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Abstract
Background: The effect of supplemental oxygen on sleep 
has not been studied in preterm infants. Methods: We stud-
ied 18 stable late-preterm infants with observed periodic 
breathing at a median gestational age of 36 weeks. Polysom-
nography was performed on room air and on 25% oxygen-
enriched ambient air. Results: Supplemental oxygen did not 
affect sleep stage distribution, sleep efficiency, the frequen-
cy of sleep stage transitions, the appearance of rapid-eye 
movement (REM) sleep periods, or the high number of spon-
taneous arousals. The percentage in periodic breathing out 
of total sleep time decreased from 10% (interquartile range 
[IQR] 5–9%) on room air to 1% (IQR 0–3%) (p < 0.001) on sup-
plemental oxygen. Also, the number of central apneas de-
creased from 48 (IQR 32–68) to 23 (IRQ 15–32) per hour (p < 
0.001), and the number of oxygen desaturations of a mini-
mum 3% from 38 (IQR 29–74) to 10 (IQR 5–24) per hour (p < 
0.001). On room air in non-REM sleep, the median end-tidal 
carbon dioxide values were systematically lower during pe-
riodic breathing at 5.1 (IQR 4.6–6.4) kPa than during stable 

breathing at 5.5 (4.9–5.9) kPa (p < 0.0001). Conclusions: In 
late-preterm infants, supplemental oxygen effectively re-
duces periodic breathing and the number of oxygen desatu-
rations while having no significant effect on sleep. The re-
sults support the importance of carotid body over-reactivity 
on the genesis of periodic breathing in preterm infants.

© 2022 The Author(s). 
Published by S. Karger AG, Basel

Introduction

Supplemental oxygen is used to treat or prevent hy-
poxia and is one of the most used drugs in neonatal in-
tensive care units. Hypoxia and especially intermittent 
hypoxia have adverse effects on cognitive and language 
development [1], while the main detrimental effect of 
supplemental oxygen is an increased risk of retinopathy 
of prematurity [2]. The detrimental effects of oxygen may 
be related to hyperoxia itself [3, 4] or to an increase in 
oxidative stress with a higher amount of fluctuation in the 
blood and tissue oxygen levels with high pulse oximeter 
oxyhemoglobin saturation (SpO2) targets [5].

In late-preterm infants, periodic breathing is one cause 
of intermittent hypoxia [6, 7]. The appearance of peri-
odic breathing decreases with increasing gestational age 
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(GA) [8, 9]. Supplemental oxygen [7, 10–16] and methyl-
xanthines, such as caffeine [17, 18], reduce the amount of 
periodic breathing and hypoxia.

Previous studies on the effect of supplemental oxygen 
have been performed on polygraphic settings without 
sleep monitoring [10–16]. The effect of supplemental ox-
ygen on sleep has not been studied in preterm periods. 
Simakarjonboon and associates [19] studied the effect of 
supplement oxygen on sleep quality in 23 premature in-
fants at a post-conceptual age of 38 weeks. On oxygen, 
these infants showed reduced amounts of rapid-eye 

movement (REM) sleep. During the preterm period, 
REM sleep and dreaming provide holistic and important 
endogenous stimulation to developing neural networks 
of the brain [20]. In preterm rat pup studies, the reduction 
of REM sleep and REM sleep deprivation has been shown 
systematically to have a high and broad negative impact 
on neurodevelopment [20, 21]. We compared the effect 
of 25% oxygen-enriched air and room air (oxygen 21%) 
on sleep and breathing in 18 late-preterm infants with 
polysomnography (PSG).
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Fig. 1. Study protocol and a graphic summary of PSG results. PSG 
reports summary of one study infant with a high tendency for pe-
riodic breathing and related oxygen desaturations. The figure 
demonstrates the study protocol and an example of high treatment 
responses. The PSG was performed at baseline on room air and on 

25% oxygen content of ambient air. One event bar, one tick mark, 
represents one event. EtCO2, end-tidal carbon dioxide content  
of exhaled air; HypopneaObstr, obstructive hypopnea episodes;  
Respfreq, breathing frequency; SpO2, pulse oximeter oxyhemoglo-
bin saturation; SpO2 Desat, SpO2 drops of 3% or more.
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Materials and Methods

