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Abstract: Over the last decades, various “non-linear” MCMC methods
have arisen. While appealing for their convergence speed and efficiency,
their practical implementation and theoretical study remain challenging.
In this paper, we introduce a non-linear generalization of the Metropolis-
Hastings algorithm to a proposal that depends not only on the current
state, but also on its law. We propose to simulate this dynamics as the
mean field limit of a system of interacting particles, that can in turn itself
be understood as a generalisation of the Metropolis-Hastings algorithm to
a population of particles. Under the double limit in number of iterations
and number of particles we prove that this algorithm converges. Then, we
propose an efficient GPU implementation and illustrate its performance on
various examples. The method is particularly stable on multimodal exam-
ples and converges faster than the classical methods.
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ondary 60J05, 62-08, 62-04.
Keywords and phrases: Sampling algorithm, particle method, propaga-
tion of chaos, entropy methods, GPU.
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1. Introduction

1.1. Background

Monte Carlo methods are designed to estimate the integral of a function of
interest ϕ (sometimes called observable) under a probability measure π. The
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integral
∫
ϕ(x)π(dx) is approximated by a random estimator of the form

1
n

n∑
i=1

ϕ(Xi) ,

where the Xi are n independent and identically distributed (i.i.d.) random vari-
ables with law π. The law of large numbers ensures the convergence as n → +∞
of this estimator. For complex cases, when i.i.d. π-distributed random variables
cannot be generated exactly, a now classical procedure consists in constructing a
Markov chain (Xi)i with stationary distribution π. Ergodic theory results then
ensure that the estimator above still converges, even though the Xi are not
independent from each other. The Metropolis-Hastings algorithm [66, 65, 45]
provides a simple construction for such a Markov chain that only requires to
evaluate the probability density function π up to a multiplicative constant. The
constructed chain is a random walk biased by an accept-reject step. Its conver-
gence properties have been thoroughly studied, for example in [64].

This well-known procedure has become a building block for more advanced
samplers, that are designed to overcome the known flaws of the Metropolis-
Hastings algorithm: slow convergence, bad mixing properties for multimodal
distributions etc. Such extensions include for instance the Wang and Landau
algorithm [14], regional MCMC algorithms [22], or non Markovian (adaptive)
versions [44, 43, 6, 5] where the next proposed state depends on the whole history
of the process. The more recent PDMP samplers [34, 82] provide an alternative
to the discrete time accept-reject scheme, replacing it by a continuous time non
reversible Markov process with random jumps. Finally, more complex algorithms
are based on the evaluation of the gradient of π, see for instance the Metropolis-
adjusted Langevin [11] and the Hamiltonian Monte Carlo algorithms [32]. All
these methods can be seen as “linear” as the next position only depends on the
current position.

A non-Markovian alternative to Metropolis-Hastings like methods is given by
Importance Sampling algorithms. By drawing i.i.d. samples from an auxiliary
distribution q, which is usually simple and called the importance distribution,
we can build an estimator using the following identity:∫

ϕ(x)π(x)dx =
∫

π(x)
q(x)ϕ(x)q(x)dx � 1

n

n∑
i=1

wiϕ(Xi),

where the Xi are i.i.d. with law q and the wi ∝ π(Xi)/q(Xi), are called the
importance weights. The choice of q is critical, as bad choices can lead to a
degeneracy of the importance weights. Iterative methods have been developed
to sequentially update the choice of the importance distribution, and to update
the Xi now interpreted as particles that evolve along iterations. Among these
algorithms, we can cite the Sequential Importance Sampling algorithm [39], the
Population Monte Carlo (PMC) methods [30, 18, 17] or the recent Safe Adaptive
Importance Sampling (SAIS) algorithm [25]. This paradigm is in particular well-
suited to the study of filtering problems [39], leading to the development of
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Sequential Monte Carlo (SMC) methods [24, 31]. A review of population-based
algorithms and of the SMC method can be found in [49].

The SMC methodology has recently been used to design and study nonlinear
MCMC algorithms [4]. This framework can be seen as a generalisation of some
non-Markovian extensions of the Metropolis-Hastings algorithm (such as the
“resampling from the past” procedure [44, 6]) but also allows the use of a wider
range of algorithmic techniques. Examples are given in [4, 3] and are often based
on the simulation of auxiliary chains. In the present article, we show that an
alternative procedure based on the simulation of a swarm of interacting particles
can also be used to approximate a nonlinear Markov chain. This provides a
multi-particle generalisation of the Metropolis-Hastings procedure.

The duality between particle systems and non-linear Markov processes has
first been underlined in statistical physics; on the mathematical side, it has
been the subject of the pioneering works of [61, 62, 55, 29]. A key result is the
propagation of chaos property formalised by [55], which implies that under an
initial chaoticity assumption on the law of the particles, the empirical measure
of the system at any further time converges towards a deterministic limit; this
type of limit is called mean-field limit. In a continuous time framework, this
limit classically satisfies a nonlinear Partial Differential Equation (PDE) [78,
63]. The original diffusion framework has been extended to jump and jump-
diffusion processes in [40, 41]. We refer the interested reader to [9, 10] for recent
reviews and surveys of the applications of such models. We also mention that
this methodology has been used in the analysis of particle methods in filtering
problems [23, 2].

1.2. Objective and methods

Let π be a target measure on E ⊂ R
d, known up to a multiplicative constant

and which is assumed to have a density with respect to the Lebesgue measure.
We denote P(E) the set of probability measures on E. The goal of the present
article is to build a nonlinear Markov chain (Xt)t on E that samples π efficiently.
Given a sample Xt at iteration t, we draw Xt+1 according to

Xt+1 ∼ Kμt(Xt,dy) ,

where the transition kernel is defined by:

Kμt(x,dy) := h(αμt(x, y))Θμt(dy|x)︸ ︷︷ ︸
accept

+
[
1 −

∫
z∈E

h(αμt(x, z))Θμt(dz|x)
]
δx(dy)︸ ︷︷ ︸

reject
(1)

and where for t ∈ N, μt ∈ P(E) is the law of Xt. In the discrete setting, this
method is implemented by Algorithm 1, detailed below. It relies on the following
quantities:

• The proposal distribution, a map

Θ : E × P(E) −→ Pac
0 (E),
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where Pac
0 (E) the subset of non-vanishing absolutely continuous probabil-

ity measures. For x ∈ E and μ ∈ P(E), its associated proposal probability
density function is denoted by:

Θ(x, μ)(y)dy ≡ Θμ(y|x)dy.

Intuitively, the probability distribution Θ(x, μ) can be understood as an
approximation of the target π that our method uses to propose new sam-
ples y in a neighborhood of a point x, relying on the information that is
provided by a probability measure μ. In the following μ will be the em-
pirical distribution associated with a system of particles. To ensure a fast
convergence of our method, both in terms of computation time and number
of iterations, the distribution Θ(x, μ) should be both easy to sample and
close to the target distribution π. In practice, the choice of a good proposal
Θ depends on the assumptions that can be made on the distribution π.
We will present several examples in Section 3. A simple example to keep
in mind and which will be detailed in Section 3.2 is Θμ(y|x) = K � μ(y)
where K is a random-walk kernel.

• For μ ∈ P(E) and x, y ∈ E, the acceptance ratio is defined by:

αμ(x, y) := Θμ(x|y)π(y)
Θμ(y|x)π(x) .

This quantity expresses the relative appeals of the transition x → y for the
“model” density Θμ(dy|x) and the ground truth target π(dy), as in clas-
sical Metropolis-Hastings methods. Noticeably the denominator is never
null because of the non-vanishing assumption on Θ. Crucially, it can be
computed even when the law of π is only known up to a multiplicative
constant and allows our method to account for mis-matches between the
proposal Θ and the distribution to sample π. Note that in practice, for
the sake of numerical stability, the acceptance ratio is often manipulated
through its logarithm:

logαμ(x, y)︸ ︷︷ ︸
“correction”

:=
[
log π(y) − log π(x)

]︸ ︷︷ ︸
appeal of x → y for π

−
[
log Θμ(y|x) − log Θμ(x|y)︸ ︷︷ ︸

appeal of x → y for Θμ

]
.

In the following, we will assume that π is bounded away from zero so that
the acceptance ratio is always well-defined.

• The acceptance function is a non-decreasing Lipschitz map of the form
h : [0,+∞) → [0, 1] which satisfies

∀u ∈ [0,∞), uh(1/u) = h(u). (2)

A classical example is h(u) = min(1, u). Other examples in the literature
can be found in [1] and the references therein. In the following, we will
occasionally use (for technical reasons) the “lazy Metropolis-Hastings” ac-
ceptance function h(u) = ηmin(1, u), η < 1 introduced in [57].
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As detailed in Algorithm 1, we combine the acceptance ratio αμ(x, y) and
the acceptance function h to reject proposed samples y that are much
more appealing for Θμ(·|x) than they are for π.
This necessary correction ensures that our method samples the tar-
get π instead of the simpler proposal distribution. On the other hand,
it can also slow down the method if the proposed samples y keep being
rejected. Efficient proposal distributions should keep the acceptance ratio
high enough to ensure a renewal of the population of samples Xi

t at every
iteration and thus provide good mixing properties.

Non-linearity We say that the transition kernel is nonlinear due to its depen-
dency on the law of the chain that it generates. When the proposal distribution
does not depend on μt, the kernel is linear and we obtain the general form of
the classical Metropolis-Hastings kernel.

Interest of the method The main interest of the method appears for com-
plex distributions, that is multimodal distributions. From an MCMC point of
view, the use of a non-linear sampler removes the mixing problem which is
one of the main drawbacks of the Metropolis-Hastings algorithm. For nonlinear
samplers, exponential convergence is ensured as soon as the distribution carries
weight in every mode, without having to explore and exit each of the modes.
On the contrary, the Metropolis-Hastings algorithms may remain stuck in a sin-
gle mode even with long runs. Nonlinear methods allow to learn efficiently the
relative weight of the distribution modes, which is unavailable even for several
independent runs of Metropolis-Hastings algorithm with different initialisations,
that is the most direct parallel version of Metropolis-Hastings. The numerical
experiments will confirm that nonlinear methods perform better for both explo-
ration and convergence.

Contributions We follow [4] and split our analysis into two steps:

1. We show that our non-linear kernel admits π as a stationary distribution
and study its asymptotic properties.

2. We present a practical implementation based on the simulation of a sys-
tem of interacting particles that enables the simulation of this kernel for
different choices of the proposal distribution.

Analytical study Starting from an initial distribution μ0 ∈ P(E), the law
μt of the nonlinear chain at the t-th iteration satisfies

μt+1 = T [μt]

where T : P(E) → P(E) is the transition operator defined by duality in the
space of measures by:

〈ϕ, T [μ]〉 :=
∫
E

ϕ(x)T [μ](dx) =
∫∫

E×E

ϕ(y)Kμ(x,dy)μ(dx), (3)
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Input: An initial population of particles (X1
0 , . . . , X

N
0 ) ∈ EN ,

a maximum time T ∈ N, a proposal distribution Θ
and an acceptance function h

Output: A sample
(
Xi

t

)
1≤i≤N ; 1≤t≤T

for t = 0 to T − 1 do
for i = 1 to N do

(Proposal) Draw Y i
t ∼ Θμ̂N

t
( · |Xi

t) a proposal for the new state of particle i;

(Acceptation) Compute αμ̂N
t

(Xi
t , Y

i
t ) =

Θ
μ̂N
t

(Xi
t |Y

i
t )π(Y i

t )

Θ
μ̂N
t

(Y i
t |Xi

t)π(Xi
t)

;

Draw U i
t ∼ U([0, 1]);

if U i
t ≤ h

(
αμ̂N

t
(Xi

t , Y
i
t )
)
then

Set Xi
t+1 = Y i

t ; // Accept, probability h(αμ̂N
t

(Xi
t , Y

i
t )).

else
Set Xi

t+1 = Xi
t ; // Reject, likely if αμ̂N

t
(Xi

t , Y
i
t ) � 0.

end
end

end

Algorithm 1: Collective Monte Carlo (CMC)

for any continuous bounded test function ϕ ∈ Cb(E). Thanks to the detailed
balance condition (also called micro-reversibility in the context of statistical
mechanics [80]), for all x, y ∈ E and μ ∈ P(E):

π(x)Θμ(y|x)h(αμ(x, y)) = π(y)Θμ(x|y)h(αμ(y, x)), (4)

the transition operator can be rewritten:

T [μ](dx) = μ(dx) +
∫
E

π(x)Wμ(x → y)
(
μ(dy)
π(y) dx− μ(dx)

π(x) dy
)
,

with Wμ(x → y) := Θμ(y|x)h(αμ(x, y)), from which it can be easily seen that
T [π] = π.

We are going to develop an analytical framework in which the convergence
of the sequence of iterations of the transition operator can be analysed. Using
entropy methods, we prove the exponential convergence towards π for a large
class of proposal distributions. We show that in an asymptotic regime to be
detailed, the rate of convergence depends only on how close from the target is
the initial condition. As a byproduct, in the linear Metropolis-Hastings case, we
obtain a convergence result similar to the one obtained in [27].

Efficient implementation It is not possible in general to sample directly Xt

from a nonlinear kernel because the law μt is not available. We therefore rely
on a mean-field particle method to approximate such samples. Starting from a
swarm of N particles X1

t , . . . , X
N
t ∈ E at the iteration t, we construct the next

iteration by sampling independently for i ∈ {1, . . . , N}:

Xi
t+1 ∼ Kμ̂N

t
(Xi

t ,dy),
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where

μ̂N
t := 1

N

N∑
i=1

δXi
t
∈ P(E),

is the (random) empirical measure of the system of particles which is used as
a proxy of the distribution μt. We show that as N goes to infinity and for
each t ∈ N, μ̂N

t converges towards a deterministic limit which is the t-th iterate
of the nonlinear operator T starting from μ0. Moreover we show that the N
particles are asymptotically, in N , independent thus forming an approximation
of a system of N independent nonlinear Markov chains with transition kernel (1).

A drawback of this approach is its high computational cost, that may scale in
O(N2) or O(N3) for some choices of the proposal Θ. To overcome this difficulty,
we propose an implementation based on GPU, more precisely on the techniques
developed in the KeOps library [21] by the third author.

Outline Section 2 is devoted to the convergence analysis of Algorithm 1 for a
general class of proposal distributions. The mean-field limit and the long-time
asymptotic properties are studied respectively in Section 2.3 and Section 2.4.
Several variants of the main algorithm are presented in Section 3. The GPU
implementation of the different algorithms is detailed in Section 4. Applications
to various problems are presented in Section 5. In the appendix, we present the
complementary proofs (Appendix A) as well as variations on the results of the
paper (Appendix B). We also add some complementary remarks on the links
between our method and other classical methods (Appendix C) and other and
additional numerical results (Appendix D and Appendix E).

Throughout this article, we assume that π satisfies the following assumption.

Assumption 1.1. The support of π, denoted by E, is a compact subset of Rd.
The target distribution π is Lipschitz continuous and π does not vanish on E:

m0 := inf
E

π > 0 and M0 := sup
E

π < +∞.

Notations. The following notations will be used throughout the article.

• P(E) denotes the set of probability measures on E.
• Pac(E) denotes the set of probability measures on E which are absolutely

continuous with respect to the Lebesgue measure on R
d. A probability mea-

sure in Pac(E) is identified with its associated probability density function:
when f ∈ Pac(E) we write indifferently,

f(dx) ≡ f(x)dx.

• Pac
0 (E) ⊂ Pac(E) denotes the subset of continuous probability density

functions which do not vanish on E (recall that E is compact).
• A test function ϕ ∈ Cb(E) is a continuous (bounded) function on E. For

μ ∈ P(E) we write indifferently

〈ϕ, μ〉 ≡
∫
E

ϕ(x)μ(dx).
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• X ∼ μ means that the law of the random variable X ∈ E is μ ∈ P(E).
• W 1(μ, ν) denotes the Wasserstein-1 distance between the two probability

measures μ, ν ∈ P(E), defined by W 1(μ, ν) := infX∼μ,Y∼ν E|X − Y | (see
[85, Chapter 6] for additional details on Wasserstein distances).

2. Convergence analysis

Algorithm 1 gives a trajectorial approximation of the nonlinear Markov chain
(Xt)t with law (μt)t defined by the transition kernel (1). In this section, we prove
the convergence of this algorithm under general assumptions on the proposal
distribution Θ described below. The proof of our main result is split into two
steps each summarised in a theorem, first the mean-field limit when N → +∞
(Section 2.3) and then the long-time convergence towards π (Section 2.4).

2.1. Assumptions

For our theoretical results, we will need the following assumptions. The first
three following assumptions are needed to prove the many-particle limit in Sec-
tion 2.3.

Assumption 2.1 (Boundedness). There exist two constants κ−, κ+ > 0 such
that for all μ ∈ P(E) and for all x, y ∈ E:

κ− ≤ Θμ(y|x) ≤ κ+.

Assumption 2.2 (L∞ Lipschitz). The map Θ : E×P(E) → Pac
0 (E) is globally

Lipschitz for the L∞-norm on E: there exists a constant L > 0 such that for all
x, y, x′, y′ ∈ E and for all (μ, ν) ∈ P(E)2:∣∣Θμ(y|x) − Θν(y′|x′)

∣∣ ≤ L
(
W 1(μ, ν) + |x− x′| + |y − y′|

)
.

Assumption 2.3 (W 1 non-expansive). The map Θ : E × P(E) → Pac
0 (E)

is non-expansive for the Wasserstein-1 distance: for all x, x′ ∈ E and for all
(μ, ν) ∈ P(E)2,

W 1
(
Θμ(dy|x),Θν(dy|x′)

)
≤ W 1(μ, ν) + |x− x′|.

