Next, we examined the AlphaFold-predicted protein structures 
with the analogous experimental structures to identify those 
NDD genes, for which the use of AlphaFold structures provided sig-
nificant advantage in terms of high-quality predicted residues 
(pLDDT or predicted local-distance difference test >70; per-residue 
estimates of reliability generated by the AlphaFold neural net-
work26). Overall, a positive correlation [r = 0.75 (95% CI: 0.67–0.81), 
P = 2.0 × 10−31, Pearson’s product-moment test; Fig. 1C] was ob-
served between per-protein sequence coverage (%residues) in 
monomeric-PDB and high-quality predicted residues in 

Figure 2 Schematic overview of the method to identify Essential3D sites. Left: Pathogenic (source: ClinVar and HGMD databases) and population 
(source: gnomAD database) missense variants are mapped onto protein structures. For each residue, a burden analysis (two-sided Fisher’s exact 
test) is performed to detect 3D sites that are enriched for pathogenic variants and lack benign variants within a 12 Å 3D window (pvEnriched3D). 
Middle: Sequence-based scores quantifying conservation across human paralogues (coloured regions in the bar representing a protein sequence) 
and intolerance of missense mutations (coloured regions in the bar) are normalized for each residue within a 3D window (12Å radius), to compute 
pConservation3D and mIntolerance3D scores, respectively. Residues in 3D with pConservation3D > 0 and mIntolerance3D > 0 are designated as 
pConserved3D and mIntolerant3D sites. Right: 3D sites that are pvEnriched3D, pConserved3D and mIntolerant3D are identified as Essential3D sites 
(see the ‘Materials and methods’ section and Supplementary Fig. 1).
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monomeric-AlphaFold structures. This observation supports the 
hypothesis that the availability of residue coordinates in experi-
mental structures increases the possibility of a high-quality residue 
predictions in AlphaFold structures. However, for 50 proteins, over 
50% of residues in predicted structures were of high quality (pLDDT 
> 70) despite their analogous experimental structures had less than 
50% sequence coverage (Fig. 1C). Two notable examples include 
syntaxin-binding protein (STXBP1) and elongation factor protein 
(EEF1A2), for which high-quality predicted residue coordinates of 

almost the full-length proteins (over 90% sequence coverage) could 
be obtained from the AlphaFold database (Fig. 1D), while the avail-
able experimental structures for these proteins had less than 10% 
sequence coverage. To further compare the similarity between experi-
mental and predicted structures, we superimposed the corresponding 
3D structures from the monomeric-PDB and monomeric-AlphaFold 
sets using TM-align41 and found that AlphaFold-predicted structures 
are highly similar to experimentally derived structures (median simi-
larity score of 0.94; Supplementary Fig. 4B). This supports the reliability 

Figure 3 Residues annotated as Essential3D sites by a consensus approach are more enriched in de novo variants compared to the individual criterion, 
used to derive the consensus. OR values (y-axis) were calculated using two-sided Fisher’s exact test with 432 NDD-associated de novo variants and 7957 
benign variants. Filled circle colours indicate OR > 1.0 (enrichment) and OR < 1.0 (depletion). Error bars indicate 95% CIs and P-values represent the sig-
nificance of test results. The horizontal dashed line represents OR = 1.0.

Table 1 Enrichment of Essential3D sites in independent sets of NDD variants

Sequencing 
studies

189 (of 242) NDD genes with identified Essential3D sites

Ma (number of 
variants)

Essential3D 
site 

m of M 
variants 

(%M)

Rest of the 
protein 

sequenceb

m of M variants  
(%M)

Enrichment [OR (P)] of Essential3D sites in NDD variants versus  
controlc (UKBB)

ASD7 211 (93 genes) 52 (24.6%) 159 (73.4%) 8.8 (6.9 × 10−28) – – 7.7 (1.2 × 10−127)
DD13 750 (168 genes) 221 (29.5%) 529 (70.5%) – 11.3 (1.6 × 10−123) –
Epilepsy (DEE) 

(Epi25 
Collaborative12)

392 (131 genes) 29 (7.4%) 363 (92.6%) – – 2.2 (3.2 × 10−4)

UKBB36 22 943 (187 genes) 821 (3.6%) 22 122 (96.4%) – – – –

NDD missense variants were obtained from sequencing studies on ASD, known DD,13 and DEE as part of the Epi25 collaborative.12 Control variants were collected from the UKBB. 

