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A stream of charged particles known as the solar wind constantly flows with supersonic speed in our
solar system. As the supersonic solar wind encounters Earth’s magnetic field, a bow shock forms
where the solar wind is compressed, heated and slowed down. Not all ions of the solar wind pass
through the shock but rather a portion are reflected back upstream. What happens to the reflected
ions depends on the magnetic field geometry of the shock. In the case where the angle between the
upstream magnetic field and the shock normal vector is small, the reflected ions follow the magnetic
field lines upstream and form a foreshock region. In this case the shock is called quasi-parallel. In
the case of a quasi-perpendicular shock, where the angle is large, the reflected ions gyrate back to
the shock, accelerated by the convection electric field. Upon returning to the shock, the ions have
more energy and either pass through the shock or are reflected again, repeating the process. Ion
reflection is important for accelerating ions in shocks. In this work we study the properties and ion
reflection of the quasi-perpendicular bow shock in Vlasiator simulations.

Vlasiator is a plasma simulation which models the interaction between solar wind and the Earth’s
magnetic field. The code simulates the dynamics of plasma using a hybrid-Vlasov model, where ions
are represented as velocity distribution functions (VDF) and electrons as magnetohydrodynamic
fluid. Two Vlasiator runs are used in this work. The ion reflection is studied by analysing VDFs
at various points in the quasi-perpendicular shock. The analysis is performed with reflections in
multiple different frames.

A virtual spacecraft is placed in the simulation to study shock properties and ion dynamics, such
as the shock potential and ion reflection efficiency. These are compared to spacecraft observations
and other simulations to test how well Vlasiator models the quasi-perpendicular bow shock.

We find that the ion reflection follows a model for specular reflection well in all tested frames,
especially in the plane perpendicular to the magnetic field. In addition, the study was extended to
model second specular reflections which were also observed. We conclude that the ions in Vlasiator
simulations are nearly specularly reflected.

The properties of the quasi-perpendicular bow shock are found to be in quantitative agreement
with spacecraft observations. Ion reflection efficiency is found to match observations well. Shock
potential investigations revealed that spacecraft observations may have large uncertainties compared
to the real shock potential.
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1. Introduction

1.1 Plasmas

A stream of charged particles, which originates from the Sun, constantly flows in our
solar system. This stream is a plasma which is a state of matter formed from neutral
atoms when high-energy collisions or ionizing radiation strips away the electrons of
the atoms. Plasma typically consists of positive ions and negative electrons. The
number of positive and negative charges in plasma cancel out on large scales, making
it globally neutral. This is called quasineutrality. Even small charge imbalances
cause rapid flow of electrons to re-establish the neutrality. A distinctive feature
of plasma is that its behaviour is largely affected by electric and magnetic forces
compared to just mechanical collisions in neutral gases. In some plasmas, the mean
free path between collisions is much larger than the system itself making the plasma
collisionless. In collisionless plasmas the motion of the particles is determined by
electromagnetic fields.

A characteristic length scale for a plasma is the decay scale of the electric
potential known as the Debye length

λD =
√
ε0kBTe

ne2 , (1.1)

where ε0 is the permittivity of free space, kB is the Boltzmann constant, n is the
number density, e is the charge of an electron and Te is the electron temperature.
The plasma shields the particle so its potential φ is weakened exponentially with
distance r according to

φ = φ0 exp (−r/λD). (1.2)

The Debye length is the length in which particles screen out potentials. Beyond the
Debye length no significant charge separation can occur. Using the Debye length we
can get another definition for a plasma: The system size L has to be significantly
larger than the Debye length L� λD for the screening to happen.

1



2 CHAPTER 1. INTRODUCTION

Not only is plasma found in our Solar system but also just about everywhere
in the Universe for example in stars and interstellar space. Here on Earth we can see
plasma in lightnings and auroras. Still, plasma is relatively rare on Earth which is
why it may surprise that plasma is the most abundant visible matter in the Universe.
Plasmas in astrophysical settings are often collisionless.