All the proposal distributions presented in Section 3 are based on a convo-
lution product with one or many fixed kernels. The smoothness and bounded-
ness properties of the proposal distribution (Assumptions 2.1, 2.2, 2.3) are thus
inherited from the properties of these kernels. Moreover, we note that these as-
sumptions on the proposal distribution and the compactness Assumption 1.1 on
the target distribution could be replaced by assumptions on the ratio between
the two distributions as explained at the end of Appendix A (see in particular
Remark A.4).

The next two assumptions are needed to prove the long-time convergence
property in Section 2.4.
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Assumption 2.4. There exists η ∈ (0, 1) such that

∀u ∈ [0,+∞), h(u) ≤ η.

Remark 2.5. Assumption 2.4 is satisfied for instance for h(u) = ηmin(1, u)
(which is referred as the “lazy Metropolis-Hastings” acceptance function in [57]).
We make this assumption mostly for technical reasons in order to obtain in
an easy manner an explicit convergence rate in Theorem 2.15. However, using
compactness arguments, we can prove that the convergence of (μt)t towards π
still holds without this assumption (see Corollary B.6).

The next assumption ensures that the proposal distribution is not too “far”
from π.

Assumption 2.6 (Monotonicity). The proposal distribution Θ satisfies the fol-
lowing monotonicity property: there exists a non decreasing function

c− : [0, 1] → (0, 1],

such that for all μ ∈ Pac
0 (E),

inf
(x,y)∈E2

Θμ(y|x)
π(y) ≥ c−

(
inf
x∈E

μ(x)
π(x)

)
.

Remark 2.7. Note that under Assumptions 1.1 and 2.1, Assumption 2.6 is
always satisfied with a constant function c− ≡ κ−/M0. Sharper results can be
obtained in specific cases. Moreover, note that Assumptions 2.1, 2.2 and 2.3 are
not necessary to prove Theorem 2.15.

Remark 2.8. The monotonicity Assumption 2.6 is satisfied for all the “con-
volution based” methods such as Algorithms 2 and 3, which will be introduced
later, since for m > 0, it holds that:

[∀y ∈ E, mπ(y) ≤ μ(y)] =⇒ [∀y ∈ E, mK � π(y) ≤ K � μ(y)],

and therefore, if the left-hand side condition holds, dividing by π(y) yields:

∀y ∈ E,
K � μ(y)
π(y) ≥ m

K � π(y)
π(y) .

On the right-hand side of the last inequality the ratio K � π(y)/π(y) depends
only on π and is bounded from below, at least for small interaction kernels K,
since K � π converges uniformly towards π as K → δ0. In the degenerate case
K = δ0, we obtain c−(m) = m for all m > 0 (see Remark 2.17).

2.2. Main result

The following theorem is our main convergence result.
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Theorem 2.9. Let μ̂N
t = 1

N

∑N
i=1 δXi

t
be the random empirical distribution of

the particle system constructed at the t-th iteration of Algorithm 1 with an i.i.d.
μ0 ∈ Pac

0 (E) distributed initial condition. Under Assumptions 2.1, 2.2, 2.3, 2.4
and 2.6, there exist C1, C2, C3 > 0 and λ ∈ (0, 1) which depend only on μ0, π
and E such that for all t ∈ N,

EW 1(μ̂N
t , π) ≤ C1β(N)etC2 + C3(1 − λ)t/2,

where

β(N) :=

⎧⎨⎩
CN−1/2 if d = 1
CN−1/2 log(N) if d = 2
CN−1/d if d > 2

, (5)

and C > 0 is a constant which depends only on E and π. In particular β(N) → 0
as N → + ∞.

Remark 2.10. The convergence speed in t of the second term on the right-hand
side is geometric. It corresponds to the convergence speed of the limit nonlinear
Markov chain stated in Theorem B.2. Note that it is also the convergence speed
of the classical Metropolis-Hastings algorithm. This result does not account for
practical mixing issues that will be described later.

Proof. This result is deduced from Theorem 2.11 and 2.15, as it is a direct
consequence of the triangle inequality

EW 1(μ̂N
t , π) ≤ EW 1(μ̂N

t , μt) + EW 1(μt, π),

and the convergence results (7) and (10). In order to bound the second term
on the right-hand side, we recall that on the compact set E, the total variation
norm controls the Wasserstein-1 distance [85, Theorem 6.15].

By the Kantorovich characterisation of the Wasserstein distance [85, Remark
6.5], this result ensures the convergence in expectation of any Lipschitz observ-
able (and by density of any continuous observable) in the double limit N → +∞
and t → +∞ provided that β(N)eC2t → 0. More precisely, for any ε > 0, it is
possible to find a time t(ε) such that the second term on the right-hand side
of the bound in Theorem 2.9 is smaller than ε/2. Then since β(N) → 0, we
can find N(ε) which makes the first term at t(ε) also smaller than ε/2. This
shows that the expectation of the distance between the empirical measure of the
particle system and the target distribution can be made arbitrarily small. Note
however that these results and in particular the link between N and t are mostly
of theoretical nature and often suboptimal; in practice higher convergence rates
may be obtained (see Section 5).

Moreover, although Theorem 2.9 states a geometric convergence result for
the nonlinear samplers which is similar to classical convergence results for the
classical (linear) Metropolis-Hastings algorithm, the behaviours of nonlinear and
linear samplers can be very different in practise. Nonlinear samplers are typically
much more efficient in the sense that they need less iterations to converge and
although each iteration is more costly, the total computation time remains much
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shorter. In addition to the experiments shown in Section 5, Remark 2.17 gives
a theoretical result obtained as a consequence of Theorem 2.9 which illustrates
this difference.

2.3. Mean field approximation

In this section, we show that the system of particles defined by Algorithm 1
satisfies the propagation of chaos property and that the limiting law at each
iteration is the law of the nonlinear Markov chain with transition kernel satis-
fying (1). From now on, we assume that the proposal distribution Θ satisfies
Assumptions 2.1, 2.2 and 2.3 (see also the discussion in Remark A.4).

The main result of this section is the following theorem.

Theorem 2.11 (Coupling bound). Let Θ be a proposal distribution which sat-
isfies Assumptions 2.1, 2.2 and 2.3. Let t ∈ N. There is a probability space
on which are defined a system of N i.i.d. nonlinear Markov chains (Xi

t)t,
i ∈ {1, . . . , N}, defined by the transition kernel (1) and a system of N particles
(Xi

t)t, i ∈ {1, . . . , N}, which is equal in law to the N -particle system constructed
by Algorithm 1, such that

∀i ∈ {1, . . . , N}, E|Xi

t −Xi
t | ≤ β(N)etCΘ , (6)

where CΘ > 0 is a constant which depends only on π and Θ and where β(N) is
defined by (5)

The proof of Theorem 2.11 is based on coupling arguments inspired by [78]
and adapted from [28]. It can be found in Appendix A. This so-called coupling
estimate classically implies the following properties (see [78]).

Corollary 2.12 (Mean-field limit and propagation of chaos). Let Θ be a pro-
posal distribution which satisfies Assumptions 2.1, 2.2 and 2.3. Let (Xi

0)i∈{1,...,N}
be N i.i.d. random variables with common law μ0 ∈ P(E) ( chaoticity assump-
tion). Let t ∈ N and let (Xi

t)i∈{1,...,N} be the N particles constructed at the t-th
iteration of Algorithm 1. Let μt = T (t)[μ0] be the t-th iterate of the transition
operator (3) starting from μ0, that is μt is the law of the nonlinear Markov chain
defined by the transition kernel (1) at iteration t. Then the following properties
hold true.

1. The (random) empirical measure μ̂N
t = 1

N

∑N
i=1 δXi

t
satisfies

EW 1(μ̂N
t , μt) ≤ C1β(N)etC2 , (7)

where C1, C2 > 0 are two absolute constants and β(N) is defined by (5).
2. The sequence of random empirical measures μ̂N

t = 1
N

∑N
i=1 δXi

t
, seen a

sequence of P(E)-valued random variables, converges in law towards the
deterministic limit:

μ̂N
t −→

N→+∞
μt.
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We recall that the space of probability measures is endowed with the topol-
ogy of the weak convergence, i.e. convergence against bounded continuous
test functions. The convergence in law of a sequence of random measures
thus means the weak convergence of their laws in the space P(P(E)), i.e.
since μt is deterministic, it holds that Law(μ̂N

t ) ∈ P(P(E)) → δμt ∈
P(P(E)) where δμt is the Dirac mass at the point μt ∈ P(E) and the
convergence is the weak convergence in P(P(E)). This is also equivalent
to say that for all test function Φ ∈ Cb(P(E)), E[Φ(μ̂N

t )] → Φ(μt).
3. For every -tuple of continuous bounded functions ϕ1, . . . ϕ� on E, it holds

that: ∫
E�

ϕ1(x1) . . . ϕ�(x�)μ�,N
t (dx1, . . . ,dx�) −→

N→+∞

�∏
k=1

〈ϕk, μt〉, (8)

where μ�,N
t is the joint law at time t of any subset of  particles constructed

by Algorithm 1 at iteration t.
Proof. The first property follows from the triangle inequality

EW 1(μ̂N
t , μt) ≤ EW 1(μ̂N

t , μN
t ) + EW 1(μN

t , μt),

where μN
t = 1

N

∑N
i=1 δXi

t
is the empirical measure of the N nonlinear Markov

chains constructed in Theorem 2.11. The first term on the right-hand side is
bounded by (6) by definition of the Wasserstein distance and the exchangeability
of the processes. The second term on the right-hand side is bounded by β(N)
by [38, Theorem 1]. The second property is a classical consequence of (6), see
[46, Section 1]. The third property is equivalent to the second property by [78,
Proposition 2.2].

The property (8) corresponds to the original formulation of the propagation of
chaos introduced by [55]. From our perspective, it justifies the use of Algorithm 1
and ensures that as the number of particles grows to infinity and despite the
interactions between the particles, we asymptotically recover an i.i.d. sample.
The final MCMC approximation of the expectation of an observable ϕ ∈ Cb(E)
is thus given at the t-th iteration by:∫

E

ϕ(x)π(dx) � 1
N

N∑
i=1

ϕ(Xi
t).

Remark 2.13. In [52], the authors prove the propagation of chaos towards
a continuous-time (nonlinear) diffusion process for a classical random walk
Metropolis-Hastings algorithm in the product space EN where the trajectory
of each of the N dimensions is interpreted as a particle, where the target dis-
tribution π⊗N is tensorized and under a specific scaling limit in N for the time
and the size of the random-walk kernel. In this algorithm, each move is globally
accepted or rejected for the N particles whereas in Algorithm 1, the accep-
tance step is individualized for each particle. One consequence is that, unlike
the algorithm in [52], for a fixed number N of particles, π⊗N is in general not
a stationary distribution of the particle system defined by Algorithm 1.
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2.4. Long-time asymptotics

In this section, we prove that π is the unique stationary measure of the nonlinear
Markov chain defined by the transition kernel (1) and we give a quantitative
long-time convergence result.

2.4.1. Main result

Let (μt)t∈N be the sequence of laws of the nonlinear Markov chain defined by
the transition kernel (1). It satisfies the recurrence relation

μt+1 = T [μt], (9)

where we recall that given μ ∈ P(E), the transition operator T is defined by:

T [μ](dx) = μ(dx) +
∫
E

π(x)Wμ(x → y)
(
μ(dy)
π(y) dx− μ(dx)

π(x) dy
)
,

and
Wμ(x → y) := Θμ(y|x)h(αμ(x, y)).

Note that if the initial condition has a density with respect to the Lebesgue
measure, then μt has also a density with respect to the Lebesgue measure. In
the following we make this assumption and we write with a slight abuse of
notations μt(x)dx ≡ μt(dx) for this density. The following elementary lemma
shows that the ratio μt/π is controlled by the initial condition.

Lemma 2.14. For any t ∈ N, let μt ∈ Pac
0 (E) be given by the recurrence

relation (9) with initial condition μ0 ∈ Pac
0 (E). Then

inf
x∈E

μt(x)
π(x) ≥ inf

x∈E

μ0(x)
π(x) , sup

x∈E

μt(x)
π(x) ≤ sup

x∈E

μ0(x)
π(x) .

Proof. Since Wμ(x → y) ≥ 0 and
∫
E
Wμ(x → y)dy ≤ 1, this comes directly

from the relation
T [μ](x)
π(x) =

(
1 −

∫
E

Wμ(x → y)dy
)
μ(x)
π(x) +

∫
E

Wμ(x → y)μ(y)
π(y)dy,

for all μ ∈ Pac
0 (E) and x ∈ E.

The main result of this section is the following convergence result which
is a direct consequence of the results presented in the following sections and
discussed below.

Theorem 2.15. Let Θ ∈ Pac
0 (E) be a proposal distribution which satisfies As-

sumption 2.6 and h be an acceptance function which satisfies Assumption 2.4.
Then there exist two (explicit) constants C > 0 and λ ∈ (0, 1) which depend
only on μ0, π and E such that

‖μt − π‖TV ≤ C(1 − λ)t/2 (10)
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Proof. Using the fact that the Total Variation norm is equal to the L1 norm of
the probability density functions and the Cauchy-Schwarz inequality, it holds
that

‖μt − π‖TV =
∫
E

|μt(x) − π(x)|dx =
∫
E

√
π(x)

√
π(x)

∣∣∣∣μt(x)
π(x) − 1

∣∣∣∣ dx
≤
√

2H[μt|π],

where H[μt|π] :=
∫
E
π(x)|μt(x)/π(x)−1|2dx is the relative entropy which will be

introduced later, see (13) with the function φ : s �→ 1
2 (s − 1)2. The conclusion

follows from Proposition 2.20 which proves that the relative entropy decays
geometrically in t.

Remark 2.16. The last inequality between the TV norm and the square root
of the relative entropy is a simple form of a Csiszár-Kullback-Pinsker inequality,
see [54, Appendix A] and [13].

Remark 2.17 (Convergence rate of nonlinear samplers). In this proof, the
convergence rate λ is obtained by a crude estimate of the infimum of the jump
rate Wft(x → y). We do not claim that this rate is optimal. In the degenerate
case Θμ(y|x) = μ(y), the best rate obtained is equal to h(1) by taking an initial
condition arbitrarily close to π (see Remark 2.8). In Remark 3.1, it is shown
that these proposal distributions can be obtained as the limit when σ → 0 of
the proposal distributions Θμ(y|x) = Kσ � μ(y) where Kσ is a random-walk
kernel with variance σ2. These proposal distributions are the simplest nonlinear
analog of the random-walk Metropolis-Hastings algorithm with kernel Kσ (the
proposal distribution in this case is Kσ � δx(y)). However in the nonlinear case,
the convergence rate tends to a constant nonnegative value when σ → 0 while
in the random-walk Metropolis-Hastings case the convergence rate tends to 0
(see Theorem B.7).

In the linear case, that is when T is the linear transition operator of the
classical random walk Metropolis-Hastings algorithm, the convergence of the
sequence of iterates of T is studied in particular in [64] and more recently in
[27] using analytical spectral methods. It is not possible to follow this strategy
in the nonlinear case. In order to motivate our strategy, let us notice that the
recurrence relation (9) can be interpreted as the explicit Euler discretization
scheme

μt+1 − μt

Δt
= T [μt] − μt, (11)

of the nonlinear Partial Differential Equation

∂tft = T [ft] − ft (12)

with a constant time-step Δt = 1. The PDE (12) has a remarkable entropic
structure which is detailed in Appendix B and which allows to prove that ft → π
as t → +∞. Entropy methods are by now a classical tool to study the long-
time properties of both linear and nonlinear PDEs, see [54, 75]. The proof of
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Theorem 2.15 is based on the adaptation of these ideas to the present discrete-
time setting. A more detailed discussion of the links between (11) and (12) can
be found in Appendix B.3. Entropy methods have been used previously in a
similar context in [51] to prove the long-time convergence of a process obtained
as the scaling limit of a particle-based Metropolis-Hastings algorithm [52] which,
unlike the present case, is a continuous-time (nonlinear) diffusion process (see
Remark 2.13).

2.4.2. Entropy and dissipation

For a given convex function φ : [0,+∞) → [0,+∞) such that φ(1) = 0, the
relative entropy H[μ|π] and dissipation D[μ|π] of a probability density μ ∈
Pac(E) with respect to π are defined respectively by

H[μ|π] :=
∫
E

π(x)φ
(
μ(x)
π(x)

)
dx, D[μ|π] := −

∫
E

φ′
(
μ(x)
π(x)

)(
T [μ](x)−μ(x)

)
dx.

(13)
Using the detailed balance property

π(x)Wμ(x → y) = π(y)Wμ(y → x),

for all x, y ∈ E and μ ∈ Pac(E), it holds that

D[μ|π] =
1
2

∫∫
E×E

π(x)Wμ(x → y)
(
μ(y)
π(y) − μ(x)

π(x)

)(
φ′
(
μ(y)
π(y)

)
− φ′

(
μ(x)
π(x)

))
dxdy,

and thus D[μ|π] ≥ 0 by convexity of φ.
In the following, we focus on the case φ(s) = 1

2 (s−1)2 for which we can prove
the following crucial lemma. Note also that in this case the relative entropy is
equal to a weighted L2 norm and thus dominates the Total Variation norm
between probability density functions.

Lemma 2.18. Let φ(s) = 1
2 (s − 1)2, then the sequence (H[μt|π])t∈N is non-

increasing.