The enrichment (two-sided Fisher’s exact test) of Essential3D sites is reported separately for ASD, DD and DEE variants and for all NDD variants compared to those from UKBB as 
the control group. 
aM indicates the number of variants identified in n genes in the corresponding study, out of 189 NDD genes with identified Essential3D sites. %M indicates the fraction of M 

variants that mutate Essential3D sites in the protein or the rest of the protein (not-Essential3D and not-Annotated sites). 
bNot-Essential3D and not-Annotated sites. 
cUKBB data are considered as the ‘control’ group for enrichment analysis against ASD, DD and DEE variants separately from three sequencing studies and total NDD variants 

from all three studies.
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of AlphaFold-predicted structures and warrants their use in our study 
to increase the power of statistical analyses and identify essential sites 
across many NDD genes. All experimental and predicted structures of 
the 242 NDD proteins annotated with variants and generated scores 
are made publicly available (https://es-ndd.broadinstitute.org).

Identification of Essential3D sites in 189 
neurodevelopmental disorder-associated genes

Distant amino acid residues in the linear protein sequence are often 
in close proximity in 3D to form conserved structural folds,42,43

which are essential for protein’s stability and function (e.g. inter-
action, recognition, signalling). Based on this fundamental prin-
ciple of protein folding, we developed a structure-guided, 
consensus approach to identify ‘Essential3D’ sites in protein struc-
tures using three lines of evidence: (i) residues that are enriched for 
pathogenic variants compared to population variants; (ii) residues 
that are evolutionarily conserved across human paralogues44; and 
(iii) that are intolerant of missense variants45 (Fig. 2; see the 
‘Materials and methods’ section for details on methodology and 
Supplementary Fig. 1). Each line of evidence and the consensus an-
notation of Essential3D sites were derived separately for 3D struc-
tures in three structure sets (Fig. 1A).

To detect pathogenic variant enriched 3D sites, we performed 
burden analysis (two-tailed Fisher’s exact test) of pathogenic 
versus population missense variations within a 3D window of 12 Å 
radius around each residue in the 3D structure (see the ‘Selection 
of the radius of 3D window’ section and Supplementary Fig. 3). For 
the monomeric structures (monomeric-PDB and monomeric- 
AlphaFold), the spatial window included only residues of the 
selected NDD protein chain itself, whereas, for the multimeric struc-
tures, the window may also include residues from any interacting 
protein chain in the complex within the defined 12 Å radius. 

Residues with significant enrichment of pathogenic variations with-
in their 3D window (OR > 1.0 and P < 0.05) were categorized as patho-
genic variant enriched 3D sites (‘pvEnriched3D’; Fig. 2). Additionally, 
residues with significant depletion of pathogenic variations within 
their 3D window (OR < 1.0 and P < 0.05) were categorized as patho-
genic variant depleted 3D sites (‘pvDepleted3D’).

To generate two additional lines of evidence for capturing es-
sential sites, we first annotated the amino acid residues of pro-
teins with two sequence-based scores: a score quantifying the 
conservation of residues across human paralogue proteins46 and 
a missense variant intolerance score (missense tolerance ratio or 
MTR). Then, we normalized these scores using the z-score func-
tion for each residue in protein structures within the 3D window 
of a predefined radius, to compute the 3D representation of these 
two sequence-based scores: per-residue ‘pConservation3D’ (para-
logue conservation 3D score) and ‘mIntolerance3D’ (missense in-
tolerance 3D score) (Fig. 2). Residues with pConservation3D > 0 
and mIntolerance3D > 0 were identified as pConserved3D and 
mIntolerant3D sites, respectively (see the ‘Materials and methods’ 
section and Supplementary Fig. 1).

Finally, we derived the consensus annotation of residues— 
termed Essential3D sites—that are pvEnriched3D, pConserved3D 
and mIntolerant3D sites (Fig. 2). Similarly, residues that are 
pvDepleted3D, not-pConserved3D and not-mIntolerant3D sites 
were annotated as not-Essential3D (see the ‘Materials and meth-
ods’ section and Supplementary Fig. 1). Residues that did not 
meet the criteria to be Essential3D or not-Essential3D sites were 
kept ‘not-Annotated’. Altogether, 14 377 Essential3D sites were 
identified in predicted or experimental structures of 189 (of 242) 
NDD proteins. Structure set-wise and gene-wise counts of identi-
fied pEnriched3D, pConserved3D, mIntolerant3D, and Essential3D 
sites are reported in Supplementary Fig. 5 and Supplementary 
Tables 3–6, respectively.

