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We introduce an experimentally accessible network representation for many-body quantum states
based on entanglement between all pairs of its constituents. We illustrate the power of this rep-
resentation by applying it to a paradigmatic spin chain model, the XX model, and showing that
it brings to light new phenomena. The analysis of these entanglement networks reveals that the
gradual establishment of quasi-long range order is accompanied by a symmetry regarding single-spin
concurrence distributions, as well as by instabilities in the network topology. Moreover, we identify
the existence of emergent entanglement structures, spatially localised communities enforced by the
global symmetry of the system that can be revealed by model-agnostic community detection algo-
rithms. The network representation further unveils the existence of structural classes and a cyclic
self-similarity in the state, which we conjecture to be intimately linked to the community structure.
Our results demonstrate that the use of tools and concepts from complex network theory enables
the discovery, understanding, and description of new physical phenomena even in models studied
for decades.

The last few decades, we have witnessed a paradigm
shift in one of the most fundamental physical theories
ever developed: quantum physics [1]. This paradigm
shift was not just motivated by the realisation that
bizarre quantum effects are also powerful resources for
technological applications but, more broadly, it was a
gradual change in the perception of the range of applica-
bility of quantum theory itself. While initially considered
a theory describing the microscopic realm, it is nowadays
clear that quantum theory also has an impact and non-
negligible consequences in the macroscopic realm, to the
point that quantum coherence seems to be present even
in hot and noisy simple biological systems [2].

In a sense, the need to bridge the gap between the
microscopic and macroscopic physical descriptions of re-
ality, arising from the difference in the laws governing
large many-body systems and those of their individual
components, has been regarded, since the very birth of
quantum theory, as both a crucial missing ingredient and
a most problematic issue [3]. The quantum measurement
problem, or the quantum-to-classical transition, can be
clearly seen as an early example of this issue.

It is only very recently, however, that experiments have
been achieving a two-fold feat. On the one hand, they
have dramatically increased precision and efficiency of
coherent manipulation and measurement of individual
quantum systems that are part of large suitably engi-
neered many-body systems. On the other hand, they
have been able to perform quantum simulations of such
larger systems, e.g., condensed matter systems, under
very “clean” and controllable conditions [4–9]. Moreover,
the increase in (classical) computational power, and the
development of efficient algorithms, have enabled to in-
vestigate numerically the properties of larger many-body
quantum systems [10]. Finally, skilful techniques for to-

mographic reconstruction of both quantum states and
channels have been developed [11, 12], together with a
variety of error mitigation approaches. This means that
we are starting to have at our disposal vast experimental
and numerical data sets containing an enormous amount
of information on the behaviour of quantum many-body
systems. A very relevant question is therefore: how do
we analyse and extract as much information as possible
from these data?

The impact of this question is evident when noticing
that relatively new fields, such as quantum biology and
quantum thermodynamics, as well as more established
fields, like quantum chemistry and quantum gravity, are
nowadays exploring at a deeper level the emergence of
complex collective structures, behaviours, and phenom-
ena in systems formed by a large number of individ-
ual (interacting) quantum systems. This is also relevant
for technological applications, from quantum simulators
aimed at, e.g., investigating new drugs or designing new
materials, to the scaling up of quantum computers and
the quantum internet. Under the light of these consid-
erations, it appears clear that the key conceptual ingre-
dient underpinning the development of modern quantum
physics, and we dare saying of modern physics at large,
is the concept of “emergence”, i.e., emergent phenomena
and emergent behaviour [13]. There exist many defini-
tions of emergence, and we will not dwell here on the
related philosophical debate. It suffices to say that by
emergent properties we refer to properties that cannot
in principle be reduced to or derived from those of the
lower-level constituents composing the many-body (com-
plex) system.

For classical complex systems, the development of com-
plex network theory, consequent and motivated by the
availability of big data sets, has not only provided a the-
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oretical framework to analyse emergent phenomena but,
most importantly, has permitted to introduce models ex-
plaining their origin. In the quantum realm, however,
a similar step has not yet been undertaken, despite the
birth and rise of quantum machine learning [14]. We
note, indeed, that although machine learning approaches
are commonly associated with enormous predictive power
in big data scenarios, they oftentimes lack descriptive
power.

