
https://helda.helsinki.fi

On Finding Optimal Polytrees

Gaspers, Serge

2021-09-01

Gaspers , S , Koivisto , M , Liedloff , M , Ordyniak , S & Szeider , S 2021 , ' On Finding

Optimal Polytrees ' , Proceedings of the AAAI Conference on Artificial Intelligence , vol. 26 ,

no. 1 , pp. 750-756 . https://doi.org/10.1609/aaai.v26i1.8217

http://hdl.handle.net/10138/355317

https://doi.org/10.1609/aaai.v26i1.8217

unspecified

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

On Finding Optimal Polytrees
Serge Gaspers

The University of New South Wales and
Vienna University of Technology

gaspers@kr.tuwien.ac.at

Mikko Koivisto
University of Helsinki

mikko.koivisto@cs.helsinki.fi

Mathieu Liedloff
Université d’Orléans

mathieu.liedloff@univ-orleans.fr

Sebastian Ordyniak
Vienna University of Technology

ordyniak@kr.tuwien.ac.at

Stefan Szeider
Vienna University of Technology

stefan@szeider.net

Abstract

Inferring probabilistic networks from data is a notoriously
difficult task. Under various goodness-of-fit measures, find-
ing an optimal network is NP-hard, even if restricted to poly-
trees of bounded in-degree. Polynomial-time algorithms are
known only for rare special cases, perhaps most notably for
branchings, that is, polytrees in which the in-degree of every
node is at most one. Here, we study the complexity of find-
ing an optimal polytree that can be turned into a branching by
deleting some number of arcs or nodes, treated as a param-
eter. We show that the problem can be solved via a matroid
intersection formulation in polynomial time if the number of
deleted arcs is bounded by a constant. The order of the poly-
nomial time bound depends on this constant, hence the al-
gorithm does not establish fixed-parameter tractability when
parameterized by the number of deleted arcs. We show that
a restricted version of the problem allows fixed-parameter
tractability and hence scales well with the parameter. We con-
trast this positive result by showing that if we parameterize by
the number of deleted nodes, a somewhat more powerful pa-
rameter, the problem is not fixed-parameter tractable, subject
to a complexity-theoretic assumption.

1 Introduction
There has been extensive research on learning probabilis-
tic networks from data by maximizing some suitable scor-
ing function. Edmonds (1967) gave an efficient algorithm
for the class of branchings, that is, directed forests with in-
degree at most one; the algorithm was discovered indepen-
dently by Chu and Liu (1965), and it has been later simpli-
fied and expedited by others (Bock 1971; Camerini, Fratta,
and Maffioli 1979; Fulkerson 1974; Gabow et al. 1986;
Gabow, Galil, and Spencer 1989; Karp 1971; Tarjan 1977).
Chickering (1996) showed that for general directed acyclic
graphs, DAGs, the problem is NP-hard even if the in-degree
is at most two. Motivated by this gap, Dasgupta (1999) asked
for a network class that is more general than branchings yet
admitting provably good structure-learning algorithms; his
findings concerning polytrees, that is, DAGs without undi-
rected cycles, were however rather negative, showing that
the optimization problem is NP-hard even if the in-degree is
at most two.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Given the recent advances in exact exponential algorithms
in general (see, e.g., the book by Fomin and Kratsch (2010)),
and in finding optimal DAGs in particular, it is natural to
ask, whether “fast” exponential-time algorithms exist for
finding optimal polytrees. For general DAGs the fastest
known algorithms run in time within a polynomial factor
of 2n, where n is the number of nodes (Koivisto and Sood
2004; Ott and Miyano 2003; Parviainen and Koivisto 2009;
Silander and Myllymäki 2006). However, it is not clear,
whether even these bounds can be achieved for polytrees; a
brute-force algorithm would visit each polytree one by one,
whose number scales as the number of directed labelled trees
nn−22n−1 (Cayley 1889). Do significantly faster algorithms
exist? Does the problem become easier if only a small num-
ber of nodes are allowed an in-degree larger than one?

In this work, we take a first step towards answering these
questions by considering polytrees that differ from branch-
ings by only a few arcs. More precisely, we study the prob-
lem of finding an optimal k-branching, defined as a polytree
that can be turned into a branching by deleting k arcs. We
make the standard assumption that the scoring function de-
composes into a sum of local scores; see the next section
for precise definitions. We note that k-branchings generalize
branchings in a different direction than the Tree-augmented
Naive Bayes classifier (TAN) due to Friedman, Geiger, and
Goldszmidt (1997). Namely, in a TAN the in-degree of each
node is at most two, and there is a designated class node of
in-degree zero, removing of which leaves a spanning tree;
the tree is undirected in the sense that the symmetric condi-
tional mutual information is employed to score arcs.