Figure 4 Essential3D sites highlight positions in proteins with high mutational sensitivity (average ΔE) as quantified by EVmutation.46 Average ΔE is 
the mean change in energy for substituting the reference amino acid in the wild type protein with 19 alternate amino acids. The median mutational 
sensitivity for Essential3D, not-Essential3D and not-Annotated sites were −6.60, −5.07 and −5.63, respectively (Essential3D versus not-Annotated sites, 
P < 8.6 × 10−289; Essential3D versus not-Essential3D sites, P < 4.7 × 10−54; Mann-Whitney U-test).
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Essential3D sites improve variant prioritization over 
single criteria

After identifying Essential3D sites by taking a consensus from three 
criteria (Fig. 2; pEnriched3D, mIntolerant3D and pConserved3D 
sites), we wanted to validate the utility of employing a consensus ap-
proach over a single criterion. To check this, we selected an inde-
pendent set of NDD-associated de novo missense variants from the 
denovo-db database34 (n = 432, after excluding all variants that over-
lapped with pathogenic variants in ClinVar and HGMD; see the 
‘Materials and methods’ section). Additionally, we generated an in-
dependent set of benign population variants from the DiscovEHR 
database37 (n = 7957, after excluding all variants that are present in 
gnomAD). Then we measured the burden of Essentian3D sites in 
de novo variants compared to benign variants (two-sided Fisher’s 
exact test). We observed a 6.2-fold burden of Essential3D sites in 
de novo variants [95% CI (4.8–8.1), P = 9.6 × 10−31] for predicted struc-
tures (monomeric-AlphaFold set; Fig. 3). By repeating the analysis 
for pEnriched3D, mIntolerant3D and pConserved3D sites, we 
found that de novo variants had the highest burden of 
Essential3D sites, with a gradual decrease in effect size for 
pvEnriched3D sites (OR = 5.9), pConserved3D sites (OR = 3.3), and 
mIntolerant3D sites (OR = 2.5; Fig. 3). This observation supports 
the strategy of using multiple lines of evidence in identifying the 
functionally essential 3D sites in proteins. Similar investigations 
were performed for experimental structures, which showed compar-
able results (Supplementary Fig. 2).

Essential3D sites are enriched for rare missense 
variants in large exome sequencing studies

After demonstrating that Essential3D sites are enriched in de novo 
missense variants, we attempted to further validate whether these 
sites in NDD genes present vulnerable protein positions for rare mis-
sense variants associated with NDDs. For this, we used data from 
three rare variant sequencing studies on NDDs, including the largest 
ASD7 (35 584 cases), DD13 (31 058 cases) and Epi25 collaborative12

(9170 cases) studies. Since several of these studies used variants 
from gnomAD as the control group, which was also part of our initial 
Essential3D site annotation, we selected population variants from 
the UK-Biobank (UKBB36) as the control dataset. Essential3D sites 
were 8.8-fold (P = 6.9 × 10−28) enriched for ASD patient variants, 
11.3-fold (P = 2.6 × 10−123) enriched for DD patient variants, and 
2.2-fold (P = 3.2 × 10−4) enriched for variants associated with DEE, 
compared to population variants from UKBB. The relatively lower en-
richment of Essential3D sites in DEE variants in the Epi25 study could 
be explained because of a higher ration of likely benign variants. In 
contrast to the other studies, the Epi25 study only includes cases 
and no data from parents. Since the information about inheritance 
is missing, we were not able to filter for de novo variants—a powerful 
filter to enrich a variant set for pathogenic variants. A combined ana-
lysis of all NDD missense variants from three exome studies of ASD, 
DD and DEE versus missense variants from UKBB as control, showed 
about an 8-fold enrichment (P = 1.2 × 10−127, two-sided Fisher’s exact 
test; Table 1) of Essenetial3D sites in NDD variants.

Essential sites capture mutation-intolerant locations 
for yet unseen variants

Although Essential3D sites were found enriched for NDD missense 
variants (Fig. 3), about 76% of identified sites in 189 NDD proteins 
were not annotated in any patient variant databases (e.g. ClinVar, 
HGMD, denovo-db) and was also not found in a rare variant 

sequencing studies discussed in Table 1. Additionally, 94% of these 
Essential3D sites also are not present in gnomAD population data-
base. To assess the mutational effects of all Essential3D sites, we 
collected the ΔE mutational effect, i.e. the mean change in statistic-
al energy for substituting the reference amino acid in the wild-type 
protein with all other amino acids, computed by EVmutation47 for 
all residues in the 189 NDD proteins with Essential3D sites. The 
more negative the energy change, the more deleterious the effect 
of mutating that residue is, accounting for co-evolution and epista-
sis.47 Expectedly, Essential3D sites in proteins showed significantly 
different mutational sensitivity compared to not-Essential3D sites 
and not-Annotated sites (Mann-Whitney U-test; Fig. 4), with the 
median ΔE for Essential3D sites being relatively more negative. 
Moreover, the median ΔE for Essential3D sites with and without 
currently a known pathogenic mutation (ClinVar and HGMD data-
bases) on them were comparable, −6.9 and −6.4, respectively. 
This indicates that Essential3D sites represent potential positions 
for novel deleterious mutations and will be valuable in prioritizing 
missense variants and important residues in proteins.