We studied 18 preterm infants with observed periodic breathing 
or apneas who were at stable condition without caffeine treatment, 
ventilatory support, or supplemental oxygen before the study. The 
infants underwent a full PSG study with Siesta PSG equipment 
(Compumedics, Abbotsford, Australia) on room air and during 
supplemental oxygen (fraction of inhaled oxygen [FiO2] 25%) 
(Fig.  1). The recordings comprised four electroencephalogram 
(EEG) channels (C4-M1, Cz-Fz, Cz-O2, and O2-M1), two electro-
oculogram channels (right and left), chin and diaphragm electro-
myogram (EMG), measurement of nasal airflow (pressure sensor), 
an abdominal band for respiratory movement detection, SpO2 with 
a 4-s averaging interval, end-tidal carbon dioxide (EtCO2) monitor-
ing, and an electrocardiogram. We administered the supplemental 
oxygen with a special-purpose transparent headbox instead of  
nasal cannulas to avoid disruption of nasal breathing, sleep, and 
measurement of EtCO2. We continuously monitored the FiO2 
(HandiTM+ Oxygen Analyzer; Maxtec, Salt Lake City, UT, USA).

PSG recording analyses and visual scoring were done with Em-
bla® RemLogicTM PSG software (Natus Medical Inc., Pleasanton, 
CA, USA), together with additional special-purpose software al-
lowing detailed event analysis and analysis of SpO2 and EtCO2 sig-
nals. One experienced scorer (TK) performed the PSG scoring. For 
sleep staging, we followed the current AASM infant sleep stage 
criteria and the recommendations of Grigg-Dammberger and as-
sociates [22, 23] with some modifications. We did not use the tran-
sitional stage classification and scored corresponding epochs as 
either REM or non-REM based on chin EMG measurements. The 
definitions of apneas, periodic breathing, and arousals are present-
ed in Table 1.

We used the nonparametric Wilcoxon signed-rank test for 
pairwise comparison. The level of significance was set at p < 0.05.

The Helsinki University Ethics Committee (174/13/03/03/2012) 
and the Children’s Hospital Institutional Review Board (Project 
#1025) approved the study protocol. Parents provided written 
consent forms and did not receive any monetary compensation for 
participation.

Table 1. Apnea and arousal definitions used in the study

Definition Duration

Apnea

Central apnea Apnea with no breathing movements and no airflow Pause in breathing lasting: >2 
breathing cycles and ≥4 s

Obstructive apnea Apnea with breathing movements but no airflow All obstructive pauses of 
breathing

Mixed apnea Apnea with both central and obstructive components All mixed pauses of breathing

Obstructive 
hypopnea

Resistive airflow flattening pattern during inspiration with >50% drop in airflow rate combined with 
a sudden interruption of an event by respiratory arousal

AOP Apnea with: heart rate decreases to <100 beats per minute, or drop in SpO2 to <80%, or apnea 
length of >20 s

Arousal

Arousal A sustained increase in chin and diaphragm EMG from baseline recording excluding sucking of the 
dummy, or gross body movements causing artifacts in ECG, EEG, respiratory signal

≥3 s

Apnea arousal An arousal appearing during an apnea or within 5 s after the end of an apnea episode ≥3 s

Awakening Same as arousal ≥15 s

EMG, electromyogram; ECG, electrocardiogram; EEG, electroencephalogram.

Table 2. Demographic data

Infants, n 18
Female, n (%) 10 (55.6)
GA at birth, weeks 31.4 (28.3–33.7)
Weight at birth, g 1,695 (1,133–2,139)
BPD, n (%) 5 (27.8)
GMV-IVH, n (%) 3 (16.7)

Grade 1 to 2 2 (11.1)
Grade 4 1 (5.6)

Apgar
1 min 6.5 (5.0–7.0)
5 min 7.0 (6.0–8.0)