The stream of particles flowing in our solar system is called the solar wind. It
is a plasma released from the upper part of the atmosphere of the Sun, called the
corona. The solar wind, consisting mainly of electrons, protons and alpha particles
[Geiss et al., 1995], carries a magnetic field which is frozen-in to the plasma. This
means the magnetic field is restricted to move with the plasma. The magnetic field
in the solar wind is called the interplanetary magnetic field (IMF). The solar wind,
along with the magnetic field lines, flow radially outwards from the Sun’s surface
but are twisted into a spiral shape as the origins of the flow rotate with the Sun’s
surface. This is known as the Parker spiral [Parker, 1958]. The shape of the spiral
is somewhat distorted as velocity of the solar wind varies due to solar activity.

1.2 Shocks

When an obstacle moves relative to a medium with a speed faster than the wave
carrying information in the medium, a shock forms in front of the obstacle. Shock
waves are transitions between a supersonic flow and a subsonic flow with an abrupt
change in the pressure of the material. A shock can either form if the obstacle is
moving with supersonic speeds or if the flow is hitting the obstacle with supersonic
speeds. A common example of a shock are supersonic aircrafts that move seemingly
silently until the shock arrives after the aircraft.

Shocks are common in plasmas in the universe. In collisionless plasmas the
shock is also collisionless. This means the length scale of the shock is much shorter
than the collisional mean free path of the particles in the plasma. In collisionless
shocks, energy is carried by the wave-particle interaction caused by electromagnetic
fields. A variety of different wave modes can be present in plasma.

An important tool in describing shocks is the Mach number M = V/cs, where
V is the relative velocity of the obstacle to the bulk flow and cs is the speed of
sound in the medium. A shock forms when M > 1. For collisionless plasmas the
conditions are different and cs has to be replaced by a more relevant speed. It is
common in plasma physics to replace this with the speed of an Alfvén wave called
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Figure 1.1: Supernova remnant Cassiopeia A imaged by Chandra in X-rays. A shock is seen in
blue and purple surrounding the remnant. Image credit: NASA/CXC/MIT/UMass Amherst/M.D.
Stage et al.

the Alfvén speed
vA = B

√
µ0min

, (1.3)

where B is the magnetic field, µ0 is the vacuum permittivity, mi is the ion mass.
Another important wave mode is the magnetosonic wave which can create

shocks in plasmas. The group speed of magnetosonic waves is

v2
ms = v2

A + c2
s

2 ± 1
2

√
(v2

A + c2
s)2 − 4c2

sv
2
A cos2 θ, (1.4)

where θ is the propagation angle in respect to the magnetic field, vA is the Alfvén
speed and cs is the ordinary speed of sound. The speed of sound is defined as
cs = ∂P/∂ρ, where P is the isotropic pressure and ρ = miN the mass density
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[Balogh and Treumann, 2013; Swanson, 1989]. For a magnetosonic shock to form
the flow has to have magnetosonic Mach numberMms = V

vms
> 1. The± in the above

equation gives equation to two magnetosonic wave modes: the fast magnetosonic
wave mode v+

ms and the slow magnetosonic wave mode v−ms. Of the wave modes
presented here, only the fast magnetosonic wave propagates perpendicular to the
magnetic field. In other directions all three wave modes can exist and form shocks.
Therefore there are three kinds of shocks: the fast, the slow and the Alfvénic shocks.
In this work we are looking at the fast mode shock since the solar wind speed is
faster than the magnetosonic speed, making the bow shock a fast type shock.

A shock around a supernova remnant Cassiopeia A is seen in Figure 1.1. Here,
the collisionless shock has accelerated electrons to ultra-relativistic speeds producing
synchrotron radiation visible in the x-ray [Koyama et al., 1995; Koo and Park, 2017].

The shock waves around supernova remnants are very efficient particle acceler-
ators and are most likely the source of galactic cosmic rays [Blandford and Ostriker,
1978]. The particles are accelerated in a process called diffusive shock acceleration
(DSA). When a high energy particle crosses the shock from upstream to downstream,
it may get reflected back upstream from the turbulence and waves. Upstream the
particle gets reflected off the upstream waves back to the shock, gaining energy in
the process. Downstream it is reflected off collisions with slow downstream waves.
The particle loses energy here as it overtakes slow waves but on average the particle
gains energy. This process happens again until the particle has gained enough en-
ergy to escape as a cosmic ray. DSA can accelerate not only electrons but protons
as well [Morlino and Caprioli, 2012]. A problem with DSA is that the initial particle
energy required to enter the process is high, provoking the question: how can par-
ticles gain this energy in the first place? While this remains an open question, one
solution is that ions could gain the sufficient energy by a mechanism called shock
drift acceleration, which we will look in to later.