Proof. In this case,

H[μ|π] = 1
2

∫
E

π(x)
∣∣∣∣μ(x)
π(x) − 1

∣∣∣∣2dx = 1
4

∫∫
E×E

π(x)π(y)
∣∣∣∣μ(x)
π(x) − μ(y)

π(y)

∣∣∣∣2dxdy,

(14)
and

D[μ|π] = 1
2

∫∫
E×E

π(x)Wμ(x → y)
∣∣∣∣μ(y)
π(y) − μ(x)

π(x)

∣∣∣∣2dxdy. (15)

Moreover, since φ(s) = 1
2 (s− 1)2 is a polynomial of order 2, the exact Taylor

expansion
φ(v) = φ(u) + φ′(u)(v − u) + 1

2φ
′′(u)(v − u)2,
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yields

H[μt+1|π] −H[μt|π] = −D[μt|π] + 1
2

∫
E

π(x)
∣∣∣∣μt+1(x)

π(x) − μt(x)
π(x)

∣∣∣∣2dx. (16)

Using that μt+1 = T [μt] and the definition of T , it holds that∫
E

π(x)
∣∣∣∣μt+1(x)

π(x) − μt(x)
π(x)

∣∣∣∣2dx
=
∫
E

π(x)
∣∣∣∣∫

E

Wμt(x → y)
(
μt(y)
π(y) − μt(x)

π(x)

)
dy
∣∣∣∣2dx.

By the Cauchy-Schwarz inequality, we get∫
E

π(x)
∣∣∣∣μt+1(x)

π(x) − μt(x)
π(x)

∣∣∣∣2dx
≤
∫∫

E×E

π(x)Wμt(x → y)
∣∣∣∣μt(y)
π(y) − μt(x)

π(x)

∣∣∣∣2 ∫
E

Wμt(x → z)dzdxdy.

Reporting into (16) and using (15) yields

H[μt+1|π] −H[μt|π]

≤ −1
2

∫∫
E×E

π(x)Wμt(x → y)
(

1 −
∫
E

Wμt(x → z)dz
)∣∣∣∣μt(y)

π(y) − μt(x)
π(x)

∣∣∣∣2dxdy.

(17)

Since Wμt(x → y) ≥ 0 and
∫
E
Wμt(x → z)dz ≤ 1, the right-hand side is non

negative which concludes the proof.

2.4.3. Exponential decay of the entropy

Under the Assumptions 2.4 and 2.6, it is possible to improve the result of
Lemma 2.18 and to prove a quantitative exponential decay result. Since the
entropy is given by (14), owing to (17), the goal is to bound from below by a
multiple of π(y) the quantity

Wμt(x → y)
(

1 −
∫
E

Wμt(x → z)dz
)
,

for all x, y ∈ E and uniformly in t.
The main consequence of Assumption 2.6 is the following lower bound.

Lemma 2.19. Let h : [0,+∞) → [0, 1] be a continuous non-decreasing accep-
tance function which satisfies the relation (2). Let Θ be a proposal distribution
which satisfies Assumption 2.6. Then for all μ ∈ Pac

0 (E) and all x, y ∈ E,

Wμ(x → y) ≥ λ(μ)π(y), λ(μ) := c−
(

inf
x∈E

μ(x)
π(x)

)
h(1) ∈ (0, 1].
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As a consequence, using the fact that c− is non decreasing and Lemma 2.14, for
any t ∈ N, it holds that

Wμt(x → y) ≥ λ0π(y), λ0 := c−
(

inf
x∈E

μ0(x)
π(x)

)
h(1).

Proof. Let us first prove that for any bounded interval [a, b] with a > 0, it holds
that

inf
(x,y)∈[a,b]2

yh

(
x

y

)
= ah(1).

Since h is continuous non-decreasing, for each y ∈ [a, b], the function x ∈ [a, b] �→
yh(x/y) has a minimum in x = a. This shows that the minimum on the function
(x, y) ∈ [a, b]2 �→ yh(x/y) is attained on the segment {(a, y), y ∈ [a, b]}. Since
yh(a/y) = ah(y/a), the same reasoning shows that this minimum is attained
when y = a. The conclusion follows. Then, using Assumption 2.6 and applying
this result with a = c−

(
infx∈E

μ(x)
π(x)

)
yields

Wμ(x → y) = Θμ(y|x)h(αμ(x, y)) = Θμ(y|x)
π(y) h

(
Θμ(x|y)π(y)
π(x)Θμ(y|x)

)
π(y)

≥ c−
(

inf
x∈E

μ(x)
π(x)

)
h(1)π(y).

We are now ready to prove that in this case, the relative entropy converges
exponentially fast towards zero.

Proposition 2.20. Under Assumption 2.4 and Assumption 2.6, there exists a
constant λ ∈ (0, 1) such that for all t ∈ N,

H[μt|π] ≤ (1 − λ)tH[μ0|π].

Proof. From the relation (17) and using the assumptions on h and Θ, it holds
that

H[μt+1|π] −H[μt|π] ≤ −2λ0(1 − η)H[μt|π].

Moreover by definition of λ0, it holds that λ0 ≤ η and thus λ := 2λ0(1−η) < 1.
We deduce that

H[μt+1|π] ≤ (1 − λ)H[μt|π],

and the conclusion follows.

3. Some collective proposal distributions

The proposal distribution can be fairly general and so far, we have not detailed
how to choose it. Several choices of proposal distributions are gathered in this
section.

This proposal should use the maximum of information coming from the value
of the target π, in order to increase the fitness of Θμ to the true distribution.
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However, the proposal must also allow for some exploration of the parameter
space, this problem is addressed for some of the proposals.

Here, we only intend to present some of the proposals possible, each one
having pros and cons, on the theoretical and practical side.

In view of Theorem 2.12, we can see each of the proposal distributions pre-
sented in this section either as a specific choice of nonlinear kernel (1) with
its associated nonlinear process or as its particle approximation given by Algo-
rithm 1. From this second perspective the proposal distribution can be seen as a
specific interaction mechanism between the particles. More specifically, it depicts
a specific procedure which can be interpreted as “information sharing” between
the particles: given the positions of all the N particles at a given time, we aim
at constructing the best interaction mechanism which will favour a specific as-
pect such as acceptance, convergence speed, exploration etc. By analogy with
systems of swarming particles which exchange local information (here, the local
value of the target distribution) to produce global patterns (here, a globally well
distributed sample), we call this class of proposal distributions collective. The
class of methods introduced will be referred as Collective Monte Carlo methods
(CMC). On the contrary, the nonlinear kernels introduced in [3] do not belong
to this class as explained in Appendix C.1. For each proposal we give an im-
plementation which, starting from population of particles (X1, . . . , XN ) ∈ EN ,
returns a proposal Y .

Although our theoretical results (Theorem 2.12 and Theorem 2.15) are gen-
eral enough to encompass almost all of the proposal distributions described here
(see Section 2.1), the validity and numerical efficiency of each of them will be
assessed in Section 5 on various examples of target distributions.

3.1. Metropolis-Hastings proposal (PMH)

Proposal distribution The classical Metropolis-Hastings algorithm fits into
our formalism, with

Θμ(dy|x) = q(y|x)dy,
where q is a fixed random walk kernel which does not depend on μ.

Particle implementation In this case, Algorithm 1 reduces to the simulation
of N independent Metropolis-Hastings chains in parallel.

3.2. Convolution kernel proposal (Vanilla CMC)

Proposal distribution Let us then consider the following proposal distribu-
tion given by the convolution:

Θμ(dy|x) = K � μ(y)dy :=
(∫

E

K(y − z)μ(dz)
)

dy, (18)

where K is a fixed interaction kernel, that is a (smooth) radial function which
tends to zero at infinity. Typical examples are K(x) = N (0, σ2Id) and K(x) =
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1
|Bσ(0)|1Bσ(0)(x), where σ > 0 is fixed and Bσ(0) denotes the ball of radius σ > 0
centred at 0 in R

d. Note that the proposal distribution does not depend on the
starting point x. It may happen that the proposed state falls outside E. In this
case it will be rejected since π is equal to zero outside E. One can therefore take
equivalently Θμ(dy|x) ∝ K �μ(y)1E(y)dy (the same remark holds for the other
collective proposal distributions).

Particle implementation At each time step t, each particle i samples uni-
formly another particle j and then draw a proposal Y i

t ∼ K(Xj
t ,dy) which can

be seen as a “mutation” of Xj
t . This “resampling with mutation” procedure is

somehow similar to a (genetic) Wright-Fisher model (see for instance [33] for a
review of genetic models). Since a “mutation” may or may not be accepted, it
can be described as a biased Wright-Fisher model.

The collective aspect is twofold: first the proposal distribution allows large
scale move on all the domain filled by the N particles; then during the accep-
tance step, for a particle in X and a proposal in Y the acceptance ratio can
be understood as a measure of discrepancy between the target ratio π(Y )

π(X) and

the observed ratio K�μ̂N (Y )
K�μ̂N (X) between the (average) number of particles around

Y and the (average) number of particles around X. In the linear Metropolis-
Hastings case with a symmetric random-walk kernel, the acceptance ratio only
takes into account the target ratio. As a consequence, the acceptance probability
of a proposal state depends not only on how “good” it is when looking at the
values of π but also on how many particles are (or are not) already around this
proposal sate compared to the present state (and therefore on how accepting
the proposal would improve the current global state of the system).

Remark 3.1 (Moderate interaction, part 1). When σ → 0 we obtain the de-
generate proposal distribution Θμ(dy|x) = μ(dy) (which does not satisfy the
assumption Θμ(dy|x) ∈ Pac

0 (E) in general). It would not make sense to take
this proposal distribution at the particle level in Theorem 2.11. However, it
makes sense to consider the case Θμ(y|x) = μ(y)dy in the nonlinear kernel (1)
where μ ∈ Pac

0 (E). This degenerate proposal distribution still satisfies the as-
sumptions of Theorem 2.15 and could lead to a better rate of convergence (see
Remark 2.17). It is thus worth mentioning that this degenerate proposal dis-
tribution can also be obtained as the many-particle limit of a system of par-
ticles under an additional moderate interaction assumption [68, 53, 28]. See
Remark A.3 for additional details.

Draw uniformly j ∈ {1, . . . , N};
Draw e ∼ K;
Set Y = Xj + e;

Algorithm 2: Vanilla CMC proposal generation
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3.3. Markovian Mixture of Kernels Proposal (MoKA and
MoKA-Markov)

Proposal distribution A limitation of the Convolution Kernel Algorithm 2
is the fixed size of the interaction kernel. A remedy is given by the following
collective proposal distribution which is a convolution with a mixture of kernels
(with different sizes) with (potentially) nonlinear mixture weights:

Θμ(dy|x) =
P∑

p=1
αp(μ)Kp � μ(y)dy,

A possible choice for the weights is to take a solution of the following minimi-
sation problem:

min
α∈Sp

∫
E

φ

⎛⎝
∑

p αpKp�μ(x)∫
E

∑
p αpKp�μ(x′)μ(dx′)

π(x)∫
E

π(x′)μ(dx′)

⎞⎠ π(x)∫
E
π(x′)μ(dx′)

μ(dx), (19)

where Sp denotes the p-simplex and where φ is convex non-negative such that
φ(1) = 0. Typically φ(s) = s log s − s + 1. In this case, it corresponds to min-
imising the Kullback-Leibler divergence between the probability distributions∑

p αpKp�μ(x)μ(dx)∫
E

∑
p αpKp�μ(x′)μ(dx′) and π(x)μ(dx)∫

E
π(x′)μ(dx′) . Note that if μ is interpreted as the cur-

rent knowledge (i.e. the distribution of the particles or of the associated non-
linear chain), then this minimisation problem can be understood as choosing
the proposal distribution which is the closest to π relatively to μ. In our exper-
iments, we found that choosing φ(s) = |1 − s|, leads to similar, slightly better
results compared to φ(s) = s log(s)−s+1. Moreover, this choice is also numeri-
cally more stable so we chose to implement this version, that we call Markovian
Mixture of Kernels (MoKA-Markov).

Another choice for the weights, which is non-Markovian, is to take αp

proportional to the geometric mean of the acceptance ratio of the particles
which have chosen the kernel p at the previous iteration. This method will be
referred as Mixture of Kernels Adaptive CMC (MoKA). It shares similarities
with the D-kernel algorithm of [30] and the arguments developed by the authors
suggest that the two versions (Markovian and MoKA) may be asymptotically
equivalent. The proof is left for future work.

Particle implementation Same as in Algorithm 2 but with an additional
step to choose a “mutation kernel” at each proposal step. The computation of
the weights of the mixture can be done in a fully Markovian way at the beginning
of each iteration before the proposal step or, in MoKA, are computed at the
end of the iteration and used at the next iteration.

In Section 5 we will show that this algorithm can favours initial exploration
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if initially the particles are in an area of low potential.

Compute the weights α1, . . . , αP using (19);
Draw p ∈ {1, . . . P} with probability (α1, . . . , αP );
Draw uniformly j ∈ {1, . . . , N};
Draw e ∼ Kp;
Set Y = Xj + e;
Algorithm 3: Markovian Mixture of Kernels proposal generation

3.4. Kernelised importance-by-deconvolution sampling (KIDS)

Proposal distribution Algorithms based on a simple convolution operator
(Algorithms 2 and 3) keep a “blind” resampling step. In order to improve the
convergence speed of such algorithms one may want to favour the selection
of “good” states. For a fixed interaction kernel K, one can choose a proposal
distribution of the form:

Θμ(y|x) = K � νμ(y),

where νμ solves the following deconvolution problem with an absolute continuity
constraint:

min
ν�μ

∫
E

log
(
K � ν(x)
π(x)

)
K � ν(x)dx. (20)

That is, we are looking for a weight function w ≥ 0 which satisfies the constraint∫
E

w(x)μ(dx) = 1

and such that the measure defined by νμ(A) =
∫
A
w(x)μ(dx) minimises the

KL divergence above. The function w is the Radon-Nikodym derivative of ν
with respect to μ. In other words the proposal distribution focuses on the parts
of the support of μ which are “closer” to π. Note also that this optimization
procedure does not depend on the normalisation constant of π. Similarly to
Algorithm 3, the idea is to minimize a KL divergence between a set of proposal
distributions and the distribution π. However, in the minimization problem 19
the goal was to optimize the choice of the convolution kernel K among a given
family while in the optimization problem 20, the goal is to optimize the support
of the distribution μ to focus on the parts which are “closer” to π. Finally, it
should be noted that the two minimization procedures are not excluding and
that both can be conducted at the same time.

Remark 3.2. Although the proposal distributions KIDS and MoKA-Markov
perform well in practice, we did not manage to prove the regularity Assump-
tion 2.3 because we do not know the regularity of the solutions of the mini-
mization problems (19) and (20). Since the weights αp are bounded in (19),
MoKA-Markov satisfies Assumption 2.2 but we did not manage to prove this
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assumption for KIDS for the same reason as before. However, Vanilla CMC sat-
isfies all the assumptions since the proposal distribution is a simple convolution
with a smooth kernel.

Particle implementation In the case of an empirical measure μ̂N = 1
N δXi ,

the Radon-Nikodym weight function w can simply be seen as a vector of N
weights (w1, . . . , wN ) ∈ [0, 1]N such that

∑
i w

i = 1 and the measure νμ̂N is
thus a weighted empirical measure:

νμ̂N :=
N∑
i=1

wiδXi . (21)

The deconvolution procedure gives more weight to the set of particles that are
already “well distributed” according to π. These particles are thus more often
chosen in the Wright-Fisher resampling step (see Algorithm 2).

Note that although the weighted empirical measure proposal (21) is very rem-
iniscent of an Importance Sampling procedure, the computation of the weights
here follows from a completely different idea.

In practice we solve the deconvolution problem using the Richardson-Lucy
algorithm [71, 59] (also known as the Expectation Maximisation algorithm). See
for instance [67, Section 5.3.2] where it is proved that the iterative algorithm
below converges towards a minimiser of the Kullback-Leibler divergence (20) in
the case of an empirical measure μ. Note that the computation of the weights
(Richardson-Lucy loop) can be done before the resampling step.

Set w
(0)
i = 1 for all i ∈ {1, . . . , N};

for s = 0 to S − 1 do
For all i ∈ {1, . . . , N}, update the weight by:
w

(s+1)
i = w

(s)
i

∑N
j=1

π(Xj
t )K(Xi

t−Xj
t )∑N

k=1 w
(s)
k K(Xj

t−Xk
t )

;
end
Set wi = w

(S)
i for all i ∈ {1, . . . , N};

Normalize the weights (w1, . . . , wN );
Draw j ∈ {1, . . . , N} with probability (w1, . . . , wN );
Draw e ∼ K;
Set Y = Xj + e;

Algorithm 4: Kernel Importance-by-Deconvolution Sampling proposal
generation

3.5. Bhatnagar-Gross-Krook sampling (BGK)

Proposal distribution In Algorithms 2, 3 and 4, the proposal distribution is
based on a (mixture of) symmetric kernels: this symmetry property is reflected
in the proposal distribution and might not well represent the local properties of
the target distribution. In dimension d ≥ 2, we can adopt a different strategy by
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sampling proposals from a multivariate Gaussian distribution with a covariance
matrix that is computed locally. An example is given by the following proposal
distribution:

Θμ(dy|x) =
(∫

E

GΣ̂μ(z)(m̂μ(z) − y)μ(dz))
)

dy,

where
m̂μ(z) = 1∫

E
K(z − z′)μ(dz′)

∫
E

K(z − z′)z′μ(dz′), (22)

and

Σ̂μ(z) = 1∫
E
K(z − z′)μ(dz′)

∫
E

K(z−z′)(z′−m̂μ(z))(z′−m̂μ(z))Tμ(dz′), (23)

and where K is a fixed interaction kernel. This proposal distribution and the as-
sociated transition operator are reminiscent of a Bhatnagar-Gross-Krook (BGK)
type operator [12].