Essential3D sites prioritize features important for the 
function of the protein

By definition, Essential3D sites are enriched for pathogenic variants 
within a local 3D window in the protein structure, conserved across 
paralogs, and depleted for population missense variants (Fig. 2), 
which makes it likely that these sites represent residues important 
for specific protein function. For testing this, we used the curated 
annotation of 26 position-specific features related to protein func-
tion from the UniProt database29 (e.g. active sites, ligand binding 
sites, functional domain, referred to as ‘functional features’; see 
the ‘Materials and methods ‘section for all 26 features). Overall, 
12 083 of 14 377 (84%) Essential3D sites were overlapping a function-
al feature. Additionally, we identified 12 features that were signifi-
cantly enriched for Essential3D sites (two-sided Fisher’s exact test; 
Fig. 5 and Supplementary Table 7) in the 189 NDD genes. The re-
maining features were either depleted for Essential3D sites or 
showed no significant association.

Intramembrane regions of proteins located in a membrane 
without crossing it showed 15-fold enrichment of Essential3D 
sites among all investigated features (P = 1.3 × 10−227; Fig. 5), where 
the signal of enrichment was primarily contributed by the genes in 
the potassium voltage-gated channel family (KCNA2, KCNB1, 
KCND3, KCNH1, KCNK3, KCNQ2, KCNQ3; Supplementary Table 7). 
This enrichment was greater than the enrichment in the overall 
transmembrane region (6.3-fold, P < 1.0 × 10−300; Fig. 5), which 
has been previously reported as an important region in NDD asso-
ciated ion channels.14,15,48 Nevertheless, in 27 NDD proteins from 
voltage-gated calcium, sodium, and potassium channel families, 
GABA receptors, glucose transporters, and NMDA receptors 
(Supplementary Table 7), Essential3D sites were found enriched 
in the transmembrane region.

Interestingly, different types of binding sites and regions are 
found to be characteristic features of Essential3D sites (Fig. 5), 
such as nucleotide phosphate-binding regions (7-fold enriched, 
P = 1.7 × 10−113), active sites (7.4-fold enriched, P = 1.7 × 10−5), bind-
ing sites for physiological ligand, co-enzymes (6.4-fold enriched, 
P = 1.9 × 10−13), and metal-binding sites (5-fold enriched, P = 1.2 × 
10−15). This result was driven by Essential3D sites being ubiquitous-
ly overlapping with these binding sites in NDD proteins that are ki-
nases, phosphatases, helicases, etc (Supplementary Table 7). In 
addition, DNA binding domains and short conserved ‘motifs’ of 
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biological significance (e.g. DEXX, LXXLL motifs) are found to be 
preferential locations of Essential3D sites (Fig. 5).

Essential3D site annotation use case examples

Identification of protein complex inter-molecule 
interactions as disease mechanism

In large protein complexes, variants at protein–protein, protein–lig-
and interaction surfaces can alter protein function (recognition, sig-
nalling, etc.), and can cause diseases. To illustrate the utility of 

Essential3D sites in identifying such mechanisms of missense var-
iants, we now describe two case studies of experimentally solved 
protein complexes associated with NDDs: the guanine nucleotide- 
binding proteins (G protein) complex23,49,50 and the PP2A complex.51

G proteins have been associated with multiple NDDs, including 
DEE and involuntary movement disorders.23,49,50 As a disease 
mechanism, perturbation of G protein signalling has been pro-
posed.23 For our investigation, we selected a hetero-tetrameric pro-
tein structure (PDB ID: 6G79, Fig. 6A), where the α-subunit of the G 
protein (Gα, GNAO1) is in a complex with G(I)/G(S)/G(T) subunit β1 

(Gβ1, GNB1) and G(I)/G(S)/G(O) subunit γ2 (Gγ2, GNG2), and the 

Figure 5 Association of Essenetial3D sites with function features from the UniProt database. The plot shows the results of two-sided Fisher’s exact 
tests of association between Essential3D sites and the remaining protein residues with the features for the 189 NDD proteins with an Essential3D 
site. The plot includes results for the 21 (of 26) functional features that overlapped with at least one Essential3D site (see the ‘Materials and methods’ 
section for all 26 features). Log10 (OR) > 0 and Log10 (OR) < 0 along with P < 0.05 (after Bonferroni correction; see the ‘Materials and methods’ section for 
details) indicates that the corresponding feature (y-axis) has significant enrichment and depletion, respectively, in Essential3D sites. Error bars indicate 
95% CIs. The vertical dashed line at Log10 (OR) = 0 indicates no association. For non-significant associations (P ≥ 0.05), the circle and feature name are 
grey.
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G-protein coupled receptor (HTRB1) for serotonin. Eighty-five resi-
dues in the Gα structure were identified as Essential3D sites 
(Fig. 6A, left), including all three GTP-binding regions (G40–S47, 
D201–Q205, N270–D273) and one metal-binding site (S47). We fur-
ther investigated the Essential3D sites on Gα-Gβ1 interaction sur-
face and found two sites in Gα: I185, H214, forming hydrogen 
bonds (H-bond) with two residues in Gβ1: Y59, L117 (Fig. 6A, right), 
which are potentially important for Gα-Gβ1 recognition as well as 
the overall stability of the protein complex.