Polynomial-time result for k-branchings Our main re-
sult is an algorithm that finds an optimal k-branching in
polynomial time for every constant k. (See the next sec-
tion for a formal definition of the problem.) Our overall ap-
proach is straightforward: we search exhaustively over all
possible sets of at most k “extra arcs”, fix the guessed arcs,
and solve the induced optimization problem for branchings.
Implementing this seemingly innocent algorithm, however,
requires successful treatment of certain complications that
arise when applying the existing matroid machinery for find-
ing optimal branchings. In particular, one needs to control
the interaction of the extra arcs with the solution from the
induced subproblem.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

750

Fixed-parameter tractability Our algorithm for the k-
branching is polynomial for fixed k, but the degree of the
polynomial depends on k, hence the algorithm does not
scale well in k. We therefore investigate variants of the k-
branching problem that admit fixed-parameter tractability in
the sense of Downey and Fellows (1999): the running time
bound is given by a polynomial whose degree is indepen-
dent of the parameter, the parameter contributing a constant
factor to the bound.

In particular, we show that the k-branching problem is
fixed-parameter tractable if the set of arcs incident to nodes
with more than one parent form a connected polytree with
exactly one sink, and each node has a bounded number of
potential parent sets. This result is interesting as we show
that the k-branching problem remains NP-hard under these
restrictions.

We complement the fixed-parameter tractability result by
showing that more general variants of the k-branching prob-
lem are not fixed-parameter tractable, subject to complex-
ity theoretic assumptions. In particular, we show that the
k-branching problem is not fixed-parameter tractable when
parameterized by the number of nodes whose deletion pro-
duces a branching.

2 The k-branching problem
A probabilistic network is a multivariate probability distri-
bution that obeys a structural representation in terms of a
directed graph and a corresponding collection of univariate
conditional probability distributions. For our purposes, it is
crucial to treat the directed graph explicitly, whereas the con-
ditional probabilities will enter our formalism only implic-
itly. Such a graph is formalized as a pair (N,A), where N is
the node set and A ⊆ N ×N is the arc set; we identify the
graph with the arc set A when there is no ambiguity about
the node set. A node u is said to be a parent of v in the graph
if the arc (u, v) is in A; we denote by Av the set of parents
of v. When our interest is in the undirected structure of the
graph, we may denote by A the skeleton of A, that is, the set
of edges { {u, v} : (u, v) ∈ A }. For instance, we call A a
polytree if A is acyclic, and a branching if additionally each
node has at most one parent.

When learning a probabilistic network from data it is cus-
tomary to introduce a scoring function that assigns each
graph A a real-valued score f(A) that measures how well
A fits the data. While there are plenty of alternative scor-
ing functions, derived under different statistical paradigms
and assumptions (Lam and Bacchus 1994; Chickering 1995;
Heckerman, Geiger, and Chickering 1995; Dasgupta 1999),
the most popular ones share one important property: they are
decomposable, that is,

f(A) =
∑
v∈N

fv(Av) ,

with some “local” scoring functions fv . The generic compu-
tational problem is to maximize the scoring function over
some appropriate class of graphs given the local scoring
functions as input. Note that the score fv(Av) need not be
a sum of any individual arc weights, and that the parent set

v P fv(P)
3 {1} 1.0
4 ∅ 0.1
4 {1} 0.2
5 {1} 0.5
5 {1, 2} 1.0
6 {3} 0.8
6 {3, 4} 1.0
7 {5} 0.9
7 {4, 5} 1.0

7→

1 2

3 4 5

6 7

Figure 1: An optimal polytree for a given scoring function.

Av may be empty. Figure 1 shows a table representing a lo-
cal scoring function f , together with an optimal polytree.

We study this problem by restricting ourselves to a graph
class that is a subclass of polytrees but a superclass of
branchings. We call a polytree A a k-branching if there ex-
ists a set of at most k arcs D ⊆ A such that in A \ D ev-
ery node has at most one parent. Note that any branching
is a 0-branching. The k-branching problem is to find a k-
branching A that maximizes f(A), given the values fv(Av)
for each node v and some collection of possible parent sets
Av ⊆ N \ {v}.

3 An algorithm for the k-branching problem
Throughout this section we consider a fixed instance of the
k-branching problem, that is, a node setN and scoring func-
tions fv for each v ∈ N . Thus all arcs will refer to elements
of N ×N . We will use the following additional notation. If
A is an arc set, thenH(A) denotes the heads of the arcs inA,
that is, the set { v : (u, v) ∈ A }. If C is a set of edges, then
N(C) denotes the induced node set {u, v : {u, v} ∈ C }.

We present an algorithm that finds an optimal k-branching
by implementing the following approach. First, we guess an
arc set D of size at most k. Then we search for an optimal
polytree A that contains D such that in A \ D every node
has at most one parent; in other words, B = A \ D is an
optimal branching with respect to an induced scoring func-
tion. Clearly, the set D must be acyclic. The challenge is in
devising an algorithm that finds an optimal branchingB that
is disjoint from D while guaranteeing that the arcs in D will
not create undirected cycles in the union B∪D. To this end,
we will employ an appropriate weighted matroid intersec-
tion formulation that extends the standard formulation for
branchings.