For a shock where the Mach number exceeds a critical limit, the shock becomes
supercritical [Edmiston and Kennel, 1984; Kennel, 1987]. Such shocks are unable to
slow down the flow fast enough with dissipation alone. Instead, supercritical shocks
reflect a portion of the incoming ions back upstream.

1.3 Ion reflection

An important feature of a supercritical shock is its ability to reflect a portion of the
incoming ions back upstream. This ability comes from the fact that supercritical



1.3. ION REFLECTION 5

shocks are unable to slow down or heat the incoming flow fast enough. To deal
with the excess energy the shock must have mechanics other than wave-particle
interactions. A solution is to reject the excess portion of the incoming energy by
reflecting some of the incoming plasma.

The efficiency of the ion reflection along with the shock geometry is depen-
dent on the angle θBn between shock normal vector n̂ and the upstream magnetic
field B. This angle is often defined to be an acute angle. Using θBn we can dis-
tinguish two types of shocks: the quasi-parallel shock where θBn < 45◦ and the
quasi-perpendicular shock where θBn > 45◦. What differentiates the two is that in
quasi-perpendicular shocks the ions return to the shock accelerated by the convec-
tion electric field

E = −V×B. (1.5)

In quasi-parallel shocks, the ions propagate along the magnetic field further up-
stream. The reflection off a quasi-parallel and quasi-perpendicular shock is drawn
in Figure 1.2.

Figure 1.2: Ion reflection from quasi-parallel and quasi-perpendicular shock. Image credit:
Schwartz et al. [2004]

A path of an ion as it is reflected from a perpendicular shock is drawn in
Figure 1.3. Before hitting the shock itself, the ion encounters a region populated
with reflected ions as well as incoming ions. This region is called the shock foot.
After the shock foot, the ion encounters the shock ramp, which is a sudden increase
in density and magnetic field. If the ion does not have enough energy to overcome
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the magnetic field and the cross-shock electric potential, it is reflected back to the
foot where it performs a gyration and returns to the ramp with more energy. The
size of the foot is proportional to the ion gyroradius as the ions gyrate in an arch
back to the shock. The reflected trajectories are spread to non-circular path by
the acceleration the ion experiences by the convection electric field. As the ion
returns, it now has enough energy cross the shock ramp. The ion now arrives to
the downstream region where the magnetic field is compressed. Downstream the ion
performs gyrations with decreased gyroradius as it travels further downstream.

Figure 1.3: Ion reflection from the shock with the ion distribution function in velocity space from
indicated locations in real space. The shock surface is drawn as a line in the velocity space figures.
Image credit: Balogh and Treumann [2013]

Now we will look at velocity space vx, vy drawn in the bottom half of Figure 1.3.
In the upstream, the ion is in the solar wind population drawn as the black dot
population 1 in the figure. Upon hitting the shock, the ion is specularly reflected,
which means the velocity component along the shock normal changes sign and the
tangential component remains unchanged. The reflection can be seen in population
3, which mirrors the solar wind on the other side of the of the shock surface. The
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ion then moves upward and gyrates in the solar wind. The ion moves along the
drawn circle in velocity space. This circle is constant energy in the solar wind
frame. The ion moves in the shock foot until it reaches the turning point. Here the
ion’s speed along the shock normal vector is zero. In the velocity space, the ion has
now entered population 2, which has velocity just where the shock surface line is.
The ion now continues towards the shock again eventually hitting and crossing it,
seen as population 2′. In the downstream, the ion continues to gyrate forming the
populations seen in the downstream panel of Figure 1.3.

1.4 Earth’s bow shock

The solar wind flows with speed faster than the fast magnetosonic speed. As the
solar wind hits a planetary magnetic field a bow shock forms [Sonett and Abrams,
1963]. The name bow shock comes from bow waves that form ahead of a bow of a
ship as it sails in water. Rather than a ship moving through still water, the solar
wind flows and hits seemingly stationary planets. In the frame of the solar wind,
the bow shock appears to be moving, piercing through the solar wind, making the
analogue to the bow waves more apparent. The Earth’s bow shock has a hyperbolic
curve shape and has its nose at about 14RE in the direction of the Sun [Fairfield,
1971; Farris et al., 1991]. The location of the bow shock can vary with changing
upstream conditions. For example when the Solar wind has higher Mach number,
the shock is forced more towards Earth [Cairns and Lyon, 1995].