We argue that a rigorous way to access and formalise
emergent properties and dynamics in quantum complex
systems is to merge and, when needed, generalise the
approaches and mathematical tools of complex network
theory and quantum physics. This amounts to develop-
ing the theory of complex quantum networks. Some at-
tempts have been initiated to pursue such a programme
[15]. Most of the examples studied fall into two cate-
gories: networks of entanglement, wherein connections
(links) represent entangled states [16–18], and networks
of quantum systems where the links are physical inter-
actions [19–28]. Only very recently, however, the idea of
using a network representation to describe the proper-
ties of complex many-body quantum states has been put
forward [29, 30]. The latter is the framework we are inter-
ested in here, which, importantly, is markedly different
from the idea of graph or cluster state used in quantum
information theory [31].

In this paper we establish a crucial step in the descrip-
tion of many-body quantum states as complex networks
by proving for the first time that the use of this repre-
sentation, with the annexed theoretical toolbox, can re-
veal new emergent phenomena even in extensively stud-
ied paradigmatic critical quantum spin chain models.

I. COMPLEX QUANTUM NETWORK
REPRESENTATION

In this section, we introduce the quantum network
representation of a many-body quantum state, focusing
specifically on N -qubit systems. Renowned examples of
such states are ground states of quantum spin chains and
lattices, which are cornerstone models of condensed mat-
ter physics. Many relevant physical properties of these
states can be inferred from two-body — or pairwise —
quantities, such as correlators of the form 〈σl

iσ
m
j 〉, where

σl
i and σm

j are Pauli operators with i, j ∈ {x, y, z} (l
and m are spin indices), or quantifiers of bipartite en-
tanglement like concurrence [32, 33]. Importantly, ef-
ficient techniques for performing two-body tomography
have been very recently discovered, making all these pair-
wise quantities experimentally accessible even for large
N [34–36]. Furthermore, limiting our attention to pair-
wise quantities naturally leads to a complex network de-
scription of the quantum state, and consequently allows
us to borrow tools and techniques from classical com-
plex network theory for studying quantum many-body
systems. In what follows, we introduce the key network-

Degree di =

N∑
j=1

aij

Strength si =

N∑
j=1

ωij

.2

1
.6

Clustering ci =

∑
j,k aijaikajk

di(di − 1)

Weighted clustering cωi =

∑
j,k(ωijωikωjk)1/3

di(di − 1) max
lm

ωlm

.2

1
.6

.4

Disparity Yi =
1

s2i

N∑
j=1

(ωij)
2

.2

1
.6

.6

.6

TABLE I. Overview of the local network measures used
in this paper. For each measure, we include its definition
and a small depiction to illustrate the concept. In the math-
ematical expressions, ωij is the weight of the link between
nodes i and j (which we identify with the concurrence for
our network representation of quantum states), and aij are
the elements of the adjacency matrix of the network, fulfilling
aij = Θ(ωij), where Θ(x) stands for the Heaviside function.
Hence, degree and strength account for the number of con-
nections and total weight of a given node, respectively. The
red nodes in their respective illustrations have degree d = 3
and s = 1.8. The clustering coefficient accounts for the frac-
tion of pairs of neighbours of the node that are connected.
In the figure, the red node has c = 1/3. The weighted ver-
sion of the clustering used here weights the contribution of
each triangle by the geometric mean of the values of the three
links involved, normalised by the largest weight in the net-
work, maxlm ωlm; in the example graph, the red node has
cω ≈ 0.14. The dispariy Yi quantifies the heterogeneity of the
distribution of the weights of the connections of the node. If
all its connections have equal weights ω = si/di, Yi = 1/di
(as for the blue node). Instead, if one of the links dominates,
the disparity approaches 1. For the red node, Y ≈ 0.43.

theoretical concepts required to understand and motivate
the rest of the paper.

A complex network is a representation of a complex
system in terms of a graph, in which nodes symbolise the
individual components of the system and the links rep-
resent interactions, correlations, or some other form of
relationship between them [37–39]. Notable examples in-
clude the internet at the autonomous systems level [40],
the connectivity among regions of the human brain (or
connectome) [41, 42], and social relationships in online
social networks [43]. Complex networks are the objects
of study of network science, which addresses the descrip-
tion and modelling of their structure [44] (or “connectiv-
ity patterns”), as well as how such structure affects the
global behaviour of the system (e.g., the spreading of a
disease in human contact networks [45]). Therefore, net-
work theory provides a holistic view of the system under
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FIG. 1. Concurrence networks for N = 20 spins for different values of the magnetic field Bk for k = 1, 2, . . . , 10. Each node
represents a different spin. The width and colour of the links indicate the value of the concurrence between the corresponding
pair, while the sizes of the nodes are proportional to their strength. The colours of the nodes identify the community structure
detected by the LPA algorithm (cf. Sec. V). The number of communities is found to be equal to k.

scrutiny, as it studies properties beyond those that can
be deduced from or reduced to the “microscopic” rules
driving each individual part of it. In this paper, we use
a network representation for quantum many-body states
in which the nodes are spins and the weighted links (i.e.,
with an associated positive real number) correspond to
the pairwise entanglement between them, quantified in
terms of concurrence. We show some examples of these
networks for ground states of the XX model in Fig. 1.