We will need some basic facts about matroids. A matroid
is a pair (E, I), where E is a set of elements, called the
ground set, and I is a collection of subsets of E, called the
independent sets, such that

(M1) ∅ ∈ I;
(M2) if A ⊆ B and B ∈ I then A ∈ I; and
(M3) if A,B ∈ I and |A| < |B| then there exists an
e ∈ B \A such that A ∪ {e} ∈ I.
The rank of a matroid is the cardinality of its maximal

independent sets. Any subset of E that is not independent

751

is called dependent. Any minimal dependent set is called a
circuit.

The power of matroid formulations is much due to the
availability of efficient algorithms (Brezovec, Cornuéjols,
and Glover 1986; Edmonds 1970; 1979; Frank 1981; Iri and
Tomizawa 1976; Lawler 1976) for the weighted matroid in-
tersection problem, defined as follows. Given two matroids
M1 = (E, I1) and M2 = (E, I2), and a weight func-
tion w : E → R, find an I ⊆ E that is independent in
both matroids and maximizes the total weight of I , that is,
w(I) =

∑
e∈I w(e). The complexity of the fastest algorithm

we are aware of (for the general problem) is summarized as
follows.

Theorem 1 (Brezovec, Cornuéjols, and Glover, 1986).
The weighted matroid intersection problem can be solved
inO(mr(r+c+logm)) time, wherem = |E|, r is the min-
imum of the ranks of M1 and M2, and c is the time needed
for finding the circuit of I ∪ {e} in both M1 and M2 where
e ∈ E and I is independent in both M1 and M2.

We now proceed to the specification of two matroids,
M1(S) = (N × N, I1(S)) and M2(N × N, I2(S)),
parametrized by an arbitrary arc set S such that S is acyclic.

The in-degree matroid M1(S): Let I1(S) consist of all arc
setsB such that no arc inB has a head inH(S) and every
node outside H(S) is the head of at most one arc in B.

The acyclicity matroid M2(S): Let I2(S) consist of all arc
sets B such that B ∪ S is acyclic.

We observe that the standard matroid intersection formula-
tion of branchings is obtained as the special case of S = ∅:
then an arc set is seen to be branching if and only if it is
independent in both the in-degree matroid and the acyclicity
matroid.

The next two lemmas show that M1(S) and M2(S) are
indeed matroids whenever S is acyclic.

Lemma 2. M1(S) is a matroid.

Proof. Fix the arc set S and denote I1(S) by I1 for short.
Clearly, ∅ ∈ I1 and if A ⊆ B and B ∈ I1 then also A ∈ I1.
Consequently, M1(S) satisfies (M1) and (M2). To see that
M1(S) satisfies (M3) let A,B ∈ I1 with |A| < |B|. Be-
cause of the definition of M1(S) the sets A and B contain
at most one arc with head v, for every v ∈ N \ H(S). Be-
cause |A| < |B| there is a node v ∈ N \H(S) such that v
is the head of an arc in B but v is not the head of an arc in
A. Let e ∈ B be the arc with head v. Then e ∈ B \ A and
A ∪ {e} ∈ I1. Hence, M1(S) satisfies (M3).

Lemma 3. M2(S) is a matroid.

Proof. Fix the arc set S and denote I2(S) by I2 for short.
Because the skeleton S is acyclic and acylicity is a hered-
itary property (a graph property is called hereditary if it
is closed under taking induced subgraphs) it follows that
∅ ∈ I2 and if A ⊆ B and B ∈ I2 then also A ∈ I2. Conse-
quently, M2(S) satisfies (M1) and (M2). To see that M2(S)
satisfies (M3) let A,B ∈ I2 with |A| < |B|. Consider the
sets A′ = A ∪ S and B′ = B ∪ S. Let C be a connected

subset of A′. Because both A′ and B′ are acyclic, it follows
that the number of edges ofB′ with both endpoints inN(C)
is at most the number of edges of A′ with both endpoints in
N(C). Because every edge in A′ \ S corresponds to an arc
inA and similarly every edge inB′\S corresponds to an arc
in B and |A| < |B|, it follows that there is an arc e ∈ B \A
whose endpoints are contained in two distinct components
of A′. Consequently, the set A′ ∪ {e} is acyclic and hence
A ∪ {e} ∈ I2.

We now relate the common independent sets of these two
matroids to k-branchings. If A is a k-branching, we call an
arc setD a deletion set ofA ifD is a subset ofA, contains at
most k arcs, and inA\D every node has at most one parent.
Lemma 4. Let A be an arc set and D a subset of A of size
at most k such that no two arcs from D′ = { (u, v) ∈ A \
D : v ∈ H(D) } have the same head and such that S is
acyclic, where S = D∪D′. We have thatA is a k-branching
with deletion setD if and only ifA\S is independent in both
M1(S) and M2(S).