In the particular case of K(x, y) ≡ 1, we have a more simple algorithm which
can be interpreted as a Markovian version of the Adaptive Metropolis-Hastings
algorithm introduced by [44]. However such algorithm does not benefit from
the appealing properties of local samplers. Indeed, when the target distribution
is multimodal, we can take more advantageously as interaction kernel K(x) ∝
1|x|<σ, where the threshold σ allows the proposal to be adapted to the local
mode. Note that moving across the modes is still possible thanks to the choice
of another particle at the first step (see proposal algorithm below). The main
issue is the choice of σ that must be higher than the size of the modes but
smaller than the distance between the modes.

Particle implementation Each particle, say Xi
t samples another particle,

say Xj
t . Then we compute the local mean and covariance around Xj

t and we
draw a proposal Y i

t for Xi
t according to a Normal law with the locally computed

parameters. As before it may be cheaper to compute and store all the local means
and covariances before the resampling loop.

Draw j ∈ {1 . . . , N} uniformly;
Compute κ =

∑
i K(Xi

t , X
j
t ) ;

Compute the local mean m̂Xj = 1
κ

∑
i K(Xi

t , X
j
t )Xi

t ;
Compute the local covariance
Σ̂Xj = 1

κ

∑
i K(Xi

t , X
j
t )(Xi

t − m̂Xj
t
)(Xi

t − m̂Xj
t
)T;

Draw Y ∼ N (m̂Xj
t
, Σ̂Xj

t
);

Algorithm 5: BGK proposal generation

4. GPU implementation

A major bottleneck for the development of collective samplers based on inter-
acting particles is the computational cost associated to the simulation of N2
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pair-wise interactions between particles at every time step. To overcome this
issue, many methods have been proposed throughout the years, often using
techniques borrowed from N -body simulations or molecular dynamics and de-
veloped since the 60’s. Let us cite for instance the Verlet and cell-list methods
for short-ranged interactions [83, 47, 76], the super-particle and fast multipole
methods [7, 74, 42] for long-ranged interactions or the more recent Random
Batch Method introduced by [50]. In the MCMC literature, such methods have
been applied for instance to particle smoothing in [56].

Most importantly, the last decade has seen the introduction of massively par-
allel GPU chips. Beyond the training of convolutional neural networks, GPUs
can now be used to simulate generic particle systems at ever faster rates and,
noticeably, without relying on numerical approximations, contrary to classical
N -body simulation algorithms. One goal of the present paper is to discuss the
consequences of this hardware revolution on Monte Carlo sampling, from the
practitioner point of view. The use of GPU in this context traces back at least
to [58]. Although in this article, the authors have focused on traditional SMC
and MCMC methods which are often embarrassingly parallelizable (with a lin-
ear complexity in N), it should be noted that, as such, GPU programming is
not a trivial task. In particular, let us quote [58] on the CUDA language, which
is the development environment for the Nvidia GPU chips: “a programmer pro-
ficient in C should be able to code effectively in CUDA within a few weeks of
dedicated study”. In the present article, our goal is to advocate the use of very
recent GPU routines developed for high-level languages (in particular Python)
which allow the end-user to benefit from GPU acceleration without any par-
ticular knowledge or experience in the CUDA programming language. Using
these techniques, our implementation offers a transparent Python interface for
massively parallelized MCMC methods, including both the traditional methods
(Metropolis-Hastings algorithm, SMC) which are linear in N and the popu-
lation based methods (CMC-related methods) with a quadratic footprint. For
the latter methods, the main specific technical difficulties are briefly described
below.

From the evaluation of kernel densities to the computation of importance
weights in the Richardson-Lucy loop (Algorithm 4), the bottleneck of the Col-
lective Proposal framework presented in Section 3 is the computation of an
off-grid discrete convolution of the form:

ai =
N∑
j=1

K(Xi
t , X

j
t ) bj (24)

for all i between 1 and N , with arbitrary weights bj . All CMC-related methods
have O(N2) time complexity, with a constant that is directly related to the
efficiency of the underlying implementation of the “kernel sum” (24).

In the machine learning literature, this fundamental operation is often under-
stood as a matrix-vector product between an N -by-N kernel matrix (K(Xi

t , X
j
t ))

and a vector (bj) of size N . Common implementations generally rely on linear
algebra routines provided e.g. by the PyTorch library [69] and have a quadratic
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memory footprint: even on modern hardware, this prevents them from handling
populations of more than N = 104 to 105 samples without making approxima-
tions or relying on specific sub-sampling schemes [86].

Fortunately though, over the last few years, efficient GPU routines have been
developed to tackle computations in the mould of (24) with maximum efficiency.
These methods can be accessed through the KeOps extension for PyTorch [70],
NumPy [81], R [79] and Matlab [60], that is developed by the third author
[21, 35, 37] and freely available at https://www.kernel-operations.io. In
practice, this library supports arbitrary kernels on the GPU with a linear mem-
ory footprint, log-domain implementations for the sake of numerical stability
and outperforms baseline PyTorch GPU implementations by one to two orders
of magnitude. Computing the convolution of (24) with a cloud of N = 106 points
in dimension 3 takes no more than 1s on a modern chip. Pairwise interactions
between populations of N = 105 samples may also be simulated in no more than
10ms, without making any approximation.

We run all the tests of Section 5 using a single gaming GPU, the Nvidia
GeForce RTX 2080 Ti on the GPU cluster of the Department of Mathematics
at Imperial College London. With 104 to 106 particles handled at any given
time, our simulations run in a handful of seconds at most, with performances
that enable the real-time sampling of large populations of interacting samples.
Our code is available on the third author’s GitHub page.

5. Numerical experiments

We now run experiments on several target distributions in low and moderately
high dimension.

Our code and its documentation are available online at

http://www.kernel-operations.io/monaco

and on the GitHub page of the third author. All our experiments can be run on
Google Colaboratory (colab.research.google.com) with a GPU within a few
seconds to a few minutes, depending on the method and number of independent
runs.

5.1. Methodology

5.1.1. Methods in competition

Among the variants of our methods, we show the results for

• The Vanilla CMC Algorithm 2 (named CMC in the following) with a
fixed interaction kernel K which is taken equal to the indicator of the
ball centered at zero with a given radius R. The quadratic cost of this
algorithm is only due to the computation of discrete convolutions.

https://www.kernel-operations.io
http://www.kernel-operations.io/monaco
colab.research.google.com
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• The Markovian version of the MoKA algorithm 3 with several interaction
kernels and adaptive weights (named MoKA Markov in the following).
In addition to the computation of the discrete convolutions, solving the
optimization problem (19) slightly increases the computational cost.

• The non-Markovian version of MoKA outline in Section 3.3 (named MoKA
in the following). Thanks to the simplified computation procedure of the
mixture weights compared to MoKA Markov, this algorithm has the same
computation cost as CMC.

• The hybrid algorithm which features both the adaptive interaction ker-
nels of MoKA (non-Markovian) and an adaptive weighting of the particles
obtained with Algorithm 4. It will be named MoKA KIDS in the follow-
ing. It is a significantly heavier method than CMC, as it relies on the
Richardson-Lucy iterations to optimise the deconvolution weights. In the
experiments shown below, this algorithm is roughly five times slower than
CMC in terms of computation time (but needs less iterations to converge).

Please note that we do not include the BGK and KIDS samplers in these
experiments: although we believe that the ideas behind these methods are in-
teresting enough to justify their presentation, we observe that they generally
do not perform as well as the other CMC variants and leave them aside for the
sake of clarity.

For the competitors, we consider the three following algorithms.

• As a baseline, we include a parallel implementation of Metropolis-Hastings
(named PMH in the following) with a number of parallel runs that is equal
to the number of particles in CMC and its variants.

• The Safe Adaptive Importance sampling (SAIS) algorithm from [25], which
is one of the state-of-the-art importance sampling based methods. It is de-
tailed in Section C.2. We note that unlike all the other Markovian methods,
the memory and computational cost of SAIS significantly increases with
the number of iterations since the number of particles is not constant – to
the best of our knowledge, no procedure has yet been proposed to remove
particles with time. We have implemented the so-called mini-batch ver-
sion as proposed in [25] but without the sub-sampling procedure since the
computation time is not a problem with our fast GPU implementation.
The parameters (in particular the kernel sequence and mixing weights)
are chosen according to the recommendation of the authors as detailed in
Section C.2.

• A simple (non-adaptive) Sequential Monte Carlo algorithm as described
in Section C.3 with a linear tempering scheme for the potentials and a
simple Metropolis-Hastings mutation kernel.

We emphasize the fact that in our implementation, all the methods, including
PMH and SMC which have a linear complexity in N , are parallelized on a GPU
using PyTorch [70] and KeOps [21]. All the methods are therefore comparable
in terms of computation time.
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5.1.2. Initialization and target distributions

We have chosen various target distributions in order to illustrate the main dif-
ficulties and to outline the strengths and weaknesses of the various methods
in competition. As an illustration we start with a banana-shaped distribution
in low dimension (Section 5.2) then we consider several variants of the classical
Gaussian mixture example introduced by [17] in moderately high dimension (up
to dimension 13), see Sections 5.3 and 5.5.

Another example of target distribution is included in Appendix E and we
include results for the estimation of the normalizing constant of some of the
target distributions below in Appendix D. Experiments in non-Euclidean spaces
such as the Poincaré hyperbolic plane and the group of 3D rotation matrices
are available online in our documentation.

We always clip distributions on the unit (hyper-)cube [0, 1]d. For all the
methods we have considered two types of initialization.

• A simple initialization where all the N particles are sampled uniformly
and independently in the unit hyper-cube.

• A difficult initialization with N particles independently distributed ac-
cording to

Xi
0 = (0.9, . . . , 0.9)T + 0.1U i

0 (25)

where U i
0 ∼ U([0, 1]d), that is all the particles are located in a small corner

of the domain.

5.1.3. Energy distance

We compare the results in term of Energy distance [72] between a true sample
of the target distribution and the population of particles at each step.

The Energy Distance (ED) between two probability distributions μ, ν in R
d

can be defined by several equivalent formulas. Perhaps, the simplest form is

E(μ, ν) = E|X − Y | − 1
2E|X −X ′| − 1

2E|Y − Y ′|,

where X,X ′ ∼ μ and Y, Y ∼ ν are independent. In the machine learning lit-
erature, it is often understood as a kernel norm comparable to other popular
distances such as the Wasserstein distance [36, 87]. This interpretation comes
from the formulation

E(μ, ν) = 1
2 〈μ− ν,K � (μ− ν)〉,

where K(x, y) = −|x− y| and where we recall that the convolution operator is
defined by K � μ(x) :=

∫
Rd K(x, y)μ(dy). Among all the possible kernels, this

particular choice is the simplest one which ensures that the distance between
two Dirac masses is equal to the distance between the points. Finally, by writing
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this latter expression in the Fourier space, the ED can also be understood as a
weighted L2 distance between the characteristic functions:

E(μ, ν) = Cd

∫
Rd

|ϕμ(z) − ϕν(z)|2
|z|d+1 dz,

for a constant Cd > 0 and where ϕμ(z) = EX∼μ[eiz·X ] is the characteristic
function of the probability measure μ. Note also that in dimension 1, the Energy
Distance is equal to the Cramér’s squared L2 distance between the cumulative
distribution functions Fμ and Fν of μ and ν:

E(μ, ν) =
∫
R

|Fμ(z) − Fν(z)|2dz.

It can be shown that the ED satisfies all the properties of a metric and in
particular E(μ, ν) = 0 if and only if μ = ν.

The Energy Distance can serve as a baseline to test the null hypothesis that
two random vectors X = (Xi)i∈{1,...,n}, Xi ∈ R

d and Y = (Yj)j∈{1,...,m}, Yj ∈
R

d are sampled from the same distribution. For this, we simply compute the
ED between the associated empirical measures μ̂X = 1

n

∑n
i=1 δXi and μ̂Y :=

1
m

∑m
j=1 δY j , namely:

En,m(X,Y ) := E(μ̂X , μ̂Y)

= 1
nm

∑
i,j

|Xi − Yj | −
1

2n2

∑
i,j

|Xi −Xj | −
1

2m2

∑
i,j

|Yi − Yj |.

It is shown in [77, 72] that this quantity can serve as a test statistic for equal
distributions which implies in particular that En.m tends to 0 as n,m → +∞
when X and Y are i.i.d. samples.

In order to measure the quality of the various samplers, we will compare the
ED between the output samples and a true sample of the target distribution,
both of size N . We consider that the sampler successfully manage to sample
the target distribution when the final samples fall within the 90% prediction
interval (computed with 1000 independent observations) around the average
Energy Distance between two i.i.d. exact samples of size N . It means that the
sample cannot be distinguished from a true sample.

5.2. Banana-shaped distribution

As a first illustrative example in dimension 2, we consider a mixture of three
(equally weighted) Gaussian distributions and a banana-shaped distribution,
as introduced in [43, 25]. The banana-shaped distribution is a classical test
case for sampling algorithms. It is often considered difficult to sample from
this distribution due to its curved, oblong shape. In dimension 2, however, it
is easy to find an appropriate range of parameters such that all the methods
including PMH, SAIS, SMC or a standard rejection sampler achieve very good
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Fig 1: The level sets of the target distribution (red) and the final states of dif-
ferent algorithms after 50 iterations. The particles are displayed in blue and the
rejected proposals (at the previous iteration) in green. There are N = 104 parti-
cles. (a) Vanilla CMC without an exploration proposal and a too small proposal
distribution. The particles concentrate on the top-right mode and cannot escape
it because the proposals cannot reach the other modes. (b) PMH with a large
proposal distribution reduces to a rejection sampler (c) CMC with a large ex-
ploration proposal. Although the target distribution is correctly sampled, many
proposals in green are never accepted. (d) MoKA Markov with a mixture of
small and large proposal distributions. The final state for MoKA and MoKA
KIDS is similar. Thanks to the automatic choice of a small interaction kernel,
most of the proposals are accepted.

results within a computation time which does not exceed a few seconds. Thus
we mainly use this introductory example as a qualitative illustration of the
behaviour of the collective algorithms CMC, MoKA, MoKA Markov and MoKA
KIDS that we simply compare to PMH. In dimension 2, it is indeed possible
to directly visualize the results for these algorithms, as shown in Figure 1 and
in the supplementary videos available on the GitHub page of the project. More
in-depth quantitative comparisons on much more difficult test cases in higher
dimensions will be presented in the following sections.

Starting from the initialization (25), the particles are initially very close to
one mode and if the radius of the interaction kernel is taken too small, then the
particles will stay in this mode forever, as it can be seen in Figure 1a. It is thus
necessary to add an exploration mechanism. For the three MoKA variants, this
can be done automatically by simply adding a large proposal distribution within
the proposal mixture. Alternatively, it is possible to consider a simple upgraded
version of the Vanilla CMC algorithm (18) by taking the proposal distribution

Θμ(dy|x) = (1 − ε)K � μ(y)dy + εQ(dy|x),

where the exploration proposal Q is for instance Q(dy|x) ∝ exp(− |y−x|2
2σ2 ) with

σ2 large. In the remaining of this section, we will always consider this proposal
(and simply call it CMC) with ε = 0.01, σ = 0.5 and the radius of the interaction
kernel K equal to 0.1. For the MoKA algorithms, we consider a mixture of
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proposal distributions of sizes 0.01, 0.03, 0.1 and 0.5. As a control system, we
consider PMH with a mutation kernel of size 0.5.

The results are visualized in dimension 2 in the supplementary videos avail-
able on the GitHub page of the project. We summarize below the main obser-
vations.

• In PMH (Figure 1b), due to the large mutation kernel, blind proposals
are made all over the space and the algorithm behaves essentially like a
rejection algorithm. Consequently, the acceptance rate is very low, about
3%. Note that PMH with a too small mutation kernel would lead to the
same situation as shown in Figure 1a.

• In CMC, the particles move collectively like a coherent swarm. They ini-
tially massively concentrate on the first mode that they find (on the top-
right corner). Thanks to the large exploration proposal, a few particles are
able to find the other modes. These well-located particles then slowly at-
tract the other ones and the correct balance between the different modes is
progressively attained. At the end of the simulation, there are still many
proposals which are not accepted because the interaction kernel is too
large. The final acceptance rate is about 16%.

• In MoKA Markov, a very large exploration proposal is initially selected
(see Figure 2b) and similarly to PMH, the particles are quickly scattered
all over the space. However, unlike PMH, once particles are present in
all the modes, a better adapted small interaction kernel is chosen (see
Figure 2b) and similarly to CMC, the balance between the modes is pro-
gressively but much more quickly attained. The final acceptance rate is
about 90%.

• In MoKA, a nontrivial mixture of medium and small proposal distributions
is kept throughout the simulation (see Figure 2a). However, we note that
the larger ones are used more often at the beginning of the simulation,
which demonstrates the ability of the algorithm to automatically explore
the space. The final acceptance rate is about 80%.

• In MoKA KIDS, the behaviour is similar to MoKA except that the badly-
located particles are very quickly attracted by better-located ones so that
the initial phase is much faster. The final acceptance rate is about 70%.