As a second example, we checked the type 2A protein phosphat-
ase (PP2A) heterotrimeric complex (PDB id: 2NPP; Fig. 6B), comprising 
three subunits: a catalytic Cα subunit (PPP2CA), a regulatory B56γ sub-
unit (PPP2R5C) and a scaffolding Aα subunit (PPP2R1A). PP2As are 
highly expressed in the brain and regulate neuronal signalling by 
catalysing phospho-Ser/Thr dephosphorylations in diverse 

substrates. Both haploinsufficiency and other mechanisms (i.e. 
dominant-negative) of PPP2CA have been suggested to cause intellec-
tual disability and developmental delay.51 We identified 110 
Essential3D sites in two PP2A subunits, Aα (26 residues) and Cα (84 re-
sidues). In the catalytic Cα, all six Mn binding sites (D57, H59, D85, 
N117, H167, H241; in cyan) and the proton donor site H118 (in yellow) 
have been detected as Essential3D sites, forming a metal-interacting 
catalytic pocket around the manganese (Fig. 6B, middle). 
Additionally, the Essential3D site annotation captured residues on 
the Aα–Cα interface, forming inter-protein H-bonds between the 
regulatory and catalytic subunit of the complex (Fig. 6B, right), which 
are essential for the overall stability and functionality of macromol-
ecular protein complexes.52 These observations suggest that 
Essential3D sites can effectively annotate functionally important re-
sidues in the protein-protein interface of protein complexes.

Figure 6 Essential3D site annotates important protein-protein interactions in protein complexes. (A, left) In the G-protein complex structure compris-
ing multiple NDD genes (GNAO1: Gα subunit, GNB1: Gβ1 subunit), Essential3D sites highlight two potential mechanisms: Gα-Gβ1 and Gα-GTP interac-
tions. Right: In the Gα-Gβ1 interprotein interface, two Gα-residues: I185Gα and H214Gα, forming hydrogen bonds with two Gβ1-residues: L117Gβ1 and 
Y59Gβ1, were identified as Essential3D sites. Additionally, three known GTP-binding regions recorded by UniProt were identified as Essential3D sites. 
(B, left) Essential3D sites in the phosphatase 2A protein complex of catalytic Cα (PPP2CA), scaffolding Aα (PPP2R1A), and regulatory B56γ (PPPR5C) high-
light two mechanisms: Cα-catalytic pocket and Cα-B56γ interactions. (middle) Six Mn binding residues (D57, H59, D85, N117, H167, H241) and one proton 
donor residue (H118), forming a metal interacting catalytic pocket around the manganese were captured as Essential3D sites. Right: In the Cα-B56γ inter-
action surface, two hydrogen bond networks were captured by Essential3D sites: (top) R268Cα (an Essential-3D site) with D109B56γ and D113B56γ; and (bot-
tom) Q125Cα and D131Cα (Essential3D sites) with P328B56γ and S288B56γ, respectively.
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In addition to these case studies, we observed that overall 
Essential3D sites capture a higher fraction of de novo missense var-
iants in protein complexes (multimeric-PDB) than in monomeric 
structures (monomeric-PDB set) of the NDD proteins (15% versus 
7%; Supplementary Fig. 6B). Annotations for all protein complexes 
representing 92 NDD proteins are available through the resource 
developed as part of the study (https://es-ndd.broadinstitute.org).

Prioritization of essential functional unites in genes with 
previously missing experimental structure

Here, we present two case studies of predicted structures of NDD 
proteins: STXBP1 and KCNT1, for which the use of 
AlphaFold-predicted structures provided a significant advantage 
in terms of sequence and variant coverage in 3D.