Proof. (⇒) : Suppose A is a k-branching with deletion set
D. Then A \D is a branching, which shows that every node
v outside H(S) has in-degree at most one in A \ S. Since
by definition all arcs with a head in H(S) are contained in
S, no arc in A \ S has a head in H(S). Therefore, A \ S is
independent in M1(S). Since every k-branching is a poly-
tree, (A \ S) ∪ S = A is acyclic, and therefore A \ S is
independent in M2(S).

(⇐) : Since A \S is independent in M2(S), we have that
(A \ S) ∪ S = A is acyclic. Thus, A is a polytree. As A \ S
is independent in M1(S), every node outside H(S) has in-
degree at most one in A \ S and every node from H(S) has
in-degree zero in A \S. Since the head of every arc from D′

is in H(S) and no two arcs from D′ have a common head,
(A \ S) ∪ D′ = A \ D has maximum in-degree at most
one. Because |D| ≤ k, we have that A is a k-branching with
deletion set D.

The characterization of Lemma 4 enables the following
algorithm for the k-branching problem. Define the weight
function by letting w(u, v) = fv({u}) − fv(∅) for all arcs
(u, v). Guess the arc sets D and D′, put S = D ∪D′, check
that S is acyclic, find a maximum-weight set B that is in-
dependent in both M1(S) and M2(S); output a k-branching
A = B∪S that yields the maximum weight over all guesses
D and D′, where the weight of B ∪ S is obtained as

w(B) +
∑

v∈H(S)

(
fv(Sv)− fv(∅)

)
.

It is easy to verify that maximizing this weight is equiva-
lent to maximizing the score f(A). Figure 2 illustrates the
algorithm for the scoring function of Figure 1.

It remains to analyze the complexity of the algorithm. De-
note by n the number of nodes. For a moment, consider the
arc set S fixed. To apply Theorem 1, we bound the asso-
ciated key quantities: the size of the ground set is O(n2);
the rank of both matroids is clearly O(n); circuit detec-
tion can be performed in O(n) time, by a depth-first search

752

1 2

3 4 5

6 7

1 2

3 4 5

6 7

Figure 2: Left: the two guessed arc sets D (dotted) and
D′ (dashed). Right: the arc set A (solid) that is a heaviest
common independent set of the two matroids M1(S) and
M2(S).

for M1(S) and by finding a node that has higher in-degree
than it is allowed to have in M2(S). Thus, by Theorem 1,
a maximum-weight set that is independent in both matroids
can be found in O(n4) time. Then consider the number of
possible choices for the set S = D ∪D′. There are O(n2k)
possibilities for choosing a set D of at most k arcs such that
D is acyclic. For a fixed D, there are O(nk) possibilities for
choosing a subset D′ ⊆ N × H(D) such that D ∪D′ is
acyclic and no two arcs from D′ have the same head. Thus
there are O(n3k) relevant choices for the set S.

We have shown the following.

Theorem 5. The k-branching problem can be solved in
O(n3k+4) time.

4 Fixed-parameter tractability
Theorem 5 shows that the k-branching problem can be
solved in “non-uniform polynomial time” as the order of
the polynomial time bound depends on k. In this section we
study the question of whether one can get k “out of the ex-
ponent” and obtain a uniform polynomial-time algorithm.

The framework of Parameterized Complexity (Downey
and Fellows 1999) offers the suitable tools and methods
for such an investigation, as it allows us to distinguish be-
tween uniform and non-uniform polynomial-time tractabil-
ity with respect to a parameter. An instance of a parameter-
ized problem is a pair (I, k) where I is the main part and
k is the parameter; the latter is usually a non-negative inte-
ger. A parameterized problem is fixed-parameter tractable
if there exist a computable function f and a constant c
such that instances (I, k) of size n can be solved in time
O(f(k)nc). FPT is the class of all fixed-parameter tractable
decision problems. Fixed-parameter tractable problems are
also called uniform polynomial-time tractable because if k is
considered constant, then instances with parameter k can be
solved in polynomial time where the order of the polynomial
is independent of k (in contrast to non-uniform polynomial-
time running times such as nk).

Parameterized complexity offers a completeness theory
similar to the theory of NP-completeness. One uses parame-
terized reductions which are many-one reductions where the
parameter for one problem maps into the parameter for the

other. More specifically, problem L reduces to problem L′

if there is a mapping R from instances of L to instances of
L′ such that (i) (I, k) is a yes-instance of L if and only if
(I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ ≤ g(k)
for a computable function g, and (iii) R can be computed
in time O(f(k)nc) where f is a computable function, c is
a constant, and n denotes the size of (I, k). The parame-
terized complexity class W[1] is considered as the parame-
terized analog to NP. For example, the parameterized Max-
imum Clique problem (given a graph G and a parameter
k ≥ 0, does G contain a complete subgraph on k vertices?)
is W[1]-complete under parameterized reductions. Note that
there exists a trivial non-uniform polynomial-time nk algo-
rithm for the Maximum Clique problems that checks all sets
of k vertices. FPT 6= W[1] is a widely accepted complex-
ity theoretic assumption (Downey and Fellows 1999). For
example, FPT = W[1] implies the (unlikely) existence of
a 2o(n) algorithm for n-variable 3SAT (Impagliazzo, Paturi,
and Zane 2001; Flum and Grohe 2006). A first parameter-
ized analysis of probabilistic network structure learning us-
ing structural parameters such as treewidth has recently been
carried out by Ordyniak and Szeider (2010).