5.3. Gaussian mixtures

5.3.1. Target distribution

As a first challenging target distribution, we revisit the classical test case intro-
duced in [17] and consider a mixture of two Gaussian distributions in dimension
d = 12:

π = w1N (m + μd, σ
2
dId) + w2N (m− μd, σ

2
dId),

where m = (0.5, . . . , 0.5)T is the center of the domain [0, 1]d. The target distri-
bution is parametrized μd ∈ R

d, σd > 0 and the weights w1, w2 > 0. We will
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Fig 2: Weights of the different proposal distribution in MoKA (a) and MoKA
Markov (b). MoKA KIDS is not shown but is similar to MoKA.

always consider the standard deviation

σd = 1
2

√
0.4
d

.

We will then consider two cases.

1. The example considered in the seminal article [17] is given by

w1 = w2 = 1
2 , μd = 1

4
√
d
(−1, 1, . . . , 1)T. (26)

2. A slightly more difficult example is given by

w1 = 0.25, w2 = 0.75, μd = 1
8(−1, 1 . . . , 1)T. (27)

The second example is more difficult because the distance between the two
modes is larger and the two modes are not equally weighted.

5.3.2. Initialization and parameters

All the algorithms are initialized according to the difficult case (25) where all
the particles initially lie in a corner of the domain. Note also that the particles
are initially closer to the first mode.

The kernel size in CMC is taken equal to 0.25. For the three MoKA variants,
the proposal distribution is made of a mixture of three kernels with sizes 0.25, 0.4
and 0.55. A detailed discussion on how to choose these parameters is postponed
to Section 5.4. For PMH, SAIS and SMC, we have tested all the kernel sizes
between 0.05 and 0.8 with step 0.05 and we show the results for the best ones.
For the simpler example (26), the best kernel size for PMH is 0.25, for SAIS
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it is 0.4 and for SMC it is 0.3. For the more difficult example (27), the best
kernel size for PMH is 0.8, for SAIS it is 0.5 and for SMC it is 0.4. Regarding
the other parameters, the ESS threshold in SMC is set to 0.75N , there are 150
MH steps between two resampling steps and a linear tempering scheme with 25
steps is used from the initial distribution to the target distribution. For SAIS,
the sequence of kernel bandwiths and mixture weights are taken according to
the recommendations of the authors (see Appendix C.2). We take N = 105

particles in CMC and its variants, PMH and SMC. The number of particles
added to the system at each iteration in SAIS is such that the system has N
particles at the end of the burn-in phase.

5.3.3. Results

For each method in competition, we have launched 50 independent simulations.
For each simulation, we have allowed a fixed GPU computation time of 60
seconds (we recall that all the methods are parallelized and thus comparable
in terms of computation time). The best results are shown for the different
methods in competition in dimension d = 12 in Figure 3 below.

For the simpler example (26), all the methods achieve excellent results, in-
cluding PMH even though it is about three times slower than CMC. The adap-
tive methods MoKA Markov and MoKA KIDS also perform well but they suffer
from a higher computational cost and they are thus slower than CMC on this
example. MoKA has a computational cost comparable to the one of CMC and
thus achieves equivalently good results. Note also that SMC is disadvantaged
compared to the other methods in terms of computation time since due to the
tempering scheme, this method effectively samples π only during the few last

Fig 3: The best runs among 50 independent runs for the different algorithms in
the simple case (a) and the difficult case (b). The blue shaded region is the 90%
prediction interval of the energy distance between two true samples.
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iterations. SAIS is initially the fastest method but the convergence then slows
down since the computational cost increases with the iterations. Moreover, on 50
independent experiments, SAIS failed to converge in about 30% cases due to an
early degeneracy of the particle weights which causes an over-concentration on
only one mode. This is in contrast with all the other methods for which we have
observed a very low variance in the results.

For the more difficult example, PMH fails to converge for any of the kernel
sizes that we have tried. This situation can be expected because on the one
hand, if the mutation kernel is small then the particle can never leave the first
mode that they find and on the other hand if the mutation kernel is too large
then the proposals are almost never accepted. This flaw is corrected in CMC
and its MoKA variants by incorporating interactions between the particles and
an adaptive choice of kernels. In particular, CMC, MoKA and MoKA Markov
do not seem affected by the increased difficulty. Only MoKA KIDS fails to
converge due to an early degeneracy of the particle weights which prevents them
to leave the first mode. SAIS also has the same flaw as in the previous case. The
performance of SMC are slightly deteriorated compared to the previous case
but still achieves good results in most cases.

5.3.4. Comparison of the collective methods

In this section we compare the behaviours of the collective algorithms CMC,
MoKA, MoKA Markov and MoKA KIDS. In the results below we show the
convergence in terms of number of iterations rather than in terms of compu-
tation time. This is to illustrate that the collective proposals are designed to
achieve better efficiency at each iteration (at the cost of a possibly increased
computation time). We include PMH in the comparison as a control system. In
Figure 4, we show the results for the two examples (26) and (27) during 100
iterations and for 10 independent runs.

A first observation is that, except for MoKA KIDS, the different methods
typically show a very small variance in the results. Thanks to the propagation
of chaos result and with a very large number of particles, the system is indeed
expected to evolve according to the deterministic recurrence relation (9). It
should also be noted that in all cases, the MoKA algorithms (except MoKA
KIDS in the difficult case) need less iterations to converge. This shows that
choosing adaptive kernels indeed increases the efficiency per iteration. Of course,
it comes at the price of an increased computation cost. In this specific example
and considering the results presented in Section 5.3.3, this increased efficiency
does not appear necessary but in the following Section 5.5, we will investigate a
situation where the MoKA algorithms perform better than CMC also in terms of
computation time. Still regarding the efficiency, the collective methods including
CMC are clearly better than PMH (in the simpler example, PMH needs about
2000 iterations to converge). This can be seen by comparing the acceptance rate
in Figure 5. In particular, all collective methods have an acceptance rate above
0.4 while the acceptance rate for PMH drops to almost zero in the difficult case.
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Fig 4: Mean error for 100 iterations of the Collective algorithms and PMH and
min-max envelope for 10 independent runs (100% prediction interval). The hor-
izontal blue shaded region is the 90% prediction interval of the energy distance
between two true samples.

Fig 5: Mean acceptance rate and weights of the kernels over 100 iterations and
standard deviations over 10 independent runs for the simple example ((a) to
(d)) and for the difficult example ((e) to (h)).

In Figure 5, we can observe that the choice of the kernel weights is different
in MoKA Markov compared to MoKA and MoKA KIDS. In the former case, the
algorithm first chooses almost exclusively a large exploration proposal. Then, as
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the particles get closer to the target distribution, the proposal kernel becomes
smaller. For the other methods, a nontrivial mixture of small and medium ker-
nels is kept during the whole simulation. This behaviour is similar to the one
observed on the banana-shaped target distribution in Section 5.2.

Finally, the convergence plot (Figure 4) of the collective methods are roughly
piecewise linear indicating an exponential convergence. More precisely, for CMC,
MoKA and MoKA Markov we can identify two straight lines and a plateau
in the difficult case. The first phase (up to iteration 30∼40) corresponds to
the colonization of the first mode. The following plateauing behaviour in the
difficult case corresponds to a phase where the particles are almost exclusively
distributed in the first mode. But as more particles enter the second mode, the
Energy Distance to the target distribution decreases and a last exponentially fast
converging phase begins. The duration of this plateauing exploration phase can
vary, this is why a larger variance is observed for the last phase in the difficult
example (27) compared to the simpler case (26). MoKA KIDS is less stable
but for the simple example, it sometimes needs three times less iterations to
converge compared to the other methods. Moreover, unlike the other methods,
on its convergence plot (Figure 4), we can observe several plateauing phases
interspersed with sudden drops. These drops corresponds to the times where a
well-located particle gains most of the weight and suddenly attracts many other
particles around itself. Similarly to the importance sampling based methods,
this behaviour can be very efficient but also dangerous as it may impair the
exploration of the space. This leads to a clear failure in the difficult example.

5.4. Tuning the hyper-parameters

As any of the other sampling methods discussed, the collective algorithms do
require some appropriate tuning of the hyper-parameters. The simplest Algo-
rithm 2 has two hyper-parameters, the number of particles and the size R of the
interaction kernel K, which we take equal to the indicator of the ball centered at
zero with radius R. As for the number of particles, it should simply be taken as
large as possible, up to the computational capability. Note that with our imple-
mentation, one can easily handle samples of size N ∼ 105 with a computation
time of just a few seconds in the previous examples. The size of the interaction
kernel is the most important parameter to tune. Although the convergence of
the associated nonlinear Markov chain is ensured regardless of the size of K,
since the algorithm uses a mean-field approximation with a finite number of
particles, it is important to make sure that the particles interact in a mean-field
regime. A simple criteria is simply to count the average number of neighbouring
particles within the interaction radius around the proposals (Y i

t )i. This can be
computed at no additional cost as it is simply a multiple of K � μ̂N

t (Y i
t ). As a

rule of thumb, particles need to interact with at least a few tens of neighbours.
In our observations, the better results are obtained with 100 ∼ 200 neighbours
in average and is not improved with more neighbours. In particular increasing
the interaction kernel to a very large size will naturally increase the number
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Fig 6: CMC for several sizes of the interaction kernel. Mean energy distance
over 10 independent runs and min-max envelope

Table 1

Mean error, mean number of neighbors and mean acceptance rate computed over the ten
last iterations of ten independent runs for each size of the interaction kernel.

Size of the interaction kernel 0.1 0.15 0.2 0.25 0.3 0.4 0.5
Mean error 7e-02 4.1e-04 1.9e-05 5.4e-06 7.3e-06 4e-04 2.5e-03

Mean number of neighbors 2 6 36 194 637 2137 3460
Mean acceptance rate 0.72 0.63 0.57 0.44 0.30 0.11 0.05

of neighbours but it may also deteriorate the performances as the acceptance
rate will drop (which means that more iterations will be needed to converge).
Both the number of neighbours and the acceptance rate can be easily mon-
itored to ensure good convergence properties. This is illustrated in Figure 6
on the previous 12-dimensional simple example (26). Note that this only pa-
rameter to tune is in contrast with the other methods, in particular SAIS and
SMC where the performances can also be strongly affected by the tempering
scheme, the mixing weights sequence, the choice of the threshold value of the
ESS, the number of mutation steps, the choice of the mutation kernel etc. All
these hyper-parameters are subtle to tune in practice. Finally we also mention
that although we did not explore this direction and leave it for future work, one
may also consider adaptive versions of the Algorithm 2 (and its variants) where
the size of the kernel is chosen in order to ensure a good balance between a good
acceptance rate and a reasonable average number of neighbours. However, the
convergence properties would likely be theoretically difficult to analyse as the
number of neighbours is, by definition, not a mean-field quantity and the limit
N → +∞ would therefore not make sense.
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Finally, let us note that it is always safe to choose a large interaction kernel:
in the maximal case where the kernel embraces all the domain, then the Vanilla
CMC Algorithm 2 simply reduces to a standard random-walk MH algorithm
with a proposal uniformly sampled in the domain. Although it may converge
too slowly to be of practical use (it keeps a quadratic complexity in N), it is
theoretically ensured to converge. On the other hand choosing a too small in-
teraction kernel may lead to bad behaviours. In particular, we have observed
that when a particle interact with only a few neighbours, approximately less
than 10 ∼ 20, then the system may locally over-concentrate (i.e. there are local-
ized high-density regions) and fail to converge towards the target distribution.
This can be seen on Figure 6 where the smallest kernels lead to a plateauing
behaviour far from the minimal error. This bad behaviour can nevertheless be
easily monitored: in practice and in particular for the adaptive MoKA samplers,
it is recommended to pay attention to the average number of neighbours and
to either eliminate the interaction kernels which lead to a too small number of
neighbours or to increase the number of particles. Since the volume of a ball of
radius r behaves as rd in dimension d, an unreasonably large number of particles
or size of interaction kernel would be needed in very high-dimensional setting.
This is why our collective algorithms cannot be used when d is too large. In our
examples, we have observed good results up to dimension 13 (with 105 particles).

5.5. More complex example

5.5.1. Target distribution

In the classical test case introduced in [17, 25] and considered in Section 5.3, the
target distribution is made of only two equally weighted Gaussians regardless
of the dimension. Even for moderately large dimensions (around d = 12), good
results can be obtained even with the simplest Metropolis-Hastings algorithm
(with a very long computation time), although the symmetry of the target and
the initialisation can be misleading. In this section we revisit this example and
introduce the following more complex test case in dimension d:

π =
d∑

i=1
wiN (m + μi, σ

2
dId) +

d∑
j=1

wjN (m− μj , σ
2
dId), (28)

where m = (0.5, . . . , 0.5)T is the center of the domain, μi = a
2ei with a > 0 and ei

is the i-th vector of the canonical basis, σd > 0 is a fixed standard deviation and
wi, wi ∈ [0, 1] are normalized weights. This distribution is made of 2d Gaussian
distributions, 2 per dimension, and as in [17, 25], the distance between the
centers does not depend on the dimension (it is equal to a between the two
distributions on the same dimension and to a/

√
2 between two distributions on

two different dimensions). We choose the following parameters:

a = 0.7, σd =
√

0.03
4d , wi = 0.25/d, wi = 0.75/d.
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With this choice, the 2d peaks are well separated and their variance decreases
with the dimension. In addition half of the peaks carries the three quarters
of the total weight of the distribution. This test case thus combines most of
the difficulties: this is a multimodal distribution, there is a strong exploration-
exploitation dilemma due to the size and the isolation of the peaks and all the
modes do not have the same weight.

5.5.2. Initialization

Our samplers are initialized with all the particles in a corner (25), thus far
away from all the peaks and closer to the modes with a lighter weight. For the
competitors, this initialization leads to bad results and often a degeneracy of
the importance weights. The behaviour of PMH does not really depend on the
initialization since the large proposal distribution allows move all across the
domain. Thus for PMH, SAIS and SMC the particles are initially sampled uni-
formly in the whole domain. This gives more chance to the importance sampling
based methods since there are particles close to all the modes initially. Moreover,
SMC may be quite affected by a bad initialisation due to the tempering scheme
which forces the particles to stay close to their initial state during the first it-
erations. We have also checked that, for our samplers, the initialization (25) or
a uniform initialization in the whole domain both lead to the same behaviour
(with a faster convergence in the latter case).

5.5.3. Parameters

In order to tune the proposal distributions of our samplers, we introduce three
different natural scales:

σsmall = 3.5σd, σmedium = 10σd, σlarge = 20σd.

The small scale corresponds to roughly speaking, the size of a peak but it is
very small compared to the distance between the peaks. The medium scale is
larger than the typical size of a peak and allows moves between neighbouring
peaks. The large scale distribution allows moves between far away peaks. The
interaction kernel K in the Vanilla CMC Algorithm 2 is taken equal to the
indicator of a ball of radius σmedium. The different variants of the adaptive
MoKA algorithm use the three sizes. For SAIS and SMC, we have tested all the
kernel sizes between 0.05 and 0.8 with a step of 0.05 and we took the sizes which
led to the best results. For PMH the best outcomes are obtained with a large
kernel size although the different sizes essentially lead to equally bad results.

Regarding the other parameters, the ESS threshold in SMC is set to 0.75N ,
there are 150 MH steps between two resampling steps and a linear tempering
scheme with 80 steps is used from the initial distribution to the target distribu-
tion. For SAIS, the sequence of kernel bandwiths and mixture weights are taken
according to the recommendations of the authors (see Appendix C.2).

In all samplers, the number of particles is N = 105 and the outcomes are
shown for a fixed allowed GPU computation time of 180 seconds.
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5.5.4. Results

The results shown in Table 2 are for dimensions ranging from d = 4 to d = 13
and computed over 50 independent runs for all samplers and each dimension. For
better clarity, we have classified the results in four possible outcomes, similarly
to [17], and defined as follows.

• Disastrous. The median Energy Distance between the final sample and
a true sample is larger than E0/10 where E0 is the initial Energy Distance
between a uniform sample in the domain and a true sample.

• Excellent. The median Energy Distance between the final sample and
a true sample falls below the upper limit of the 90% prediction interval
between two true samples.

• Good. The median Energy Distance between the final sample and a true
sample falls between the upper limit of the 90% prediction interval and
the average in log scale between this upper limit and E0/10.

• Mediocre. The median Energy Distance between the final sample and a
true sample falls between E0/10 and the average in log scale between the
upper limit of the 90% prediction interval and E0/10.

The convergence plots of the best runs in dimensions 7 and 12 are shown in
Figure 7.