STXBP1 is a key component of the SNARE complex, a mediator of 
vesicle fusion and exocytosis. Multiple mutations in STXBP1 protein 
reportedly are associated with early infantile epileptic encephalop-
athy.53 The experimentally resolved structure of STXBP1 covered 
only a small, phosphorylated six amino acid residue long region of 
the protein, whereas the AlphaFold-predicted structure covered al-
most the full STXBP1 protein (91% of 594 residues are of high-quality, 
pLDDT > 70). Essential3D sites in STXBP1 were located in the compact 
core of the protein structure (Fig. 7A, left). While the pathogenic mu-
tations (ClinVar and HGMD databases) were observed both in the 
core and at the surface of the structure (Fig. 7A, middle), the majority 
of the DD-associated mutations (17 of 26) found in an independent 
cohort study,13 were located on Essential3D sites (Fig. 7A, right). 
Additionally, the mapping of autism (n = 25; Satterstrom et al.7) and 
DEE variants (n = 9; Epi25 collaborative12) onto the structure showed 

Figure 7 Use of AlphaFold-predicted structures enabled identification of Essential3D sites in NDD proteins with little to no experimental structure 
available and these Essential3D sites capture de novo DD-associated variants. (A, left) Predicted structure of syntaxin-1 protein (STXBP1) with annotated 
Essnetial3D sites. Pathogenic STXBP1 variants from ClinVar and HGMD databases (middle) and de novo DD variants (right) are mapped onto the structure 
of Syntaxin-1. Sixty-five per cent of all DD variants affected Essential3D sites. (B) Predicted structure of potassium channel protein, subfamily T mem-
ber 1 (KCNT1) with annotated Essnetial3D sites. Pathogenic KCNT1 variants from ClinVar and HGMD databases (middle) and de novo DD variants13 (right) 
are mapped onto the structure. Sixty-five per cent of all DD variants affected Essential3D sites. Of 18 KCNT1 variants associated with DD, 10 affected 
Essential3D sites.
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specific 3D patterns of mutations associated with these two different 
NDDs (Supplementary Fig. 7). Specifically, 52% of autism versus 22% 
of DEE mutations affected Essential3D sites, indicating that 
Essential3D site annotation may preferably capture variants asso-
ciated with ASD and other DDs over DEE.

Finally, we studied the predicted structure of the potassium channel 
subfamily T member 1 (KCNT1; Fig. 7B, left, only the residues predicted 
with a high-quality are shown). Variants affecting KCNT1 have been 
found to cause DEE and reported in multiple studies.54,55 KCNT1 is com-
posed of six helical transmembrane segments (S1–S6), two N- and 
C-terminal cytoplasmic regions, and extracellular and intercellular re-
gions. Three visible clusters of Essential3D sites were found in the struc-
ture: one in the transmembrane region (spanning S5 and S6) and two in 
the C-terminal cytoplasmic regions. Noticeably, these three regions 
harboured most pathogenic mutations available in ClinVar and 
HGMD databases as well as the de novo DD-associated mutations13

(Fig. 7B, middle and right), indicating that Essential3D site annotation 
could be used as a tool for prioritizing these DD variants for functional 
assays. Note that, no experimental structure is available for the KCNT1 
protein, but the AlphaFold-predicted structure covered 850 of 1230 resi-
dues with high confidence and enabled us to identify Essential3D sites.

Discussion
We present a resource of protein structures corresponding to NDD 
genes, where residues in 3D are annotated with multiple genomic 
indications (mutational hotspots, conservation, etc.) and function-
al features (e.g. DNA binding site, catalytic pocket), that could serve 
as a resource for the translational neuroscience community. In par-
ticular, the interpretation of missense variants within these NDD 
genes is challenging. We focused on the study of missense variants. 
A recent study analysing de novo mutations in over 31 000 indivi-
duals identified 28 novel genes associated with developmental dis-
orders.13 Reportedly, 54% of these genes had only missense de novo 
mutations with an alteration of protein function as the most plaus-
ible disease mechanism.13

New high-quality structure predictions enable large 
scale identification of functionally essential protein 
sites

A significant advancement in the field of structural biology occurred in 
2021 when DeepMind’s artificial intelligence-based method AlphaFold 
predicted protein structure models of a quality approaching that of ex-
perimental determination.26,27 But to fully utilize the potential of this re-
source in medical research, i.e. for clinical variant interpretation, 
prioritization of variants for functional assay and uncovering how per-
turbation of the structure affects the protein’s mechanism of function, 
these structures need to be further annotated with clinical and genomic 
data.56 In this study, we generated such a rich annotation resource of 
functionally important residues in 3D (Essential3D sites) within 242 
NDD genes; these Essential3D sites are enriched for pathogenic variants 
in 3D, conserved across human paralogues, and constrained for mis-
sense variants in the general population (Fig. 2 and Supplementary 
Fig. 1). Use of AlphaFold-predicted structures noticeably increased the 
sample size and residue coverage in our study: we could analyse 76 add-
itional NDD genes (Fig. 1A) for which no experimental structure was 
available and identified 11136 additional Essential3D sites compared 
to those identified only in experimental structures (Supplementary 
Fig. 5). Additionally, in a supplemental analysis, we observed that 
Essential3D sites in predicted structures capture 3.5-times more de 
novo NDD mutations compared to experimental structures of the 