The algorithm from Theorem 5 considersO(n3k) relevant
choices for the set S = D∪D′, and for each fixed choice of
S the running time is polynomial. Thus, for restrictions of
the problem for which the enumeration of all relevant sets S
is fixed parameter tractable, one obtains an FPT algorithm.
One such restriction requires that S = D ∪ D′ is an in-
tree, i.e., a directed tree where every arc is directed towards
a designated root, and each node has a bounded number of
potential parent sets.
Theorem 6. The k-branching problem is fixed-parameter
tractable if we require that (i) the set S = D ∪ D′ of arcs
is an in-tree and (ii) each node has a bounded number of
potential parent sets.

Proof. To compute a k-branching A, the algorithm guesses
its deletion set D and the set D′ = {(u, v) ∈ A \ D :
v ∈ H(D)}. As A is a k-branching, |D| ≤ k and for every
v ∈ H(D) there is at most one arc in D′ with head v. The
algorithm first guesses the root r for the in-tree S. Then it
goes over all possible choices for D and D′ as follows, until
D has at least k arcs.

Guess a leaf ` of S (initially, r is the unique leaf of S), and
guess a non-empty parent set P for ` inA. If |D|+|P |+1 >
k, then backtrack. Otherwise, choose at most one arc (p, `)
to add to D′, where p ∈ P , and add all other arcs from a
node from P to ` to D (if |P | = 1, no arc is added to D′).
Now, check whether the current choice for S = D∪D′ leads
to a k-branching by checking whether S is acyclic and using
the matroids M1(S) and M2(S) as in Theorem 5.

There are at most n choices for r. The in-tree S is ex-
panded in at most k steps, as each step adds at least one arc
to D. In each step, ` is chosen among at most k + 1 leaves,
there is a constant number of choices for its parent set P and
at most k + 2 choices for adding (or not) an arc (p, `), with
p ∈ P , to D′ (as |P | ≤ k + 1). The acyclicity check for
S and the weighted matroid intersection can be computed in
time O(n4), leading to a total running time of O(k2kckn5),

753

where c is such that every node has at most c potential parent
sets.

Condition (i) in Theorem 6 may be replaced by other con-
ditions requiring the connectivity of D or a small distance
between arcs from D, giving other fixed-parameter tractable
restrictions of the k-branching problem.

The following theorem shows that an exponential depen-
dency on k or some other parameter is necessary since the
k-branching problem remains NP-hard under the restrictions
given above.

Theorem 7. The k-branching problem is NP-hard even if
we require that (i) the set S = D ∪D′ of arcs is an in-tree
and (ii) each node has at most 3 potential parent sets.

Proof. We devise a polynomial reduction from 3-SAT-2 a
version of 3-SATISFIABILITY where every literal occurs
at most in two clauses. 3-SAT-2 is well known to be NP-
hard (Garey and Johnson 1979). Our reduction uses the same
ideas as the proof of Theorem 6 in (Dasgupta 1999). Let
Φ be an instance of 3-SAT-2 with clauses C1, . . . , Cm and
variables x1, . . . , xn. We define the set N of nodes as fol-
lows. For every variable xi in Φ the setN contains the nodes
pi, xi, x

1
i , x

2
i , x

1
i and x2i . Furthermore, for every clause Cj

the set N contains the nodes pn+j and Cj . Let 1 ≤ i ≤ n,
1 ≤ j ≤ m, and 1 ≤ l ≤ 2. We set f(Cj , x

l
i) = 1 if

the clause Cj is the l-th clause that contains the literal xi.
Similarly, we set f(Cj , x

l
i) = 1 if the clause Cj is the l-th

clause that contains the literal xi. We set f(xi, {x1i , x2i }) =
f(xi, {x1i , x2i }) = 1, f(p1, {x1}) = f(pi, {xi, pi−1}) = 1
for every 1 < i ≤ n, and f(pn+j , {Cj , pn+j−1}) = 1 for
every 1 ≤ j ≤ m. Furthermore, we set f(v, P) = 0 for all
the remaining combinations of v ∈ N and P ⊆ N . This
completes the construction of N and f . Observe that every
node of N has at most 3 potential parent sets. This com-
pletes our construction. We will have shown the theorem af-
ter showing the following claim.

Claim: Φ is satisfiable if and only if there is a 2n + m-
branching D such that f(D) ≥ 2(m + n), the set S =
D∪D′ of arcs is an in-tree, and each node of N has at most
3 potential parent sets.