5.5.5. Discussion

For small dimensions up to dimension 6, all samplers (including PMH) have a
similar behaviour and manage to reach the smallest possible distance or at least
have a good outcome. From dimension 6 for PMH, dimension 7 for CMC and
MoKA KIDS and dimension 9 for SAIS, the outcome is not satisfactory anymore
and even become disastrous for MoKA KIDS and SAIS. The only algorithms
which have an excellent outcome up to dimension 10 are MoKA Markov and
MoKA. The former remains an excellent sampler up to dimension 13. SMC
also manages to have a good outcome up to dimension 13 although it some-
times, rarely, leads to mediocre or disastrous results. It is probable that with a
better tempering scheme or an adaptive version, SMC would be able to reach
the smallest possible distance although this may require a fine tuning of these
hyper parameters. In comparison, MoKA Markov seems simpler to tune: the
choice of the kernel sizes that we propose consistently leads to excellent results
up to dimension 13. Without this adaptive behaviour, the fixed kernel size in
CMC is initially well-adapted to exploration but it is too large compared to the
size of the modes which causes a very slow convergence and leads to mediocre
results (the final median error remains significantly better that PMH for the
same computation time though). The adaptive procedure in MoKA is based on
maximizing the acceptance and seems less efficient that the optimization proce-
dure in MoKA Markov. It can be explained by the fact that the non-Markovian
choice of the kernels tends to favour the smallest interaction kernel. Although
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Table 2

Detailed outcomes of the different algorithms for the target distribution (28) with the
dimension ranging from 4 to 13. The number in each cell corresponds to the median

computed over 50 independent runs of the Energy Distance between the final sample and a
true sample. The outcome is classified as Excellent (E) (green), Good (G) (light green),

Mediocre (M) (yellow) or Disastrous (D) (red) as defined in Section 5.5.4. The four
percentages at the bottom of each cell indicates, from left to right, the percentages of

Excellent, Good, Mediocre and Disastrous results for 50 independent runs.
PMH CMC MoKA

Markov
MoKA MoKA

KIDS
SAIS SMC

d = 4 E
4.4E-06
(98,2,0,0)

E
4.4E-06
(100,0,0,0)

E
4.6E-06
(100,0,0,0)

E
4.7E-06
(100,0,0,0)

E
4.4E-06
(100,0,0,0)

E
4.8E-06
(100,0,0,0)

E
4.5E-06
(100,0,0,0)

d = 5 G
3.3E-05
(0,100,0,0)

G
2.0E-05
(0,100,0,0)

E
4.6E-06
(100,0,0,0)

E
4.5E-06
(100,0,0,0)

E
4.9E-06
(96,2,2,0)

E
5.0E-06
(100,0,0,0)

E
5.3E-06
(94,6,0,0)

d = 6 M
5.9E-04
(0,0,100,0)

G
1.1E-04
(0,100,0,0)

E
4.7E-06
(100,0,0,0)

E
4.7E-06
(100,0,0,0)

G
4.1E-05

(16,46,32,6)

E
5.4E-06
(96,4,0,0)

G
1.0E-05
(24,70,6,0)

d = 7 M
1.8E-03
(0,0,100,0)

M
3.1E-04
(0,4,96,0)

E
4.9E-06
(100,0,0,0)

E
4.8E-06
(100,0,0,0)

D
3.7E-02
(0,0,0,100)

E
6.5E-06
(70,30,0,0)

G
1.5E-05
(14,80,2,4)

d = 8 M
2.5E-03
(0,0,100,0)

M
5.1E-04
(0,0,100,0)

E
4.8E-06
(100,0,0,0)

E
5.0E-06
(100,0,0,0)

D
9.4E-02
(0,0,0,100)

M
1.0E-03
(0,12,82,6)

G
6.5E-05
(0,96,2,2)

d = 9 M
3.2E-03
(0,0,100,0)

M
7.0E-04
(0,0,100,0)

E
4.8E-06
(100,0,0,0)

E
4.6E-06
(100,0,0,0)

D
1.9E-01
(0,0,0,100)

D
1.6E-02
(0,0,20,80)

G
2.8E-05
(0,92,2,6)

d = 10 M
3.5E-03
(0,0,100,0)

M
9.2E-04
(0,0,100,0)

E
4.9E-06
(100,0,0,0)

E
5.9E-06
(54,0,46,0)

D
2.1E-01
(0,0,0,100)

D
8.8E-02
(0,0,0,100)

G
5.4E-05
(0,100,0,0)

d = 11 M
3.7E-03
(0,0,100,0)

M
1.1E-03
(0,0,100,0)

E
5.1E-06
(100,0,0,0)

M
4.7E-03
(2,0,90,8)

D
2.6E-01
(0,0,0,100)

D
1.1E-01
(0,0,0,100)

G
6.8E-05
(0,96,0,4)

d = 12 M
3.8E-03
(0,0,100,0)

M
1.3E-03
(0,0,100,0)

E
5.1E-06
(100,0,0,0)

M
1.0E-02
(0,0,64,36)

D
2.9E-01
(0,0,0,100)

D
1.5E-01
(0,0,0,100)

G
1.2E-04
(0,100,0,0)

d = 13 M
3.9E-03
(0,0,100,0)

M
1.5E-03
(0,0,100,0)

E
5.3E-06
(98,0,2,0)

D
1.3E-02
(0,0,40,60)

D
5.0E-01
(0,0,0,100)

D
2.1E-01
(0,0,0,100)

G
1.1E-04
(0,98,2,0)

this kernel is also ultimately chosen by MoKA Markov, choosing this kernel
“too early” does not introduce enough exploration. Note that with a uniform
initialisation over the whole domain, we have observed (not shown) that this
flaw disappears and MoKA and MoKA Markov have a similar behaviour. MoKA
KIDS and SAIS both lead to disastrous results when the dimension increases.
It is due to the early degeneracy of the weights of a small number of particles
which prevents a proper mixing of the population.

6. Conclusion

Nonlinear MCMC samplers are appealing. They generalise more traditional
methods and overcome many of their flaws. Getting back to the historical



Collective proposal distributions for nonlinear MCMC samplers 6435

Fig 7: The best runs among 50 independent runs for the different algorithms
in dimension d = 7 and d = 12. The three black dashed lines divide the y-axis
into four regions for the four possible outcomes, from top to bottom: disastrous,
mediocre, good, excellent. The best run is the one which leads to the smallest
final energy distance or, if several runs of the same algorithm lead to an excellent
outcome, the best run is the fastest one. The blue shaded region is the 90%
prediction interval of the energy distance between two true samples.

development of mathematical kinetic theory, we can advantageously simulate
nonlinear Markov processes using systems of interacting particles. This versa-
tility enables the development of a wide variety of algorithms that can tackle
difficult sampling problems while remaining in a traditional Markovian frame-
work. Although the implementation may, at first sight, seem computationally
demanding, we have shown that modern GPU hardware can now enable the use
of interacting particles for Monte Carlo sampling at scale.

Alongside its variants, the CMC algorithm can be implemented efficiently
and leads to striking reductions in global convergence times. It relies on pair-
wise interactions to best leverage the information that is present in any given
sample swarm, and thus make the most of each evaluation of the target distribu-
tion. CMC avoids the mixing issues of classical “one particle” methods such as
Metropolis-Hastings, with a notable improvement of the convergence and mix-
ing speed. In particular when dealing with multimodal distributions, where the
relative weight of each mode is difficult to estimate. In practice, we thus expect
that the benefits of this improved “sample efficiency” will outweigh the (small)
computational overhead of our method for most applications.

We note that the present contribution shares similarities with some well-
known and recent nonlinear samplers, that are often based on non-Markovian
importance sampling techniques. In the future, the joint development of Marko-
vian and non-Markovian methods is likely to benefit both approaches: we may
for instance improve the importance weights in SAIS-like methods as in the
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KIDS algorithm, or construct better proposal distributions in CMC which in-
corporate knowledge of (part of) the past. The theoretical study of such hybrid
methods would however be challenging and require the development of new
analytical tools.

Finally, one may think of extending the theoretical framework introduced
here to other MCMC samplers, such as nonlinear PDMP samplers or nonlinear
Langevin dynamics. This could open new problems in nonlinear analysis and
statistics, both on the theoretical and computational sides.

Appendix A: Proof of Theorem 2.11

Let us start with the following lemma.

Lemma A.1. Let Θ be a proposal distribution which satisfies Assumptions 2.1,
2.2 and 2.3. Then the map

α : P(E) × E2 → R, (μ, x, y) �→ αμ(x, y) := Θμ(x|y)π(y)
Θμ(y|x)π(x) ,

is Lipschitz in the Wasserstein-1 distance, in the sense that there exists a con-
stant LΘ > 0 (which depends also on π) such that for all μ, ν ∈ P(E) and
x, x′, y, y′ ∈ E, it holds that:

|αμ(x, y) − αν(x′, y′)| ≤ LΘ
(
W 1(μ, ν) + |x− x′| + |y − y′|

)
.

Proof. By the triangle inequality, it holds that:

|αμ(x, y)−αν(x′, y′)| ≤ π(y)
π(x)

∣∣∣∣Θμ(x|y)
Θμ(y|x) − Θν(x′|y′)

Θν(y′|x′)

∣∣∣∣+Θν(x′|y′)
Θν(y′|x′)

∣∣∣∣π(y)
π(x) − π(y′)

π(x′)

∣∣∣∣ .
We bound each of the two terms on the right-hand side:

π(y)
π(x)

∣∣∣∣Θμ(x|y)
Θμ(y|x) − Θν(x′|y′)

Θν(y′|x′)

∣∣∣∣ ≤ π(y)
π(x)Θμ(y|x) |Θμ(x|y) − Θν(x′|y′)|

+ π(y)Θν(x′|y′)
π(x)Θμ(x|y)Θμ(x′|y′) |Θμ(y|x) − Θν(y′|x′)|

≤ LM0

m0κ−

(
1+ κ+

κ−

)(
W 1(μ, ν)+|x− x′|+|y − y′|

)
.

and

Θν(x′|y′)
Θν(y′|x′)

∣∣∣∣π(y)
π(x) − π(y′)

π(x′)

∣∣∣∣ ≤ Θν(x′|y′)
π(x)Θν(y′|x′) |π(y) − π(y′)|

+ Θν(x′|y′)π(y′)
Θν(y′|x′)π(x)π(x′) |π(x) − π(x′)|

≤ ‖π‖Lipκ+

m0κ−

(
|y − y′| + M0

m0
|x− x′|

)
,
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where ‖π‖Lip denotes the Lipschitz norm of π. Gathering everything gives the
result with

LΘ = M0

m0

(
L

κ−

(
1 + κ+

κ−

)
+ ‖π‖Lipκ+

m0κ−

)
.

Proof (of Theorem 2.11). The strategy of the proof of Theorem 2.12 will be
based on coupling arguments inspired by [78] and adapted from [28]. We start
by the following trajectorial representation of the nonlinear Markov chain (Xt)t
defined by the transition kernel (1).

Definition A.2 (Nonlinear process). Let X0 ∼ μ0 be an initial state where
μ0 ∈ P(E). The state Xt at time t ∈ N, t ≥ 1, is constructed from Xt−1 and
the law of Xt−1 denoted by μt−1 ∈ P(E) as follows.

1. Take a proposal a random variable Y t ∼ Θμt−1(·|Xt−1)
2. Compute the ratio

αμt−1(Xt−1, Y t) :=
Θμt−1(Xt−1|Y t)π(Y t)

Θμt−1(Y t|Xt−1)π(Xt−1)
.

3. Take U t ∼ U([0, 1]) and if U t ≤ h
(
αμt−1(Xt−1, Y t)

)
, then accept the

proposal, else reject it:

Xt = Xt−11Ut≥h(αμt−1 (Xt−1,Y t)) + Y t1Ut≤h(αμt−1 (Xt−1,Y t)).

From now on we consider N independent copies (Xi

t)t, i ∈ {1, . . . , N}, of
the nonlinear process defined by Definition A.2. We then construct a coupled
particle process (Xi

t)t such that for all i ∈ {1, . . . , N}, initially Xi
0 = X

i

0 ∼ μ0
and for each time t ∈ N we take:

1. the same jump decision random variables U i
t = U

i

t ∼ U([0, 1]),
2. optimal proposals of the form Y i

t = s(Y i

t) where s is an optimal transport
map between Θμt−1(·|X

i

t−1) and Θμ̂N
t−1

(·|Xi
t−1). Since these two proba-

bility measures are absolutely continuous with respect to the Lebesgue
measure, the existence of such optimal transport map (Monge problem)
is proved for instance in [20] or [16]. By definition, the pathwise error
between the proposals can thus be controlled by

E
[
|Y i

t − Y
i

t|
∣∣Ft−1

]
= W 1

(
Θμ̂N

t−1
(·|Xi

t−1),Θμt−1(·|X
i

t−1)
)

≤ W 1
(
Θμ̂N

t−1
(·|Xi

t−1),Θμ̄N
t−1

(·|Xi

t−1)
)

+ W 1
(
Θμ̄N

t−1
(·|Xi

t−1),Θμt−1(·|X
i

t−1)
)

where μ̄N
t = 1

N

∑N
i=1 δXi

t
and Ft is the σ-algebra generated by the pro-

cesses up to time t ∈ N. We conclude that:

E
[
|Y i

t − Y
i

t|
∣∣Ft−1

]
≤ W 1(μ̂N

t−1, μ̄
N
t−1) + |Xi

t−1 −X
i

t−1| + εNt (29)
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where the error term εNt only depends on (the laws of) the N independent
nonlinear processes (Xi

t)t:

εNt := W 1(μ̄N
t−1, μt−1).

Let t ∈ N, t ≥ 1. It holds that:

E
[
|Xi

t −X
i

t|
∣∣Ft−1

]
= E

[
|Y i

t − Y
i

t|1Ui
t≤min(hi

t,h
i
t)

∣∣Ft−1
]

+ |Xi
t−1 −X

i

t−1|P
(
U i
t ≥ max(hi

t, h
i

t)
∣∣Ft−1

)
+ E

[
|Xi

t − Y
i

t|1hi
t≤Ui

t≤h
i
t

∣∣Ft−1
]

+ E
[
|Y i

t −X
i

t|1h
i
t≤Ui

t≤hi
t

∣∣Ft−1
]

where we write for short:

hi
t ≡ h

(
αμ̂N

t
(Xi

t , Y
i
t )
)

and h
i

t ≡ h
(
αμt(X

i

t, Y
i

t)
)
.

we deduce that:

E
[
|Xi

t −X
i

t|
∣∣Ft−1

]
≤ W 1(μ̂N

t−1, μ̄
N
t−1) + 2|Xi

t−1 −X
i

t−1|

+ 2M0(P(hi
t ≤ U i

t ≤ h
i

t

∣∣Ft−1) + P(hi

t ≤ U i
t ≤ hi

t

∣∣Ft−1)) + εNt (30)

The last two probabilities are bounded by E
[
|hi

t − h
i

t|
∣∣Ft−1

]
. Assuming that h

is Lh-Lipschitz for a constant Lh > 0, it holds that:

|hi
t − h

i

t| ≤ Lh

∣∣∣αμ̂t−1(Xi
t−1, Y

i
t ) − αμt−1(X

i

t−1, Y
i

t)
∣∣∣.

Let μ̄N
t be the empirical measure of the N nonlinear Markov processes X

i

t at
time t. It holds that:

|hi
t − h

i

t| ≤ Lh

∣∣∣αμ̂t−1(Xi
t−1, Y

i
t ) − αμ̄t−1(X

i

t−1, Y
i

t)
∣∣∣

+ Lh

∣∣∣αμ̄t−1(X
i

t−1, Y
i

t) − αμt−1(X
i

t−1, Y
i

t)
∣∣∣

Using Lemma A.1 we get:

|hi
t − h

i

t| ≤ CΘ

(
W 1(μ̂N

t−1, μ̄
N
t−1) + |Xi

t−1 −X
i

t−1| + |Y i
t − Y

i

t| + εNt

)
,

with CΘ := LhLΘ. Therefore:

E
[
|Xi

t−X
i

t|
∣∣Ft−1

]
≤ (1 + CΘ)

(
|Xi

t−1−X
i

t−1|+W 1(μ̂N
t−1, μ̄

N
t−1)

)
+(1+2CΘ)εNt .

Let us define:

St := 1
N

N∑
i=1

|Xi
t −X

i

t|.
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Summing the previous expression for i from 1 to N and dividing by N gives the
following estimate for St:

E[St|Ft−1] ≤ 2 (1 + CΘ)St−1 + (1 + 2CΘ)εNt (31)

where we have used the fact that

W 1(μ̂N
t−1, μ̄

N
t−1) ≤ St−1.

Taking the expectation in (31), we deduce that:

E[St] ≤ (1 + CΘ)E[St−1] + CΘE[εNt ] (32)

where the value of the constant CΘ has been updated by CΘ ← 1 + 2CΘ.
The error term can be controlled uniformly on t using [19, Theorem 5.8] or

[38]. In particular, since π is a smooth probability density function on a compact
set, it has finite moments of all orders and therefore it follows from [38, Theorem
1] that:

∀t ∈ N, E[εNt ] ≤ β(N) (33)

where β(N) is defined by (5).
One can easily prove by induction that:

E[St] ≤ CΘβ(N)
t−1∑
s=0

eCΘs ≤ β(N) CΘ

eCΘ − 1etCΘ (34)

By symmetry of the processes, all the quantities E[|Xi
t −X

i

t|] are equal and
their common value is E[St]. The result follows.

Remark A.3 (Moderate interaction, part 2). The result of Theorem 2.11 pro-
vides an explicit convergence rate in terms of N . This could be used to un-
derstand more precisely the moderate interaction assumption mentioned in Re-
mark 3.1 in order to justify the study of the degenerate proposal distribution
Θμ(dy|x) = μ(dy) in the nonlinear Markov chain with transition kernel (1).
In the case Θμ(dy|x) = K � μ(y)dy, one can take at the particle level (i.e in
Algorithm 1) an interaction kernel K ≡ KN which depends on N . Typically,
one can consider KN equal to the density of a centered Gaussian law with co-
variance σNId, σN > 0 or the normalized indicator of the ball centered at zero
and with radius σN . The goal is to take the size σN → 0 as N → +∞ (and thus
KN → δ0). As a consequence the constant CΘ ≡ CN

Θ in Theorem 2.11 would
depend on N . Since we have a precise control on β(N) we can choose σN such
that the following convergence still holds for all t ≤ T smaller than a fixed finite
value T ∈ (0,+∞):

β(N)etC
N
Θ −→

N→+∞
0.