Providing a useful description of a network of even a
modest number of nodes (e.g., hundreds) can be a chal-
lenging task because of the immense amount of degrees of
freedom that graphs possess. Generally, a visual depic-
tion of the network, like those in Fig. 1, is useful for small
systems only, so one usually must resort to the quanti-
tative study of different relevant properties of the graph.
Local measures quantify aspects of the connectivity in
the neighbourhood of a specific node. For instance, the
degree of a node i, di, is the number of links intersect-
ing it, whereas its strength si is given by the sum of the
weights of those links [39]. Notice that, while both quan-
tities are similar, the degree only takes into account the
existence of a link, regardless of its weight, so it quantifies
a property of the unweighted structure of the network,
also referred to as the topology of the graph in common
complex-network parlance. The strength, on the other
hand, quantifies a property of the weighted structure. The
disparity of a node i, Yi, quantifies the heterogeneity of
the distribution of the weights intersecting it [46]. The
local clustering coefficient ci, as well as its weighted gen-
eralisation cωi , characterise the density of links among
the neighbours of the node [39, 47]. The mathematical
definition of each quantity can be found in Table I.

The distributions of these quantifiers in the network, or
the relations between them, often provide a tangible and

understandable, albeit limited, description of even very
large systems. In this paper, we will also consider the
community structure — a so-called mesoscopic property
— of the entanglement networks. This refers to a prop-
erty commonly observed in complex networks, namely,
the fact that nodes can be grouped into communities such
that the density of links among the members of each com-
munity is considerably higher than the overall density in
the network.

II. THE XX MODEL

In the literature of quantum spin Hamiltonians, and
generally when studying quantum phase transitions, one
often works in the thermodynamic limit or considers
closed boundary conditions wherein translational invari-
ance is generally guaranteed. This implies that most two-
spin correlation functions, including concurrence, which
is built upon them, depend only on the distance between
the spins [33, 48, 49]. However, for realistic experimental
scenarios, i.e., for quantum simulators such as those re-
alised with trapped ion systems [50] or cold atoms in op-
tical lattices [51], the quantum systems are neither close
to the thermodynamic limit nor have closed boundary
conditions. Therefore, the analysis of the full network
of pairwise correlations becomes essential. This is also
true, for example, for the study of Majorana fermions
and topological defects, where edge and bulk display
markedly different properties. This is the reason why we
consider the XX model with open boundary conditions
in this paper.
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We consider a chain ofN spins with nearest-neighbours
interactions described by the Hamiltonian

H = −J

[
N∑
i=1

1

2
(σi

xσ
i+1
x + σi

yσ
i+1
y ) +Bσi

z

]
, (1)

with σN+1
x,y = 0, J the coupling constant, which here-

after we set to unity, and B the magnetic field. In the
thermodynamic limit, the system undergoes a first order
quantum phase transition from a fully polarised state to a
critical phase exhibiting quasi-long-range order at B = 1
[32, 33, 52]. The model can be solved exactly by means
of Jordan-Wigner transformations [53].

The structure of the ground state and its energy vary
with the magnetic field B and, specifically, they depend
on a number of level crossings that the system undergoes
as B changes. For B > 1, the ground state energy is
ε0g = −NB and the ground state, given by |φ0

g〉 = | ↑〉⊗N ,
is separable [52]. For 0 < B < 1, we can identify N
level crossings at values of the magnetic field given by
Bk = cos[kπ/(N + 1)], with 1 ≤ k ≤ N . In each region
defined by Bk+1 < B < Bk, the ground state energy is

εkg = −(N − 2k)B − 2

k∑
l=1

cos

(
πl

N + 1

)
(2)

and the ground state is

|φkg〉 =
∑

l1<l2<...<lk

Al1l2...lk |l1, l2, ..., lk〉, (3)

with |l1, l2, ..., lk〉 the state with flipped spins at sites
l1, l2, ..., lk, and amplitudes given by

Al1l2...lk =
∑
P

(−1)PS
P (1)
l1

S
P (2)
l2

...S
P (k)
lk

,

where the sum extends over the permutation group of k
elements, and where Sk

l =
√

2/(N + 1) sin[(πkl)/(N +
1)]. At B = Bk, the ground state jumps discontinuously
from one symmetric subspace to an orthogonal one.