(⇒) : Suppose that the formula Φ is satisfiable and let
β be a satisfying assignment for Φ. Furthermore, for every
1 ≤ j ≤ m let lj be a literal of Cj that is set to true by
β. We construct a 2n + m-branching D as follows. For ev-
ery 1 ≤ j ≤ m the digraph D contains an arc (xli, Cj) if
lj = xi and Cj is the l-th clause that contains xi and an arc
(xli, Cj) if lj = xi and Cj is the l-th clause that contains xi
for some 1 ≤ i ≤ n and 1 ≤ l ≤ 2. Furthermore, for ev-
ery 1 ≤ i ≤ n the digraph D contains the arcs (x1i , xi) and
(x2i , xi) if β(xi) = false and the arcs (x1i , xi) and (x2i , xi) if
β(xi) = true. Last but not least D contains the arcs (xi, pi),
(Cj , pn+j) and (pl, pl+1) for every 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and 1 ≤ l < m + n. Figure 3 shows an optimal 2n + m-
branchingD for some 3-SAT-2 formula. It is easy to see that
D is a 2n + m-branching such that f(D) = 2(m + n) and
the set S = D ∪D′ of arcs is an in-tree.

(⇐) : Suppose there is a 2n + m-branching D such that
f(D) ≥ 2(m + n). Because f(D) ≥ 2(m + n) it fol-

p1 p2 p3

x1

x11

x21

x11

x21

x2

x12

x22

x12

x22

x3

x13

x23

x13

x23

C3 C2 C1

p4p5p6

Figure 3: An optimal 2n + m-branching D for the formula
Φ = C1∧C2∧C3 withC1 = x1∨x2∨x3,C2 = x1∨x2∨x3,
and C3 = x1 ∨ x2 ∨ x3 according to the construction given
in the proof of Theorem 7.

lows that every node of N achieves its maximum score in
D. Hence, D has to contain the arcs (xi, pi), (Cj , pn+j),
(pl, pl+1), for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
1 ≤ l < m+n. For the same reasonsD has to contain either
the arcs (x1i , xi) and (x2i , xi) or the arcs (x1i , xi) and (x2i , xi)
for every 1 ≤ i ≤ n. Furthermore, for every 1 ≤ j ≤ m
the 2n+m-branching D has to contain one arc of the form
(xli, Cj) or (xli, Cj) where Cj is the l-th clause that contains
xi or xi, respectively, for some 1 ≤ i ≤ n and 1 ≤ l ≤ 2.
Let 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ 2. We first
show that whenever D contains an arc (xli, xi) then D con-
tains no arc of the form (xli, Cj) and similarly if D contains
an arc (xli, xi) then D contains no arc of the form (xi, Cj).
Suppose for a contradiction that D contains an arc (xli, xi)
together with an arc (xli, Cj) or an arc (xli, xi) together with
an arc (xli, Cj). In the first case D contains the undirected
cycle (xli, xi, pi, . . . , pn+j , Cj , x

l
i) and in the second caseD

contains the cycle (xli, xi, pi, . . . , pn+j , Cj , x
l
i) contradict-

ing our assumption that D is a 2n + m-branching. It now
follows that the assignment β with β(xi) = true if D does
not contain the arcs (x1i , xi) and (x2i , xi) and β(xi) = false
if D does not contain the arcs (x1i , xi) and (x2i , xi) is a sat-
isfying assignment for Φ.

So far we have measured the difference of a polytree to
branchings in terms of the number of arcs to be deleted. Next
we investigate the consequences of measuring the difference
by the number of nodes to be deleted. We call a polytree A
a k-node branching if there exists a set of at most k nodes
X ⊆ A such that A \X is a branching. The k-node branch-
ing problem is to find a k-node branching A that maximizes
f(A). Clearly every k-branching is a k-node branching, but
the reverse does not hold. In other words, the k-node branch-
ing problem generalizes the k-branching problem.

In the following we show that the k-node branching prob-

754

G D

Figure 4: An example graph G (k = 3) together with an
optimal k′-node branching D with f(D) ≥ s according to
the construction given in the proof of Theorem 8.

lem is hard for the parameterized complexity class W[1];
this provides strong evidence that the problem is not fixed-
parameter tractable.

Theorem 8. The k-node branching problem is W[1]-hard.

Proof. We devise a parameterized reduction from the fol-
lowing problem, called Partitioned Clique, which is well-
known to be W[1]-complete for parameter k (Pietrzak
2003). The Instance is a k-partite graph G = (V,E) with
partition V1, . . . , Vk such that |Vi| = n for every 1 ≤ i ≤ k.
The question is whether there are nodes v1, . . . , vk such that
vi ∈ Vi for 1 ≤ i ≤ k and {vi, vj} ∈ E for 1 ≤ i < j ≤ k?
(The graph K = ({v1, . . . , vk}, { {vi, vj} : 1 ≤ i < j ≤
k }) is a k-clique of G.)