In particular, σN should not converges to zero too fast, justifying the moder-
ate interaction terminology introduced in [68]. In the limit N → +∞ we then
obtain that the emprirical measure μ̂N

t converges towards the t-th iterate of
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the transition operator (3) with the degenerate choice of proposal distribution
Θf (dy|x) = f(y)dy which makes sense as soon as f ∈ Pac

0 (E). We refer the
reader to [53] and [28] for two examples of propagation of chaos results under a
moderate interaction assumption. Note that this result is mainly of theoretical
interest as it does not give sharp estimates on how slow σN should decrease to
zero. Moreover, similarly to Theorem 2.9, this result is only valid when N → +∞
on a finite bounded time interval.

Remark A.4 (About the assumptions). In order to prove a propagation of
chaos property, it is usually assumed that the parameters of the problem are
Lipschitz [78, 63]. This corresponds to the two Lipschitz assumptions 2.2 and 2.3.
Propagation of chaos in non-Lipschitz settings is a more difficult problem (see
for instance [48] for a recent result).

Assumption 1.1 and Assumption 2.1 should be understood as technical as-
sumptions. In the proof of Theorem 2.12, we use the fact that the acceptance
ratio is Lipschitz (Lemma A.1) which follows directly from Assumptions 1.1, 2.1
and 2.2. However, we could relax the compactness assumption 1.1 and keep the
same Lipschitz property by replacing Assumptions 1.1, 2.1 and 2.2 by the fol-
lowing assumption.

Assumption A.5. The target distribution π does not vanish on E and the map

P(E) × E2 → R, (μ, x, y) �→ gμ(y|x) := Θμ(y|x)
π(y)

satisfies the two following properties.

• (Boundedness). There exists two constants κ− > 0 and κ+ > 0 such
that

∀(x, y) ∈ E2, κ− ≤ g(y|x) ≤ κ+.

• (Lipschitz). There exists a constant L > 0 such that

∀(μ, x, y), (ν, x′, y′) ∈ P(E) ×E2,

|gμ(y|x) − gν(y′|x′)| ≤
(
W 1(μ, ν) + |x− x′| + |y − y′|

)
.

In practice, this would necessitate a precise control of the tails of π and of
the proposal distribution. It seems easier for us to check the compactness and
boundedness assumptions 1.1, 2.1 and 2.2 (possibly up to truncating the support
of π and replacing it by a compact set).

Appendix B: Continuous time version

As mentioned in Section 2.4, entropy methods are widely used in a continuous-
time context, in particular for the long-time analysis of nonlinear PDEs [54]. In
this section, we define a continuous-time version of Algorithm 1, we show that
the mean-field limit towards the solution of a nonlinear PDE and we prove the
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exponential long-time convergence of its solution towards π. This last step also
motivates the discrete-time analysis in Section 2.4. Finally, the application of
these ideas to the classical linear Metropolis-Hastings case leads (formally) to a
convergence result obtained earlier in [27] with other techniques (Section B.4).

B.1. Continuous-time particle system

The N -particle system constructed by Algorithm 1 is a standard Markov chain
which can be turned into a continuous-time Markov process by subordinating
it to a Poisson process, as explained in [15, Chapter 8, Definition 2.2]. Namely,
let (Nt)t≥0 be a Poisson process independent of all the other random variables
and with constant parameter equal to 1. The continuous-time particle system
is defined at time t ≥ 0 by X̃i

t := Xi
Nt

for i ∈ {1, . . . , N}, where Xi
Nt

is the i-th
particle constructed by Algorithm 1 at iteration Nt. For notational simplicity,
in the remaining of this section, we drop the tilde notation and simply write
Xi

t ≡ X̃i
t with t ∈ [0,+∞).

The first step is the mean-field limit analog of Theorem 2.11.

Theorem B.1. Let the particles Xi
0 ∼ f0 be initially i.i.d. with common law

f0 ∈ Pac
0 (E). Under the assumptions of Theorem 2.11, the (random) continuous-

time empirical measure μ̂N
t = 1

N

∑N
i=1 δXi

t
at any time t ≥ 0 satisfies

EW 1(μ̂N
t , ft) ≤ C1β(N)etC2 ,

where C1, C2 > 0 are two absolute constants, β(N) is defined by (5) and ft is
the solution of the nonlinear PDE

∂tft = T [ft] − ft, (35)

with initial condition f0.

Proof. It is enough to prove the analog of (6) in the time continuous frame-
work. The end of the proof will then follows similarly as in Corollary 2.12. The
nonlinear process (Xt)t with law ft is defined as follows.

1. Let (Tn)n∈N the increasing sequence of jump times of the Poisson process
(Nt)t with T0 = 0 and initially X0 ∼ f0.

2. Between two jump times, at any t ∈ [Tn, Tn+1), Xt = XTn .
3. At each jump time Tn, we sample a proposal random variable Y Tn ∼

ΘfTn
(·|XTn) and accept or reject it as in Definition A.2.

Then we construct two coupled systems of N independent nonlinear processes
(Xi

t)t and N particles as in the proof of Theorem 2.11. We define similarly
St := 1

N

∑N
i=1 E|Xi

t −X
i

t|. As in the discrete time case (31), at any jump time
Tn, it holds that

E[STn |FT−
n

] ≤ 2 (1 + CΘ)STn−1 + CΘβ(N).
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Taking the conditional expectation with respect to Gn = σ(T1, T2−T1, . . . , Tn−
Tn−1), we obtain:

E[STn |Gn] ≤ 2 (1 + CΘ)E[STn−1 |Gn−1] + CΘβ(N).

And thus, for all n ∈ N,

E[STn |Gn] ≤ β(N) CΘ

eCΘ − 1eCΘn.

Since Nt follows a Poisson law with parameter t, it holds that:

E[STn1Nt=n] = E[E[STn1Nt=n|Gn+1]]
= E[1Nt=nE[STn |Gn]]

≤ β(N) CΘ

eCΘ − 1eCΘn
P(Nt = n),

where the second inequality comes from the fact that the event {Nt = n} is
Gn+1 measurable and the fact that STn is independent from Tn+1 − Tn. As a
consequence, since St = STNt

and P(Nt = n) = e−ttn/n!, we conclude that:

E[St] = E[STNt
] =

+∞∑
n=0

E[STn1Nt=n] ≤ β(N) CΘ

eCΘ − 1 exp(t(eCΘ − 1)).

B.2. Convergence of the nonlinear process

The analog of Theorem 2.15 in the continuous-time setting is the following
theorem.

Theorem B.2 (Convergence of the Nonlinear Process). Let Θ a proposal distri-
bution which satisfies Assumption 2.6. Let f0 ∈ Pac

0 (E) and let ft be the solution
at time t ∈ [0,+∞) of the nonlinear PDE (35). Then for all t ≥ 0, it holds that:

‖ft − π‖TV ≤ C0e−λt,

where C0 > 0 depends only on f0 and π and where

λ := c−
(

inf
x

f0(x)
π(x)

)
h(1) > 0. (36)

Note that in the continuous-time case, Assumption 2.4 is not required.
We recall that given a convex function φ : [0,+∞) → [0,+∞) such that

φ(1) = 0, the relative entropy H[f |π] and dissipation D[f |π] of a probability
density f ∈ Pac(E) with respect to π are defined respectively by

H[f |π] :=
∫
E

π(x)φ
(
f(x)
π(x)

)
dx, D[f |π] := −

∫
E

φ′
(
f(x)
π(x)

)(
T [f ](x)−f(x)

)
dx.
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In the continuous time framework when ft solves (35), the entropy and dis-
sipation are simply linked by the relation

d
dtH[ft|π] = −D[ft|π] ≤ 0, (37)

and therefore we conclude immediately that the entropy is non increasing (which
is Lemma 2.18 in the discrete setting). A consequence of this fact is an alternative
proof of Lemma 2.14.

Lemma B.3. Let ft be the solution of the integro-differential equation (35) with
initial condition f0 ∈ Pac

0 (E). Then

inf
x∈E

ft(x)
π(x) ≥ inf

x∈E

f0(x)
π(x) , sup

x∈E

ft(x)
π(x) ≤ sup

x∈E

f0(x)
π(x) .

Proof. Let us denote

m := inf
x∈E

f0(x)
π(x) and M := sup

x∈E

f0(x)
π(x) .

Let us take φ : [0,+∞) → [0,+∞) a convex function such that φ ≡ 0 on
the segment [m,M ] and φ > 0 elsewhere. Note that since f0 and π are both
probability densities, it holds that m < 1 and M > 1 and thus φ(1) = 0. The
entropy-dissipation relation (37) gives:

d
dtH[ft|π] ≤ 0

and therefore for all t ≥ 0,

H[ft|π] ≤ H[f0|π] = 0

by definition of φ. As a consequence and since φ ≥ 0 and π > 0 on E, it holds
that for all t ≥ 0 and all x ∈ E,

φ

(
ft(x)
π(x)

)
= 0,

which implies that
∀x ∈ E, m ≤ ft(x)

π(x) ≤ M.

In order to prove Theorem B.2, we follow the classical steps which are detailed
for instance in [54, Section 1.3] and can be applied to various linear and nonlinear
jump and diffusion processes.

1. Compute the dissipation D[ft|π] = − d
dtH[ft|π].

2. Prove that the dissipation can be bounded from below by a multiple of
the entropy: for a constant λ > 0,

D[ft|π] ≥ λH[ft|π].
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3. Apply Gronwall lemma to the relation d
dtH[ft|π] ≤ λH[ft|π] to obtain the

exponential decay of the entropy:

H[ft|π] ≤ H0e−λt.

4. Show that the entropy controls the TV distance and conclude that for
some constants c, C0 > 0:

‖ft − π‖TV ≤ cH[ft|π] ≤ C0e−λt.

Proof (of Theorem B.2). Let φ(s) = 1
2 (s − 1)2. Most of the computations are

the same as in the discrete-time case. From the entropy-dissipation relation (37),
Lemma B.3 and Lemma 2.19, it follows that

d
dtH[ft|π] = −D[ft|π]

≤ −c−(m)h(1)
2

∫∫
E×E

π(x)π(y)
∣∣∣∣ft(x)
π(x) − ft(y)

π(y)

∣∣∣∣2 dxdy = −2c−(m)h(1)H[ft|π],

where m := infx∈E f0(x)/π(x). Using Gronwall’s inequality we then deduce
that:

H[ft|π] ≤ H[f0|π]e−2c−(m)h(1)t.

The conclusion follows from the Cauchy-Schwarz inequality by writing

‖ft − π‖TV =
∫
E

|ft(x) − π(x)|dx =
∫
E

√
π
√
π

∣∣∣∣ft(x)
π(x) − 1

∣∣∣∣dx ≤
√

2H[ft|π],

where we have used the fact that the TV norm is equal to the L1 norm of the
probability density functions.

Remark B.4. Another natural choice for φ would be φ(s) = s log s − s + 1.
The relative entropy is in this case equal to the Kullback-Leibler divergence.
However, the dissipation term becomes in this case:

D[ft|π] = 1
2

∫∫
E×E

Wft(x → y)π(x)
(
ft(x)
π(x) − ft(y)

π(y)

)
×
(

log
(
ft(x)
π(x)

)
− log

(
ft(y)
π(y)

))
dxdy,

and it is not clear that it can be bounded from below by the relative entropy.
Note that this dissipation functional is very similar to the one obtained in the
study of the Boltzmann equation (in this context, the Kullback-Leibler diver-
gence is also called the Boltzmann entropy). The long-time asymptotics of this
equation is a long-standing problem and the specific question of whether the
dissipation controls the entropy is the object of a famous conjecture by Cer-
cignani [26, 84]. In our case, we know that the Kullback-Leibler divergence is
decreasing with time but all this suggests that its exponential decay could be
harder to obtain or could hold only in specific cases.
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Putting together Theorem B.1 and Theorem B.2 leads to the following corol-
lary which is the continuous-time analog of Theorem 2.9.

Corollary B.5. Under the assumptions of Theorem B.1 and Theorem B.2, for
any t > 0 and N > 1 it holds that

E[W 1(μ̂N
t , π)] ≤ C1β(N)eC2t + C3e−λt,

where β(N) is given by (5), λ > 0 is given by (36) and C1, C2, C3 > 0 are
absolute constants.

Proof. By the triangle inequality, it holds that

E[W 1(μ̂N
t , π)] ≤ E[W 1(μ̂N

t , ft)] + E[W 1(ft, π)].

The first term on the right-hand side is bounded by C1β(N)eC2t by Theo-
rem B.1. For the second term on the right-hand side, we first note that on the
compact set E, the total variation norm controls the Wasserstein-1 distance [85,
Theorem 6.15]. The conclusion therefore follows from Theorem B.2.

B.3. Links between the discrete- and continuous-time versions

The discrete-time counterpart of the entropy-dissipation relation (37) is the
relation (16). The difference H[μt+1|π]−H[μt|π] is the discrete analog of a time
derivation. The main difference with the continuous-time entropy-dissipation
relation is the additional non negative term on the right-hand side of (16). The
role of the technical Assumption 2.4 is to ensure that this non negative term
remains smaller than the dissipation in order to close the argument as in the
continuous-time case. Since this term does not appear in the continuous-time
setting, Assumption 2.4 is not required to prove Theorem B.2.

Assumption 2.4 is actually better understood when the discrete-time rela-
tion (9) is seen as an explicit Euler discretization scheme (11) of the nonlinear
PDE (35). More precisely, the numerical scheme (11) can be re-written

μt+1 = μt + ΔtQ[μt], (38)

where
Q[μ](dx) :=

∫
E

π(x)Wμ(x → y)
(
μ(dy)
π(y) dx− μ(dx)

π(x) dy
)
.

Note that T [μ] = μ+Q[μ]. In order to check that this numerical scheme preserves
the continuous-time entropy-dissipation relation (37), let us write for a general
function the second-order Taylor expansion:

H[μt+1|π] � H[μt|π] − ΔtD[μt|π] + Δt2

2

∫
E

π(x)φ′′
(
μt(x)
π(x)

)∣∣∣∣Q[μt](x)
π(x)

∣∣∣∣2dx.
Since φ is a convex function, the second-order term of the Taylor expansion is
non negative but it is dominated by the non positive first-order term (equal to
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minus the dissipation) for Δt small enough. For this reason, the explicit Euler
discretization scheme does not unconditionally preserve the entropy structure of
the continuous-time PDE. Since Wμ(x → y) = Θμ(y|x)h(αμ(x, y)), the operator
Q[μ] is proportional to h and it is equivalent to assume Δt < 1 or h < 1. With
the notations of Section 2.4.3, the time-step is Δt ≡ η and Assumption 2.4
can therefore be interpreted as a “numerical” condition to preserve the entropy
structure of the discrete scheme. We did not manage to prove the exponential
convergence of the discrete scheme when Δt ≡ η = 1. However, it is still possible
to prove the convergence of the discrete scheme without rate and for a weaker
topology using Theorem B.2 and a compactness argument.
Corollary B.6 (Convergence of the discrete scheme). Let (μt)t∈N be the se-
quence of probability laws defined by the recurrence relation (9) (i.e. by the
discrete scheme (38) with Δt = 1). Let μ0 ∈ Pac

0 (E) be the initial condition and
let Θ satisfy Assumption 2.6. Then it holds that μt → π as t → +∞ for the
weak convergence of probability measures.
Proof. The sequence (μt)t∈N is tight because E is compact so it admits a con-
verging subsequence. The limit of any converging subsequence is a fixed point
of the operator T . Since the convergence result stated in Theorem B.2 does
not depend on the initial condition in Pac

0 (E), it implies that π is the unique
fixed point of the operator T in Pac

0 (E) and therefore, all the converging sub-
sequences of (μt)t converges towards π, which implies the convergence of the
whole sequence.

B.4. The Metropolis-Hastings case

The following theorem revisits the main result of [27] regarding the convergence
rate of the Metropolis-Hastings algorithm, here formally proved with the entropy
techniques introduced in Section B.2 and in the continuous-time setting for
simplicity.
Theorem B.7 (Formal). Let us consider the linear case outlined in Section 3.1
with q(y|x) = Kσ(x − y), where Kσ is a fixed symmetric random walk kernel
of size σ > 0 (typically a Gaussian kernel with standard deviation σ). Assume
that, as σ → 0, the random-walk kernel Kσ satisfies for any smooth function
ϕ ∈ C∞

0 (Rd): ∫
E

ϕ(x)Kσ(x)dx = ϕ(0) + 1
2σ

2Δϕ(0) + o(σ2). (39)

Assume that π and E are such that the following Poincaré inequality holds:∫
E

u(x)2π(x)dx−
(∫

E

u(x)π(x)dx
)2

≤ 1
λP

∫
E

|∇u|2(x)π(x)dx (40)

for all functions u in the weighted Sobolev space H1
π(E) and for a constant

λP > 0. Then, as σ → 0, it holds that:

‖ft − π‖TV ≤ C0e−
1
2σ

2(λP +o(1))t,



Collective proposal distributions for nonlinear MCMC samplers 6447

for a constant C0 > 0 which depends only on f0 and π.

Proof. The formal Taylor expansion (39) as σ → 0 applied to (37) leads to

Dφ[ft|π] = σ2

2

∫
E

π(x)φ′′
(
ft(x)
π(x)

) ∣∣∣∣∇x

(
ft
π

)∣∣∣∣2 dx + o(σ2). (41)

Taking φ(s) = 1
2 (s− 1)2 gives:

Dφ[ft|π] = σ2

2

∫
E

π

∣∣∣∣∇(ft
π

)∣∣∣∣2 dx + o(σ2).

Using the Poincaré inequality with the function u = ft/π, we obtain:

Dφ[ft|π] ≥ σ2λP

2

(∫
E

(
ft
π

)2
πdx− 1

)
+ o(σ2) = σ2λPHφ[ft|π] + o(σ2).

From the entropy-dissipation relation (37) and Gronwall lemma, we deduce that

Hφ[ft|π] ≤ C0e−σ2(λP +o(1))t.