The properties of pairwise concurrence for the XX
model were studied in Ref. [52], where the authors used
a closed expression for all the reduced two-body density
matrices to show that pairwise entanglement presents dis-
continuous jumps at the transition points Bk, and entan-
glement between two spins in the bulk and at the edge
of the chain shows very different behaviour. Specifically,
edge entanglement signals the onset of quasi-long range
order. We argue that a much more comprehensive view of
the properties of the ground state, including new undis-
covered features, can be obtained by considering the full
pairwise concurrence network.

III. BULK, EDGE, AND SYMMETRY NEAR
THE QUANTUM PHASE TRANSITION

We start our analysis of the weighted structure of the
state by making use of two local measures: strength and

disparity, which we depict for each spin in the chain in
Fig. 2a-b. It can be appreciated that, close to the criti-
cal point B = 1 (k = 1), the local (single-spin) distribu-
tion of concurrences is very homogeneous and, moreover,
the disparity is essentially constant along the chain. At
the same time, the strength curve reveals that pairwise
entanglement is much stronger for central spins than for
those at the ends of the chain. This means, together with
the fact that the graph is fully connected (all degrees are
equal to N −1), that concurrences are actually heteroge-
neously distributed across the system. Yet, these weights
are allocated in such a way that all relative fluctuations
at the local level, quantified by the disparity, are equal.
This indicates a high level of symmetry in the state right
before the quantum phase transition, namely, that the
single-spin distributions of concurrence may be very sim-
ilar for all spins in the chain when appropriately rescaled;
this is indeed confirmed in Fig. 2d. From the network
point of view, this suggests that the weights can be writ-
ten as ωij = αiαj for some local variables {αi}: in such
case, the weights of the links intersecting node i rescaled
by their mean value, si/di, are ωij/(

∑
l 6=i ωil/di) =

(N − 1)αj/
∑

l 6=i αl ≈ (N − 1)αj/
∑

l αl, hence approxi-
mately independent of i. In fact, in the k = 1 concurrence
network, αi = 2 sin(iπ/(N + 1))/

√
N + 1.

As the magnetic field is decreased (and k increases),
we observe the appearance of k − 1 peaks in the dis-
parity, signalling a local increase in the heterogeneity of
pairwise concurrence for centrally located spins. A close
inspection of the plots also shows that the outermost
(and highest) peaks in Yi correspond to the outermost
(and lowest) minima in the strength si, which presents
k peaks. In short, we see that there are field-dependent
groups of spins near the boundaries exhibiting higher,
and more homogeneously distributed, pairwise entangle-
ment, which we may consider as edges. The rest of the
spins in the chain, with lower and more heterogeneous lo-
cal concurrence distribution, will be denoted as the bulk
of the chain. Moreover, these regions are very clearly de-
limited and their size strongly depends on the magnetic
field, for fixed N .

Interestingly, as the magnetic field decreases, the dif-
ference between the disparity of the bulk of the chain
and the one of the edge decreases until, for B = 1/2
(k/(N + 1) = 1/3) their respective values get inverted,
namely the bulk disparity becomes lower than the edge
disparity. For very small values of B one observes a pro-
nounced disparity peak for the two outermost spins of the
chain, corresponding to their highest value of pairwise
concurrence; this phenomenon is a reflection of the fact
that, for small B, the network has a nearest-neighbour
chain topology, as a result of which the edge spins have
degree equal to one, and hence their disparity can only
be equal to one.