Let G = (V,E) be an instance of this problem with
partition V1, . . . , Vk, |V1| = · · · = |Vk| = n, and pa-
rameter k. Let k′ =

(
k
2

)
+ k, α = 1, and s = k′α. Let

A = { aij : 1 ≤ i < j ≤ k } and Ai = { alk ∈ A : l = i
or k = i } for every 1 ≤ i ≤ k. Then N is defined as
N = A ∪ {c1, . . . , ck} ∪ { v1, . . . , vk : v ∈ V }. Let
V w
i = { v1, . . . , vk : v ∈ Vi and v 6= w }. We define the

score function f as follows. We set f(ci, Ai ∪ V w
i) = α for

every 1 ≤ i ≤ k and w ∈ Vi, and f(aij , {uj , wi}) = α for
every 1 ≤ i < j ≤ k, u ∈ Vi, w ∈ Vj , and {u,w} ∈ E(G).
Furthermore, we set f(v, P) = 0 for all the remaining com-
binations of v and P . This completes our construction. We
will have the theorem after showing the following claim.

Claim: G has a k-clique if and only if there is a k′-node
branching D such that f(D) ≥ s.

(⇒) : Suppose that G has a k-clique K. Then it is
easy to see that the DAG D on N defined by the arc set
{ (vj , aij), (v

j , aji) : v ∈ V (K) ∩ Vi and 1 ≤ i, j ≤
k } ∪ { (vi, aij), (v

i, aji) : v ∈ V (K) ∩ Vj and 1 ≤ i, j ≤
k }∪{ (aij , ci) : 1 ≤ i < j ≤ k }∪{ (aij , cj) : 1 ≤ i < j ≤
k } ∪ { (vj , ci) : v ∈ Vi \ (

⋃
e∈E(K) e) and 1 ≤ i, j ≤ k }

is a k′-node branching and f(D) = s. Figure 4 shows an
optimal k′-node branching D constructed from an example
graph G.

(⇐) : Suppose there is a k′-node branching D with
f(D) ≥ s. It follows that every node of D achieves its
maximum score. In particular, for every 1 ≤ i ≤ k the

nodes ci must have score α in D and hence there is a node
wi ∈ Vi such that ci is adjacent to all nodes in V wi

i ∪ Ai.
Furthermore, for every 1 ≤ i < j ≤ k the node aij is
adjacent to exactly one node in Vi and to exactly one node
in Vj . Let vli be the unique node in Vi adjacent to aij and
similarly let vmi be the unique node in Vj that is adjacent
to aij for every 1 ≤ i < j ≤ k. Then wi = vi and
wj = vj because otherwise the skeleton of D would con-
tain the cycle (vi, aij , ci) or the cycle (vj , aij , cj). Conse-
quently, the edges represented by the parents of aij in D for
all 1 ≤ i < j ≤ k form a k-clique in G.

5 Concluding remarks
We have studied a natural approach to extend the known
efficient algorithms for branchings to polytrees that differ
from branchings in only a few extra arcs. At first glance, one
might expect this to be achievable by simply guessing the
extra arcs and solving the remaining problem for branch-
ings. However, we do not know whether such a reduction is
possible in the strict sense. Indeed, we had to take a slight
detour and modify the two matroids in a way that guaran-
tees a control for the interactions caused by the presence of
high-in-degree nodes. As a result, we got an algorithm that
runs in time polynomial in the input size: namely, there can
be more than

(
n−1
k+1

)
relevant input values for each of the n

nodes; so, the runtime of our algorithm is less than cubic in
the size of the input, supposing the local scores are given ex-
plicitly. While this answers one question in the affirmative, it
also raises several further questions, some of which we give
in the next paragraphs.

Our complexity analysis relied on a result concerning the
general weighted matroid intersection problem. Do signif-
icantly faster algorithms exist when restricted to our two
specific matroids? One might expect such algorithms exist,
since the related problem for branchings can be solved in
O(n2) time by the algorithm of (Tarjan 1977).

Even if we could solve the matroid intersection problem
faster, our algorithm would remain practical only for very
small values of k. Can one find an optimal k-branching sig-
nificantly faster, especially if allowing every node to have at
most two parents? As the current algorithm makes around
n3k mutually overlapping guesses, there might be a way
to considerably reduce the time complexity. Specifically,
we ask whether the restricted problem is fixed-parameter
tractable with respect to the parameter k, that is, solv-
able in O(f(k)p(n)) time for some computable function f
and polynomial p (Downey and Fellows 1999). The fixed-
parameter algorithm given in Section 4 can be seen as a first
step towards an answer to this question. Can we find other
restrictions under which the k-branching problem becomes
fixed-parameter tractable?

Can we use a similar approach for the more general k-
node branching problem, i.e., is there a polynomial time al-
gorithm for the k-node branching problem for every fixed
k? Likewise, we do not know whether the problem is easier
or harder for polytrees than for general DAGs: Do similar
techniques apply to finding maximum-score DAGs that can
be turned into branchings by deleting some k arcs?