Age at study, weeks 4.7 (2.0–6.8)
GA at study, weeks 35.6 (35.0–36.2)
Weight at study, kg 2,203 (1,919–2,533)
Infants with caffeine previously, n (%) 12 (66.7)
Caffeine-free period before study, days 8.5 (7.0–11.0)

Results presented as median (IQR) or n (%). BPD, bronchopulmonary 
dysplasia; GMH-IVH, germinal matrix or intraventricular hemorrhage.
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Results

Infant demographics are outlined in Table 2. The in-
fants were born at a median 31.4 (interquartile range 
[IQR] 28.3–33.7) weeks of GA, with a birth weight of 
1,695 (IQR 1,133–2,139) g. They were studied at a median 
post-conceptual age of 35.6 (IQR 35.0–36.2) weeks. Of 
the 18 infants, 12 had previous caffeine treatment that 
was discontinued a median of 8.5 (IQR 7.0–11.0) days 
before the study. The infants exhibited central, mixed, 
and apnea of prematurity (AOP) defined apneas, peri-
odic breathing, and recurrent desaturations.

Supplemental oxygen had only minor effects on sleep 
(Fig. 2). In line with the decrease in the number of apneas, 
the number of apnea-related arousals decreased (p = 
0.01). Supplemental oxygen did not affect sleep stage dis-
tribution, sleep efficiency, frequency of sleep stage transi-
tions, appearance of REM periods, or the high number of 
spontaneous arousals (Fig. 2). Spontaneous arousals were 
more frequent in REM than in non-REM sleep both dur-
ing baseline recordings on room air and during supple-

mental oxygen (p < 0.001). Arousal percentile to AOPs 
increased from 20% (IQR 0–40) on room air to 72% (IQR 
48–100) (p = 0.03) during supplemental oxygen.

Supplemental oxygen reduced periodic breathing and 
related oxygen desaturations effectively (Fig. 1, 3). The 
percentage of periodic breathing decreased from 10% 
(IQR 5–19) of sleep time at baseline on room air to 1% 
(IQR 0–3) (p < 0.001) on supplemental oxygen, the num-
ber of central apneas decreased from 48 (IQR 32–68) to 
23 (IRQ 15–32) per hour (p < 0.001), and the number of 
oxygen desaturations of a minimum 3% from 38 (IQR 
29–74) to 10 (IQR 5–24) per hour (p < 0.001). Simultane-
ously, the baseline SpO2 level and the low fifth percentile 
levels of SpO2 increased (p < 0.001).

Periodic breathing appeared primarily in non-REM 
sleep (p < 0.001) as a state of mild hyperventilation on 
PSG (Fig. 4). At baseline recordings on room air, median 
EtCO2 values in non-REM sleep were systematically low-
er during periodic breathing at 5.1 (IQR 4.6–6.4) kPa than 
during stable breathing at 5.5 (4.9–5.9) kPa (p < 0.0001). 
EtCO2 95th percentile values were similar during periods 
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of breathing room air and on supplemental oxygen. The 
online supplementary holds three figures presenting the 
number of apneas at baseline, the number of SpO2 de-
saturations, and the effect of pulse oximeter signal-aver-
aging time window on the detection of SpO2 desatura-
tions during periodic breathing.

Discussion

Our study shows that supplemental oxygen has no 
clear short-term effects on sleep in late-preterm infants. 
Supplemental oxygen effectively stabilizes sleep disor-
dered breathing by removing periodic breathing and re-
lated central apneas. Subsequently, oxygen also reduces 
the number of apnea-related arousals. Supplemental oxy-
gen did not affect ventilation or breathing frequency.

Our sleep results contradict the previous study by Si-
makajorboon and associates [19]. They found that sup-
plemental oxygen increased quiet sleep and decreased ac-
tive sleep while having no effect on sleep efficacy in 
healthy preterm infants at 38 weeks of post-conceptual 
age. The difference between our studies was the way the 
supplemental oxygen was given. We used headbox to 
avoid any discomfort or additional blockage of the nose 
which may occur while giving the oxygen by additional 
low-flow nasal cannula.