The average behaviour of the network measures is also
sensitive to the critical points. This is revealed by the
curves of the average disparity 〈Yi〉 and the average
strength 〈si〉, shown in Fig. 2c, where the discontinu-
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FIG. 2. Disparity and strength in entanglement networks. a, Disparity Yi by node for N = 180 and for different values
of the magnetic field 0 < B < 1. Note that the disparity has k− 1 peaks and its average value increases with k (decreases with
B). b, Strength si of each node for the same states as in a. The curve corresponding to the k-th state presents k maxima. The
bar next to the plots indicates the values of the magnetic field B (equivalently, of k/N) to which each colour corresponds. For
the sake of clarity, the plots do not include the results for all the values of k. c, Average strength 〈si〉 and average disparity 〈Yi〉
as functions of B for different values of N (20, 60, 180). d, Each of the overlapping curves depicts the cumulative distribution
of the concurrences of a different spin in the chain, rescaled by the average of the distribution, si/di. Inset, Average over all
the pairs of spins in the k-th state of the Wasserstein distance W between their rescaled local weight distributions. It can be
appreciated that this quantity drops to nearly zero for k = 1.

ous jumps present for small N gradually become less
visible as we approach the thermodynamic limit. The
average strength changes discontinuously at the critical
point B = 1, while the average disparity, measuring en-
tanglement heterogeneity, is undefined for B > 1, since
concurrence is zero for all pairs.

IV. ENTANGLEMENT-TOPOLOGICAL
INSTABILITIES

In this section, we turn our attention towards the topo-
logical properties of the entanglement networks, that is,
the structural properties of the unweighted graphs in
which links represent non-separability, disregarding the
numerical value of the concurrence when it is non-zero.

We first consider the most elementary network-
topological property, the degree di (number of connec-
tions of a node i), and compute its average 〈di〉 over
the nodes in the network. Interestingly, as we change

k, 〈di〉 exhibits abrupt changes at certain level crossings,
see Fig. 3a. For large N and k, the average degree only
takes even values, 〈di〉 = 2, 4, 6, . . .. Moreover, the curves
of 〈di〉 as a function of k/N collapse as N increases, which
implies that these sudden transitions occur at specific val-
ues of the magnetic field B, since the latter is a function
of k/(N + 1) ≈ k/N . This is more thoroughly quanti-
fied by the results in Figs. 3b-c. First, we determine the
precise values of k at which the transitions take place by
identifying the steepest changes in the curves of 〈di〉 ver-
sus k/N for every N . As an example, in Fig. 3b we depict
the variation of 〈di〉 between consecutive ground states
for N = 600, indicating four of the identified peaks, la-
belled with m for increasing B, with vertical lines. In
Fig. 3c we show the values of the magnetic field corre-
sponding to each of these peaks, B̄m, as a function of N ,
from which it is clear that they remain constant as N
increases.

While the behaviour of the average degree reveals the
existence of sudden network-topological transitions, a
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FIG. 3. Entanglement-topological instabilities. a, Average degree 〈di〉 as a function of k/N for different system sizes.
The change in this quantity becomes increasingly abrupt with increasing system size. b, Change in the average degree ∆〈di〉
(calculated via second order central differences) versus k/N for N = 600. The vertical lines indicate the values of k/N at which
the derivative is maximal. The points are indexed according to m, which indicates that the network transitions from an m- to
an (m+1)-nearest neighbours 1D lattice for increasing B. c, Position of the four right-most peaks as a function of N in terms of
the magnetic field. The transitions remain at fixed values of the field as N increases. d, Standard deviation of the degree σ(di)
of every network as a function of k/N for different system sizes. Notice that the networks become more degree-heterogeneous
precisely at the transition points corresponding to the local maxima of the changes of the average degree vs. k (indicated by
vertical dashed lines). e, Scaling of the degree heterogeneity σ(di) at the four right-most transition points as a function of
N . f, Scaling of the degree heterogeneity σ(di) at the midpoints between the five right-most peaks as a function of N . The
networks become increasingly degree-homogeneous with the system size for values of B different from the transition points
(with σ(di) ∼ N−1/2, grey dashed line), while they preserve the degree heterogeneity at the peaks. g-i, Average concurrence
〈C〉l of the links of a given length as a function of N at the peaks m = 1 g, m = 2 h, and m = 3 i. At the transitions, the
spurious links of length m+ 1 that drive the topology away from a degree-regular graph lose their intensity slightly slower than
1/N (dashed lines). Yet, the links of length up to m at the m-th peak remain as N increases.

deeper characterisation of the network structure can be
obtained by studying the fluctuations of the degree in ev-
ery network. In particular, we consider the standard de-
viation of the degree σ(di) =