755

Acknowledgments Serge Gaspers, Sebastian Ordyniak,
and Stefan Szeider acknowledge support from the Euro-
pean Research Council (COMPLEX REASON, 239962).
Serge Gaspers acknowledges support from the Australian
Research Council (DE120101761). Mikko Koivisto ac-
knowledges the support from the Academy of Finland
(Grant 125637). Mathieu Liedloff acknowledges the support
from the French Agence Nationale de la Recherche (ANR
AGAPE ANR-09-BLAN-0159-03).

References
Bock, F. C. 1971. An algorithm to construct a minimum
directed spanning tree in a directed network. In Avi-Itzak,
B., ed., Developments in Operations Research. Gordon and
Breach. 29–44.
Brezovec, C.; Cornuéjols, G.; and Glover, F. 1986. Two
algorithms for weighted matroid intersection. Mathematical
Programming 36(1):39–53.
Camerini, P. M.; Fratta, L.; and Maffioli, F. 1979. A note on
finding optimum branchings. Networks 9:309–312.
Cayley, A. 1889. A theorem on trees. Quart. J. Math.
23:376–378.
Chickering, D. M. 1995. A transformational characteriza-
tion of equivalent Bayesian network structures. In Uncer-
tainty in artificial intelligence (UAI 1995).
Chickering, D. M. 1996. Learning Bayesian networks is
NP-complete. In Learning from data (Fort Lauderdale, FL,
1995), volume 112 of Lecture Notes in Statist. Springer Ver-
lag. 121–130.
Chu, Y. J., and Liu, T. H. 1965. On the shortest arborescence
of a directed graph. Science Sinica 14:1396–1400.
Dasgupta, S. 1999. Learning polytrees. In Uncertainty in
Artificial Intelligence (UAI 1999).
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. New York:
Springer Verlag.
Edmonds, J. R. 1967. Optimum branchings. Journal of
Research of the National Bureau of Standards 71B(4):233–
240.
Edmonds, J. R. 1970. Submodular functions, matroids and
certain polyhedra. In Combinatorial Structures and their
Applications, 69–87.
Edmonds, J. R. 1979. Matroid intersection. Annals of Dis-
crete Mathematics 4:39–49.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory, volume XIV of Texts in Theoretical Computer Sci-
ence. An EATCS Series. Berlin: Springer Verlag.
Fomin, F. V., and Kratsch, D. 2010. Exact Exponential Algo-
rithms. Texts in Theoretical Computer Science. An EATCS
Series. Springer.
Frank, A. 1981. A weighted matroid intersection algorithm.
Journal of Algorithms 2:328–336.
Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian network classifiers. Machine Learning 29:131–
163.

Fulkerson, D. R. 1974. Packing rooted directed cuts in a
weighted directed graph. Mathematical Programming 6:1–
13.
Gabow, H. N.; Galil, Z.; Spencer, T.; and Tarjan, R. E. 1986.
Efficient algorithms for finding minimum spanning trees in
undirected and directed graphs. Combinatorica 6(2):109–
122.
Gabow, H. N.; Galil, Z.; and Spencer, T. H. 1989. Effi-
cient implementation of graph algorithms using contraction.
Journal of the ACM 36(3):540–572.
Garey, M. R., and Johnson, D. R. 1979. Computers and
Intractability. San Francisco: W. H. Freeman and Company,
New York.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20(3):197–243.
Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which prob-
lems have strongly exponential complexity? J. of Computer
and System Sciences 63(4):512–530.
Iri, M., and Tomizawa, N. 1976. An algorithm for finding
an optimal ’independent’ assignment. Journal of the Oper-
ations Research Society of Japan 19:32–57.
Karp, R. M. 1971. A simple derivation of Edmonds’ algo-
rithm for optimum branchings. Networks 1(3):265–272.
Koivisto, M., and Sood, K. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. J. Mach. Learn. Res.
5:549–573.
Lam, W., and Bacchus, F. 1994. Learning Bayesian belief
networks: An approach based on the MDL principle. Com-
putational Intelligence 10:269–293.
Lawler, E. L. 1976. Combinatorial Optimization: Networks
and Matroids. New York: Holt, Rinehart and Winston.
Ordyniak, S., and Szeider, S. 2010. Algorithms and com-
plexity results for exact Bayesian structure learning. In Un-
certainty in Artificial Intelligence (UAI 2010).
Ott, S., and Miyano, S. 2003. Finding optimal gene net-
works using biological constraints. Genome Informatics
14:124–133.
Parviainen, P., and Koivisto, M. 2009. Exact structure dis-
covery in Bayesian networks with less space. In Uncertainty
in Artificial Intelligence (UAI 2009), 436–443.
Pietrzak, K. 2003. On the parameterized complexity of the
fixed alphabet shortest common supersequence and longest
common subsequence problems. J. of Computer and System
Sciences 67(4):757–771.
Silander, T., and Myllymäki, P. 2006. A simple approach for
finding the globally optimal Bayesian network structure. In
Uncertainty in Artificial Intelligence (UAI 2006), 445–452.
Tarjan, R. E. 1977. Finding optimum branchings. Networks
7:25–35.

756