The bow shock is a thin layer of the order of 101 - 102 kilometers [Schwartz
et al., 2011; Svensson, 2018]. Behind the shock lies a turbulent magnetosheath. It is
populated by shocked solar wind particles and a small amount of particles escaping
from the magnetosphere below [Paschmann et al., 2005]. The magnetic field varies
erratically in the magnetosheath. Behind the magnetosheath is the magnetopause
where the pressure from the planetary magnetic field is balanced with the solar wind
pressure. On the nightside of the Earth is the magnetotail where the magnetic field
is significantly stretched away from Earth by the solar wind, see Figure 1.4.

The geometry of the shock is dependent on the angle θBn between the up-
stream magnetic field B and the shock normal vector n̂. The shock can be quasi-
perpendicular or quasi-parallel depending on if θBn > 45◦ or θBn < 45◦ respectively.
The difference can be seen in Figure 1.4, where the quasi-perpendicular side shock
has a smooth and steep shock ramp whereas the quasi-parallel shock is uneven and
turbulent. The bow shock is typically supercritical which means the shock is un-
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able to slow down the flow enough with dissipation alone. Instead, excess energy
is handled by reflecting a portion of incoming ions back upstream. The turbulent
nature of the quasi-parallel side is caused by reflected ions that propagate back up-
stream along the magnetic field [Thomsen, 1985], forming a large foreshock region
highlighted in dark red in Figure 1.4, whereas in the quasi-perpendicular shock they
return to the shock.

Figure 1.4: Earth’s bow shock with solar wind coming from the right from a Vlasiator simulation.
Foreshock region highlighted in dark red.

Since the solar wind exceeds the fast magnetosonic speed the shock is "fast"
type shock where the magnetic field downstream of the shock increases. This is
seen in spacecraft data in Figure 1.5. In the Earth’s quasi-perpendicular bow shock
before the shock ramp comes a region populated by both incoming solar wind ions
and reflected ions called the shock foot. This is seen as a small increase in the
magnetic field and density. After the foot comes the shock ramp which is a abrupt
increase in magnetic field and density while the solar wind is slowed down. After the
ramp there is a steep overshoot region where the magnetic field increases yet again
followed by a undershoot region where it decreases. The overshoot and undershoot
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are caused by currents in the shock ramp.

Figure 1.5: Spacecraft data from Magnetospheric Multiscale (MMS) mission crossing the quasi-
perpendicular bow shock. Upper panel shows magnetic field magnitude with different regions of
the shock shown. Middle panel shows electron number density. Bottom panel shows ion flow speed.
Image credit: Johlander [2019]
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2. Vlasiator

Global simulation of near-Earth space environment is a useful tool to help and com-
plement spacecraft missions. Accurate simulation of such a system is a difficult task
and many types of simulations have been used to solve this problem. Most popular
of the simulation types has been magnetohydrodynamic (MHD) simulations where
the MHD equations have been implemented in a computer simulation. These simula-
tions can provide accurate results in large parts of the magnetosphere [Ridley et al.,
2010]. MHD simulations do not simulate ion kinematics which means something
more is needed to study regions where ion reflection is a large contributor.

In hybrid simulations, ions are modeled with a kinetic model while electrons
are modeled as a fluid. In particle-in-cell (PIC) simulations the ions are represented
as macroparticles for which the plasma kinetic equations are solved. These methods
produce numerical noise which can be reduced by increasing the number of ions in
the simulation. While this reduces the noise, it quickly also increases the computing
time needed for the simulation.

Another way to do hybrid simulations is to not model the ions as particles but
as distribution functions and use the Vlasov equation, which we will introduce later
in the report, for their time evolution. These hybrid-Vlasov simulations require very
large amounts of memory and computations to propagate the distribution functions.
Vlasiator is a state-of-the-art hybrid-Vlasov simulation that can globally simulate
the near-Earth space [Palmroth et al., 2018; Pfau-Kempf, 2016].