same number of proteins (n =142; Supplementary Fig. 6A), which sup-
ports the benefit of using AlphaFold-predicted structures with a higher 
sequence coverage. Moreover, >90% of all Essential3D sites identified 
in AlphaFold-predicted structures are of high quality (pLDDT >70; 
Supplementary Fig. 8). This could be driven by the fact that AlphaFold 
is highly accurate (pLDDT>70) for protein regions with defined second-
ary structure, and by our 3D window-based annotation method, we ex-
pect to capture Essential3D sites in the compact structured regions of 
the protein.

Structure-guide methods are complementary to 
sequence-based methods

As part of our method to identify 3D essential sites, we transformed two 
sequence-based scores, i.e. gene-family or paralogue conservation57 and 
missense intolerance scores,45 into 3D using a local 3D neighbourhood- 
based normalization method, and computed pConservation3D (paralo-
gue conservation in 3D) and mIntolerance3D (missense intolerance in 
3D) scores (Supplementary Fig. 2). Upon assessing the correlation be-
tween sequence-based and 3D scores as a function of number of resi-
dues (n) within the local 3D window, we observed that as n increases, 
the correlation decreases (Pearson’s r = 0.89 for n = 4 to r = 0.51 for 
n = 52, MTR score versus mIntolerance3D; r = 0.85 for n = 4 to r = 
0.57 for n = 52, sequence-based paralogue conservation score ver-
sus pConservation3D; Supplementary Fig. 9A). This suggests that 
sequence-based and structure-informed scores differ for residues 
with many spatially proximal residues around them (quantified 
by n), meaning within the compact protein core and at the crowded 
protein–protein interaction surfaces. An additional comparison of 
correlations between sequence-based and 3D scores for residues 
with different prediction quality provided by the AlphaFold meth-
od26 showed a drop in Person’s r from 0.82 to 0.65 as the prediction 
quality (pLDDT) decreased from >90 to <50 (Supplementary Fig. 9B). 
It has been shown that residues with pLDDT < 50 often are part of 
unstructured protein regions whereas high-quality predictions pre-
dominantly represent structured domains.27,58 Combined with 
these existing study outcomes,27,58 our results indicate that the lo-
cal 3D window based, structure-guided pConserved3D and 
mIntolerant3D scores are complementary to sequence-based 
methods in detecting essential 3D sites that represent residues lo-
cated far apart in sequence but are spatially proximal in the 3D 
structure. In fact, we found that about 44% of all Essential3D sites 
have neighbouring residues within 12-Å radius window that are 
on average ≥50 residues (median = 102 residues, maximum = 895 
residues) apart in the sequence (Supplementary Fig. 10).

A computational approach to identifying mutational 
hotspots and critical functional domains

According to American College for Clinical Genetics and Genomics 
(ACMG) guidelines, a missense variant located in a mutational hot-
spot or critical functional domain is a moderate evidence criterion 
for pathogenicity. Previous bioinformatic resources and tools have 
attempted to identify such mutational hotspots through clustering 
of pathogenic and likely pathogenic missense variants reported in 
clinical variant databases59-63 or by scoring the absence of population 
variants along the protein sequence (MTR45). Other approaches that 
identify critical functional domains have attempted to bridge genom-
ics with structural biology to develop resources and tools that map 
and visualize missense variants on protein structures. Such tools 
include mutation3D,59 COSMIC-3D,64 PhyreRisk65 and VarMap.66

Spatial neighbourhood-based methods using 3D protein structural 
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models have also been developed to generate pathogenicity predic-
tions (PIVOTAL67) and combine genomic data with structures and 
network models (Bio-node 3D68). Our essential site annotation com-
bines all these approaches while using the latest version of 
AlphaFold predicted structures and the largest NDD patient variant 
datasets. Combining all available types of variant functional features 
and mapping these on consensus scores on structure has the benefit 
to provide molecular insights that help predict clinical phenotypes. 
Most bioinformatic tools focus on scores, which allow for benign ver-
sus pathogenic variant discrimination. However, for many 
disease-associated genes, pathogenic missense variants can cause 
mild to severe disorders or even lead to multiple clinically distinct 
disorders due to differences in the protein’s altered molecular func-
tion. However, in medical genetics practice, better interpretable in-
formation than variant pathogenicity predictions alone are needed 
to adjust a patient’s management.17 For example, the gene GJA1 is as-
sociated with highly pleiotropic inheritable diseases affecting a var-
iety of organ systems.69 The severity of a phenotype can also differ 
across missense variants in the same gene. Pathogenic variants in 
the SCN1A gene can lead to Dravet syndrome, a catastrophically se-
vere epilepsy syndrome; or GEFS+, a milder benign form.70