Other studies concerning sleep and supplemental oxy-
gen on preterm infants have all been performed at an old-
er age in infants with bronchopulmonary dysplasia (BPD) 
and a clear manifestation of pulmonary complications. In 
an early study by Harris and associates [24], seven infants 
with BPD showed a clear improvement in sleep quality 
and the ability to sleep REM sleep when treated with sup-
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plemental oxygen. The same research group was not able 
to confirm the finding in a larger infant cohort [25]. Our 
study included five infants with a diagnosis of mild BPD. 
In them, sleep stage distribution, sleep efficiency, number 
of spontaneous arousals, and EtCO2 levels remained sim-
ilarly unaltered during supplemental oxygen as in infants 
without a diagnosis of BPD. However, the number of ap-
nea-related arousals did not decrease during supplemen-
tal oxygen as it did in infants without diagnosis of BPD.

The pathophysiology of periodic breathing is not fully 
understood [26]. Most animal and human data suggest 
that periodic breathing is likely caused by increased ven-
tilation chemodetection mediated by either carotid body 
hyperactivity or increased central chemoreception [27–
29]. These responses lead to a hyperventilation state dur-
ing metabolic control of breathing in non-REM sleep in 
which periods of hyperpnea are counterbalanced by peri-

ods of central apnea or hypopnea. The effect of supple-
mental oxygen is most likely mediated via suppression of 
the function of the carotid body [28]. Our study supports 
the hypothesis that periodic breathing in preterm infants 
is related to a high carotid body reactivity because peri-
odic breathing appeared as a state of mild hyperventila-
tion and was stabilized by suppression of the carotid body 
function by supplemental oxygen.

Higher oxygen saturation targets increase the inci-
dence of retinopathy of prematurity [2, 30]. In addition, 
preterm infants with a higher incidence of intermittent 
hypoxia present with more severe retinopathy [31]. In the 
current study, supplemental oxygen effectively reduced 
the number and degree of oxygen desaturations. Thus, 
the low level of supplemental oxygen used (FiO2 25%) 
may have differing effects on develpment of retinopathy 
that higher fractions of inspired O2.
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Clinical Significance of Periodic Breathing
The clinical significance of periodic breathing and ex-

posure to mild intermittent hypoxia in neonates is not 
well established [1, 32]. In animal models, mild intermit-
tent hypoxia has shown both negative and positive effects 
on neurodevelopment and cardiovascular function [32, 
33]. However, in general, intermittent hypoxia is consid-
ered detrimental for neurodevelopment [1, 34]. In the 
current study, the observed amount of mild intermittent 
hypoxia was high, and although apneas related to peri-
odic breathing were short, they were frequently followed 
by SpO2 desaturations (Fig. 1, online suppl. Fig. 1, 2; see 
www.karger.com/doi/10.1159/000525196 for all online 
suppl. material). The amount and extent of intermittent 
hypoxia related to periodic breathing are easily vastly un-
derestimated, as the length of apneas and desaturations is 
commonly short (online suppl. Fig. 2). In addition, the 
long signal-averaging times used with pulse oximeters ef-
fectively filter out the actual SpO2 desaturations (online 
suppl. Fig. 3). Nevertheless, we believe that the majority 
of the beneficial effects of caffeine in preterm infants are 
relayed through its effect of decreasing central apneas and 
periodic breathing [35].

Limitations
The study was not carried out in cross-over setup, but 

baseline recordings on room air were performed first, fol-
lowed by recordings with supplemental oxygen. We do 
not expect that this would have had significant effect on 
the results.

There is no consensus on how sleep and arousals in 
preterm infants should be scored. We applied the estab-
lished definitions for one- to 6-month-old infants [22, 
31]. However, due to the immaturity of EEG, the EEG 
signals did not have the same impact on sleep stage scor-
ing as in older infants and, in addition, we did not sepa-
rate cortical and subcortical arousals.

Conclusions

In late-preterm infants, supplemental oxygen does not 
affect sleep, but it effectively stabilizes breathing in non-
REM sleep and reduces the number of oxygen desatura-
tions. Periodic breathing in preterm infants is a mild hy-
perventilation state. These results support the impor-
tance of carotid body over-reactivity as an important 
etiology of periodic breathing in preterm infants.
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