The conclusion follows from the Cauchy-Schwarz inequality as in the proof of
Theorem B.2.

A similar result has been obtained rigorously in [27] using linear spectral
theory. In particular, the fact that a Poincaré inequality holds depends on the
regularity of the boundary of E. In our case, the argument could be made
rigorous by studying in details the wellposedness of (35) in Sobolev spaces. The
argument could also lead to a more detailed analysis of the convergence rate
of the Metropolis-Hastings algorithm in other metrics. In particular, the same
formal argument holds when we take φ(s) = s log(s)−s+1 in (41). In this case,
the relative entropy is the Kullback-Leibler divergence and its time derivative
is controlled by the following dissipation:

Dφ[ft|π] = σ2

2

∫
E

π

∣∣∣∣∣∇
√

ft
π

∣∣∣∣∣
2

dx + o(σ2).

In order to apply Gronwall lemma and obtain the exponential decay of the
Kullback-Leibler divergence, we need the following convex Sobolev inequality:∫

E

u(x)2 log
(

u(x)2

‖u‖2
L2

π

)
π(x)dx ≤ 1

λS

∫
E

|∇u(x)|2π(x)dx,

for all u ∈ H1
π and for a constant λS > 0. The conclusion follows by applying this

inequality to u =
√
ft/π and as before from Gronwall lemma and from the clas-

sical Csiszár-Kullback-Pinsker inequality [54, Theorem A.2] which shows that
the Total Variation norm is controlled by the Kullback-Leibler divergence. When
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the above convex Sobolev inequilty holds, then the Poincaré inequality (40) also
holds with λP ≥ 2λS . More details on convex Sobolev inequalities can be found
in [8] or [54, Section 2.2]. Their application to the rigorous computation of (op-
timal) convergence rates for the Metropolis-Hastings algorithm is left for future
work.

Appendix C: Related works

C.1. Another nonlinear MCMC sampler

A nonlinear kernel which does not fit into the “collective proposal” category has
been introduced in [4] and is defined by:

Kμ(x,dy) = (1 − ε)KMH(x,dy) + εQμ(x,dy),

where KMH is the Metropolis-Hastings kernel and

Qμ(x,dy) =
(

1 −
∫
E

α(x, u)μ(du)
)
δx(dy) + αη(x, y)μ(dy).

The function α is defined by: αη(x, y) = η(x)π(y)/(η(y)π(x)), that is, αη(x, y)
is the Metropolis ratio associated to another distribution η ∈ Pac

0 (E). In [4],
the authors investigated the case η = πα̃ for α̃ ∈ (0, 1). This kernel satisfies:∫∫

E×E

φ(y)Kη(x,dy)π(dx) =
∫
E

φ(y)π(dy).

The sampling procedure is therefore quite different as it requires an auxiliary
chain to build samples from η first in order to construct a sample from the de-
sired nonlinear kernel. More precisely, the authors propose the following iterative
procedure to construct a couple of Markov chains (Xt, Yt):

(Xt+1, Yt+1) ∼
(
(1 − ε)KMH(Xt,dxt+1) + εQμ̂Y

t
(Xt,dxt+1)

)
P (Yt,dyt+1),

where P is a (linear) Markov transition kernel with invariant distribution η and
(Yt)t is a Markov chain with transition kernel P . The empirical measure of this
chain is denoted by:

μ̂Y
t = 1

t + 1

t∑
s=0

δYs .

The final MCMC approximation of an observable ϕ is given in this case by:∫
E

ϕ(x)π(dx) � 1
t + 1

t∑
s=0

ϕ(Xs). (42)

In this empirical sum, the successive iterations of the single chain (Xt)t are used.
In the collective proposal framework introduced in Section 2, the algorithm
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produces N (asymptotically) independent copies of a nonlinear chain (Xi
t)t,

i ∈ {1, . . . , N} and we have at our disposal a sequence of MCMC approximations
of the form: ∫

E

ϕ(x)π(dx) � 1
N

N∑
i=1

ϕ(Xi
t), (43)

as t → +∞. We can therefore interpret the sum (42) as a time average and the
sum (43) as an ensemble average.

C.2. Links with importance sampling based methods

Even though CMC does not use importance weights, it shares some similarities
with importance sampling methods, in particular SMC [24] and PMC methods
[18]. We will discuss the links with SMC in Section C.3 and focus here on PMC.

According to [18], in PMC methods, without the importance correction, a
regular acceptance step — as in Metropolis-Hastings — for each mutation would
lead to a simple parallel implementation of N Metropolis-Hastings algorithm.
Under the same parallel, we can compare the mutation step in PMC with the
proposal step of CMC.

In the first implementation of PMC, at each mutation step, each particle Xi
t

is updated independently from the others, according to a kernel qit(·) (that can
depend on t and i), the new particle Xi

t+1 is then associated with a weight pro-
portional to the ratio π(Xi

t+1)/qit(Xi
t+1). In PMC, a mutation therefore occurs

according to qit, that is only depends on the position of the ancestor particle. In
CMC, the mutation occurs according to Θμ̂N

t
(· | Xi

t), the update thus depends
on the position of all the particles as Θ depends on the empirical measure of the
system μ̂N

t . This additional dependency is particularly emphasized in the case
of Algorithm 2. This corresponds to the Rao-Blackwellised version of PMC, in
which we integrate over the position of all the particles.

Recently, [25] also proposed to Rao-Blackwellise the mutation kernel in PMC
while keeping an importance sampling framework. The resulting algorithm is
non-Markovian and does not conserve the number of particles. At each iteration
a batch of particles is added to the system according to the previous estimation
of the target density. The number of particles N grows with the number of
iterations. Once a particle is added, its position does not change, only its weight
is updated along the iterations as explained in the following Algorithm 6.

The main hyper parameters to tune are the sequence of kernels (Kt)t and
mixing weights (λt)t. Typically the sequence of kernels is taken equal to Kt(x) ≡
Kht(x) := K0(x/ht)/hd

t where K0 is a fixed kernel and (ht)t is a sequence of
bandwidths. In [25], the authors recommend to use

ht = h0

(
1 + 2Nt

T0

)−1/(4+d)

,
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Input: A target distributions π,
an initial distribution q0,
a number of particles N ,
a sequence of transition kernels Kt

a sequence of mixing weights (λt)t
a number of iterations T

Output: A weighted sample
(
Xi

t , w
i
t

)
1≤i≤N ; 0≤t≤T

Sample independently N particles Xi
0 ∼ q0, i ∈ {1, . . . , N} ;

Compute the importance weights wi
0 = π(Xi

0)/q0(Xi
0) ;

for t = 1 to T do
Sample independently N particles from Xi

t ∼ qt := (1 − λt)ft + λtq0,
i ∈ {1, . . . , N} where

ft(x) =
t−1∑
s=0

N∑
i=1

w̃i
sKt(x−Xi

s),

and the weights w̃i
s = wi

s/
∑t−1

s=0
∑N

i=1 w
i
s are normalized.

Compute the new importance weights wi
t = π(Xi

t)/qt(Xi
t) ;

end

Algorithm 6: Safe and Adaptive Importance Sampling (SAIS)

λt =

⎧⎪⎨⎪⎩
0.25

(
1 + 2Nt

T0

)−1/(4+d)
if t ≥ T0,

0.5 if T0/2 < t < T0,
1 if t ≤ T0/2.

where T0 ∼ T/10 is the duration of the burn-in phase and h0 is the initial
bandwidth size which becomes the only parameter to choose. During the burn-
in phase the authors also recommend to raise the importance weights to the
power 3/4 in order to prevent an early degeneracy of a small number of weights.
We will always use these recommendations.

This method shares some similarities with ours, an important difference being
that an old particle cannot be improved through time and a “bad” particle will
indefinitely remain in the system at the same place, while its weight decreases
through time, eventually increasing the computation cost. A second difference
is that it is necessary to tune the sequence of bandwidths and mixture weights.

Importance sampling based methods output unbiased estimators. For CMC,
as stated before, except for the Metropolis-Hastings proposal, each one of the
methods previously described is biased. Indeed, for a fixed number N of par-
ticles, the algorithm does not converge to the target distribution. For a large
number of particles, the algorithm provides however a good approximation of
the target density, according to Theorem 2.9. In addition, as a byproduct, we
can re-use this approximation to provide an unbiased estimator by simply using
the (sequence of) collective proposal distributions as importance distributions
in any importance sampling based sampler. A more thorough study is left for
future work, but some elements can be found in Appendix D.
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C.3. Adaptive sequential Monte Carlo methods

A classical version of the Sequential Monte Carlo method well suited for sam-
pling problems is given by Algorithm 7.

Input: A sequence of target distributions π0, . . . , πT ,
a number of particles N ,
a sequence of transition kernels Kt,ξ parametrized by ξ ∈ EN ,
a threshold ESSmin,
a given allowed number S of mutation steps
Output: A weighted sample

(
Xi

t , w
i
t

)
1≤i≤N ; 1≤t≤T

(Initialization);
for i = 1 to N do

Sample Xi
0 ∼ π0. ;

Set the weights wi
0 = 1/N ;

end
for t = 1 to T do

(Correction) ;

Update the weights wi
t = wi

t−1
πt(Xi

t−1)
πt−1(Xi

t−1) for i ∈ {1, . . . , N};
Normalize the weights ;
(Resampling) ;
Compute ESS = (

∑
i(wi

t−1)2)−1 ;
if ESS < ESSmin then

Resample the particles Xi
t−1 ∼

∑
j w

j
t δXj

t−1
for all i ∈ {1, . . . , N};

Set wi
t = 1/N for all i ∈ {1, . . . , N}

end
(Mutation) ;
Set XN

t−1 = (X1
t−1, . . . , X

N
t−1) ∈ EN ;

for i = 1 to N do
Set Xi

0,t = Xi
t−1 ;

for s = 1 to S do
Sample Xi

s,t ∼ Kt,XN
t−1

(Xi
s−1,t, dx) ;

end
Set Xi

t = Xi
S,t ;

end
end

Algorithm 7: Sequential Monte Carlo (SMC)

In this version, the sequence of target distributions is typically given by a
tempering scheme between π0, which is easy to sample from, and the final dis-
tribution πT = π, the target distribution that we wish to sample from. The SMC
algorithm alternates between two steps. During the mutation step, the particles
evolve independently using a πt-invariant random-walk kernel. During this step,
the weights of the particles are updated using a classical importance sampling
procedure. Then, during the resampling step, the particles with a small weight
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are eliminated and replaced by particles with a higher weight. The SMC algo-
rithm is said to be adaptive when the transition kernel Kt,Xn

t−1
at iteration t

depends on the population of particles at the previous iteration.
This framework is general enough to encompass our main Algorithm 1, by

simply taking un-weighted particles (or ESSmin = N), a constant sequence
of target distributions and Kt,XN

t−1
equal to (1) with μ equal to the empirical

measure of the particle system. However our setting has several differences with
the classical SMC methods advocated in the literature.

In all the adaptive methods proposed in the literature and that we are aware
of, the choice of the random-walk kernel does not depend on the whole distri-
bution of the particles but rather on summary statistics, that is on real-valued
quantities of the form 〈Ψt, μ̂

N
t 〉 for a well-chosen test function Ψt. A typical

choice is to consider the covariance. Considering only summary statistics has
several advantages, in particular the algorithm keeps a linear footprint in N
and can be easily parallelized. Then, the mutation step is typically a standard
MH algorithm whose flaws are expectedly corrected by the resampling proce-
dure. However, the full knowledge of the particle swarm is not exploited and
choosing the right summary statistics and the right mutation kernel are dif-
ficult tasks which may cause instability in practice. One goal in this article is
precisely to avoid resampling and tempering by considering better mutation ker-
nels thanks to wish we can safely rely on ergodicity only. Our main algorithm
can be seen as the most general case where the mutation kernel depends on the
whole distribution of the particle system and thus fully exploit the knowledge
of the particle swarm. Even if the complexity of the algorithms that we pro-
pose becomes quadratic in N , we show that at least equally good results can be
achieved.

On the theoretical side, this choice of mutation kernel is much more difficult to
study and requires specific tools. On the contrary, due to their linear nature, the
convergence properties of adaptive SMC methods with a mutation kernel which
depends on summary statistics are typically studied with completely different
tools. One important difference to note is that, unlike most of the particle-based
algorithms in the literature, the target distribution π⊗N is not an invariant
distribution of the particle system. This issue, which may seem critical at first
sight, is actually solved asymptotically when N → +∞ thanks to a propagation
of chaos result. This enlarge the class of mutation kernels.

Finally, we mention that although we did not investigate this direction, CMC
within SMC would be a very natural idea.

Appendix D: Importance sampling plug-in of CMC

Importance sampling methods are unbiased, by definition, while CMC presents
a (usually small) bias depending on the number of particles. To remove this bias,
while keeping the original form of the algorithm, we present in Algorithm 8 a
small plug in, which output an unbiased sample without additional cost.
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Input: An initial population of particles (X1
0 , . . . , X

N
0 ) ∈ EN , a

maximum time T ∈ N, a proposal distribution Θ and an
acceptance function h

Output: T estimators ϕ̂t of Eπ[ϕ(X)]
for t = 0 to T − 1 do

for i = 1 to N do
Draw Y i

t ∼ Θμ̂N
t

(·|Xi
t) a proposal for the new state of particle i;

Compute αμ̂N
t

(Xi
t , Y

i
t ) =

Θ
μ̂N
t

(Xi
t |Y i

t )π(Y i
t )

Θ
μ̂N
t

(Y i
t |Xi

t)π(Xi
t)

;

Store W i
t = π(Y i

t )/Θμ̂N
t

(Y i
t |Xi

t) and Y i
t ;

Draw U i
t ∼ U([0, 1]);

if U i
t ≤ h

(
αμ̂N

t
(Xi

t , Y
i
t )
)

then
Set Xi

t+1 = Y i
t ;

else
Set Xi

t+1 = Xi
t ;

end
end

end
Set ϕ̂t =

∑
i W

i
tϕ(Y i

t ).
Algorithm 8: Collective Monte Carlo with IS output

At each step, we can store Y i
t the proposed state for each particle, and the

numerator of the acceptance ratio W i
t = π(Y i

t )/Θμ̂N
t

(Y i
t |Xi

t). An estimator of
Eπ[ϕ(X)] is then

∑
i W

i
tϕ(Y i

t ). This term corresponds exactly to the importance
ratio with π as target and Θμ̂N

t
as proposal distribution. This is similar in a

sense to PMC, but the main difference is that we do not propagate Y i
t unless it

is accepted, and thus the weight cannot degenerate.
This addition does not interfere with the choice of the interaction Θ, and

ensures that the resulting estimator is unbiased. We do not have to use all the
points (Y i

t ) as we can only use some of the t. Notice that each of the (Y i
t )i are

independent by construction, but that (Y i
t )t,i are not independent.

To measure the quality of a numerical method, it is common to use the Ef-
fective Sample Size (ESS) [73] that represents the equivalent number of i.i.d.
samples needed to build an estimator of Eπ[X] with the same variance — notice
that this quantity is mostly informative. In Importance sampling, the ESS is
commonly estimated by ESS(t) = (

∑
i(W i

t )2)−1, Interestingly enough, Theo-
rem 2.9 shows that precisely, as the number of particles increases,

E[(
∑
i

(W i
t )2)−1]/N →N→∞ 1,

as it tends to an i.i.d. sample distributed according to π. The precise convergence
speed would depend on the constants appearing in the theorems.

As usually in importance sampling, this allows to estimate at no cost the
normalizing constant — or in a Bayesian framework, the marginal likelihood of a
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Fig 8: Log-MSE of the normalizing constant computed for the banana-shaped
distribution (left) and the 8-dimensional Gaussian mixture (right).

Fig 9: True sample and levels of the mixture of Cauchy target distribution

mode:
∫
x
π(x)dx, where we recall that π is non-normalised. Classical Metropolis-

Hastings methods cannot estimate this quantity, while importance sampling
methods (SMC, PMC) can provide an estimator whose variance may be too large
to be usable. Figure 8 shows the result for the experiments of Section 5. These
are only results on two “simple” targets, further numerical simulations would
be needed to confirm the efficiency of our method to estimate this quantity.

Appendix E: Numerical experiments on a Cauchy mixture

Our last target is a simple mixture of two two-dimensional Cauchy distributions
with means (0.2, 0.8) and (0.8, 0.2) and the same scale parameter 0.01. We rep-
resent in Figure 9 a sample and the level sets of the target distribution. This
distribution has “heavy tails” which should reduce the efficiency of our uniform
proposals on balls. For this example, we choose 0.1 for the radius of the unique
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Fig 10: Mean energy distance to a true sample on 10 repetitions of the algorithm,
Cauchy mixture. The dotted line represents the mean distance between two iid
exact samples, computed over 100 independent realisations, and the coloured
area is the corresponding 90% prediction interval.

proposals, and 0.01, 0.05, 0.1, 0.3 for the MoKAs. The results presented in Fig-
ure 10 show that none of the method reaches the minimal value possible for the
Energy distance. Furthermore, MoKA-KIDS dramatically fails, this is probably
because of the underlying assumptions of the deconvolution algorithm we use.
This last example confirms the reliability of MoKA-Markov as an efficient and
secure method. The variance of the energy distance is given in Tabular 3.

Table 3

Variance of the Energy distance at the last iteration for the Cauchy target.
CMC MoKA MoKA-Markov MoKA-KIDS PMH SAIS

Cauchy mixture 8.01e-05 6.59e-05 6.86e-05 7.40e-02 3.31e-4 8.66e-05
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