Development of a web portal to facilitate variant 
interpretation

Effective synthesis of available information into meaningful conclusions 
for a novel variant represents a significant challenge. When and where 
to make effective use of the overwhelming number of independent bio-
informatic resources, scores, and currently available tools requires 
knowledge and experience in multiple specialized domains beyond 
the scope of a single user’s expertise.17,71-74 Most people interested in 
missense variant interpretation are clinicians, biologists, genetic coun-
sellors and structural chemists, who may not have extensive experience 
using bioinformatic methods. To address this issue, tools with inter-
active mechanisms that apply to human-centred design methods 
and principles75,76 can grant end-users more agency in guiding the 
interpretation and can be used for critical decision-making purposes be-
yond a score.75,77 Therefore, we developed ES-NDD (https://es-ndd. 
broadinstitute.org), a user-friendly web application that includes rich 
sources of annotations—including our essential 3D sites—that can be 
interactively explored in 3D visualizations of protein structure models. 
We believe, this way, the user will find more trust in the results, the 
agency to hypothesis-test and apply their domain knowledge, while 
simultaneously leveraging the benefits of automation. This will also 
help determine whether a mutation of a site is likely to alter a specific 
function of the protein, which often could be hypothesized from 
position-specific features of Essential3D sites. A use case example: we 
identified that residues lining the central pore in the GLUT1 transporter 
structure including those that are interacting with the monosaccharide 
are Essential3D sites (PDB ID: 4PYP; Supplementary Fig. 11). Patient var-
iants in GLUT1 have been associated with the GLUT1 deficiency charac-
terized by severe early-onset epilepsy, developmental delay and 
movement abnormalities.78,79 It could be hypothesized that a mutation 
on these sites with the ‘ligand-binding’ feature, may cause an alteration 
of protein function by changing the shape of the pore or perturbing the 
protein-ligand interaction.80 Using similar feature annotations from the 
UniProt database29 (Fig. 5), we identified 12 features that are statistically 
associated with Essential3D sites in the 189 NDD genes. We postulate 
that the presence of a novel mutation on an Essenetial3D site with a cer-
tain feature will aid in hinting to the mechanism of the function that 
would be perturbed upon mutation of these sites.

Limitations

There are important challenges in assessing missense variants that are 
not covered in this report. First is the heterogeneity of disease presen-
tation. Different variants of the same gene can lead to different disease 
severity or even different diseases,14,15 aspects that will be masked by 
using simple discrete pathology categories. Currently, Essential3D sites 
are calculated based on the aggregation of all available pathogenic var-
iants for each gene, and we expect that our method can be applied to 
predict disease-specific Essential3D sites that may be useful to dis-
criminate different disease presentations. Second, we studied variants 
from the canonical transcripts only; hence, Essential3D sites annota-
tions were identified for the canonical protein isoforms only. 
However, every gene has an average of 3.5 transcripts,81 and it is not 
always known which transcript is expressed in which cell type or in 
the brain at all. Third, we validated Essential3D sites by evaluating 
their burden in patients compared to variants from UKBB across all po-
pulations. In the future, it will be useful to perform this evaluation in a 
population-specific manner to further understand the clinical utility of 
Essential3D sites in different populations. Fourth, for many protein 
structures, different assemblies of protein subunits exist. As we could 
show by studying Essential3D sites in protein complexes, such assem-
blies affect the calculation of 3D scores and can provide insights into 
important protein-protein interaction sites. We choose one protein 
complex per gene, based on the structure coverage of the protein, for 
our analysis. Still, we precalculated Essential3D sites for all protein 
complexes for each of the 242 NDD-associated genes, which can be ex-
plored in our ES-NDD browser.

Conclusion
To summarize, we developed a new method to annotate functionally 
essential 3D sites in proteins accounting for structural and genomic 
(i.e. conservation, constraints) context. We applied this method to 
experimental and predicted structures of 242 NDD-associated pro-
teins, demonstrated that de-novo missense variants in the largest 
NDD sequencing studies are highly enriched at Essential3D sites 
and created a resource of 3D structures annotated with population 
and pathogenic variants and the essential 3D sites (ES-NDD; https:// 
es-ndd.broadinstitute.org). We believe that our resource will enable 
a wide range of communities involved in neuroscience research, in-
cluding clinicians, biologists and genetic counsellors without the bio-
informatics training, to perform a structure-based prioritization of 
missense variants in a large set of NDD proteins, especially in the 
76 genes with no experimental structure available, for which we gen-
erated the essential 3D sites in AlphaFold-predicted structures.
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