√
〈d2

i 〉 − 〈di〉2 as a measure
of degree heterogeneity in a network; indeed, σ(di) = 0 if
all nodes have the same degree. The behaviour of σ(di) as
a function of k/N reveals that the networks at the transi-
tion points B = B̄m exhibit heterogeneous degree distri-
butions; we name these graphs entanglement-topological

instabilities (see Fig. 3d). Furthermore, it can be ap-
preciated that, for k/N different from the values at the
peaks — even in their close neighbourhood — the degree
heterogeneity σ(di) decreases with increasing system size
(see Fig. 3f), deeming these networks unstable with re-
spect of perturbations in the magnetic field. However,
the heterogeneity seems to remain invariant with respect
to the increase of system size on the peaks, as indicated
by the finite-size scaling analysis in Fig. 3e.
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Our results regarding the off-peak networks are con-
sistent with the findings in Ref. [52], where it was shown
that, in the thermodynamic limit, concurrence is non-
zero only for pairs of spins up to distance m, where m
depends on the magnetic field. Hence, the resulting net-
works must be m-nearest-neighbours lattices, and all de-
grees are consequently equal to 2m. However, the in-
stabilities are characterised by the presence of spurious
links of longer length l ≥ m + 1 inhomogeneously dis-
tributed across the system, resulting in nodes of different
degrees. To conclude our analysis, we show the values
of the pairwise concurrence for these spurious links caus-
ing the degree heterogeneity in Fig. 3g-i. We depict the
average concurrence of the links of a given length l in
the first three instabilities (m = 1, 2, 3) as a function of
N , from which it is clear that the links of length l ≤ m
do not depend on the system size, while the concurrence
of the spurious ones, with l = m + 1, decreases. In this
sense, the phenomenon here discovered is a characteristic
of finite size spin chains.

V. EMERGENT ENTANGLEMENT
STRUCTURES

The network measures used so far reveal local, i.e.
microscopic, structures within the network. It is well-
known, however, that networks may also possess meso-
scopic structures, which are not uncovered at the level of
single nodes, reflecting their behaviour as a whole. Ex-
amples are the network community structures describing
the heterogeneity in the density of links or in the values
of the weights within different subsets of the nodes of
the network. We call community a subset of nodes with
higher density of connections within the subset than with
the rest of the network. The presence of communities is
linked to a non-trivial topology of the network: regular
and completely random graphs typically do not show any
community structure.

Uncovering the community structure of a given graph
is an important and computationally demanding task
in the analysis of complex networks named community
detection. Many algorithms have been developed and
are being developed with the goal of finding the com-
munity structure of large networks quickly and accu-
rately [54]. In this paper, we apply a state-of-the-art
algorithm, based on label propagation (LPA) [55], which
is described in detail in the Methods section.

An example of the communities detected with LPA is
shown in Fig. 1, where nodes with the same colour be-
long to the same community. Notice that the algorithm
is not provided with any knowledge of the spatial rela-
tion among the nodes. In fact, it is completely model-
agnostic, in the sense that it is designed to work on ar-
bitrary weighted graphs that may represent any sort of
data. Yet, the entanglement structures identified by com-
munity detection method have well-defined spatial loca-
tions. For small N , the community structure is clearly
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FIG. 4. Community structure of concurrence net-
works. a, Number of communities in the concurrence
network over N , nc/N , as a function of k/N , for N =
100, 200, 500, 600, 960, by treating the edges as unweighted
(blue) and weighted (green). In the weighted case, the num-
ber of detected communities is exactly equal to k (with some
fluctuations due to numerical errors), regardless of N . In
the unweighted case, for increasing N the curve nc/N vs k/N
presents plateaus with dips for the same values of k/N seen in
Fig. 3a-b and 3d. b, Community sizes sc versus k for N = 50.
The colour indicates the fraction of communities with a given
size. The black dashed line shows N/k, while the red points
indicate the average size s̄c of the detected communities.

visible from the network representation, as one can see
in Fig. 1. For small k, there are few large communities of
nodes with nonzero pairwise entanglement. By increas-
ing k, the size of the communities is reduced, up to the
limit for k = N/2, where all the communities have size
2, and correspond to pairs of highly entangled spins.

Strikingly, for each value of k, the algorithm detects
nc = k communities for any N on the weighted networks,
as Fig. 4a shows (there are some small fluctuations, likely
due to numerical errors). As a consequence, the average
size of the communities is s̄c = N/k. Moreover, the dis-
tribution of community sizes is highly peaked around the
mean, as shown in Fig. 4b. It is worth stressing that
identifying precisely k communities for large k is espe-
cially remarkable considering our description of the net-
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