2.1 Simulation model

In space plasmas the dynamical state of system particles of species s at a time t can
be described with a distribution function in position and velocity space fs(r,v, t)
[Chen, 2016]. The distribution function represents phase space density of the species
inside an 6-dimensional volume element of size d3xd3v with time dt. Phase space
density is drawn in Figure 2.1. Integrating fs(r,v, t) over velocity space gives the

11
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Figure 2.1: Phase space density drawn in Eulerian grid. Image credit: Palmroth et al. [2018]
.

particle number density ns(x) and integrating over both velocity and position space
gives the total number of particles Ns.

It is important to know how fs(r,v, t) evolves with time. The distribution
function has to satisfy the Boltzmann equation

∂f

∂t
+ v · ∇f + F

m
· ∂f
∂v

= (∂f
∂t

)coll, (2.1)

where F is the force acting on the particles and the right side term is the time rate
of change of f due to collisions. In collisionless plasmas, collisions between particles
are negligible and therefore the only force acting on the particles is the Lorentz force
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F = qE + q v×B. The equation takes form

∂

∂t
f(r,v, t) + v · ∂

∂r
f(r,v, t) + q

m
(E + v×B) · ∂

∂v
f(r,v, t) = 0. (2.2)

This is called the Vlasov equation [Vlasov, 1961]. In simulations the fields in the
Vlasov equation need to be solved using either Poisson’s equation in electrostatic
cases or Maxwell’s equations in electromagnetic case. Vlasiator uses the Ampère-
Maxwell’s law without the displacement current. The electric field E is closed using
a generalized Ohm’s law

E = −V×B + 1
qne

j×B, (2.3)

where j is the electric current density. In Vlasiator, only ions are modeled with
distribution functions whereas electrons are modeled as a charge neutralizing fluid.
This makes Vlasiator a hybrid-Vlasov simulation. To account for the effects of the
electrons, the generalized Ohm’s law has the Hall term 1

qne
j×B. The time evolution

of B is calculated using Faraday’s law in a form

∆B = −∆t · ∇ × E. (2.4)

In Vlasiator, the distribution function is propagated forward with a finite vol-
ume method in which the simulation domain is covered into a mesh consisting of a
finite number of cells. The 6-dimensional space is split into Cartesian mesh in both
position and velocity space. The ordinary space is 1D, 2D or 3D depending on the
simulated case. Values for E, B, n and V as well as other variables are stored for
each spatial cell. The 3D velocity distribution function is stored at every r spatial
cell position forming a less dense grid in velocity space. The saved velocity cells can
be seen in Figure 1.4 as black dots covering the whole figure. To boost computa-
tional efficiency, Vlasiator uses a sparse velocity grid, where portion of the velocity
space is discarded if phase space density is below a chosen threshold f < fmin. Stor-
ing the velocity distribution in a sparse grid reduces the amount of required velocity
cells by a factor of 100 with little loss of accuracy [von Alfthan et al., 2014].

The velocity distribution function (VDF) at a point close to the quasi-perpendicular
shock ramp is plotted in Figure 2.2. Here the upstream solar wind is seen as the
spherical population intersected by the magnetic field direction line. On the left is a
population of reflected ions forming a curved shape resembling a banana. Between
the two mentioned populations are smaller populations of reflected ions. All of the
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reflected populations have velocities perpendicular to the magnetic field, because
the ions gyrate around B after reflection. This gives an early indication that the
ions are reflected in Vlasiator.

Figure 2.2: A velocity distribution function in 3D. The surface is where the phase space density
is f = 10−13 m−6s3. The direction of the magnetic field is drawn as a black line.

2.2 Simulation runs used

In this work we will use two separate Vlasiator simulations. While Vlasiator is
capable of 6-dimensional simulations, the simulations we will use are both 5D: 2D
in position space and 3D in velocity space. The properties of the simulations are
listed in Table 2.1.

The two simulations have identical solar winds, with the exception of the
direction of the magnetic field B. Important to note is the coordinate system is
chosen in a way where the colormaps are drawn in polar xz-plane, meaning we are
looking at the system perpendicular to the ecliptic plane, as seen in Figure 2.3.
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Table 2.1: Table of simulations used.

Simulation BCQ BCV
B[nT] 5×(cos(45◦), 0, -sin(45◦)) 5×(0,0,1)
Solar wind n [cm−3] 1 1
Solar wind Vx [km s−1] -750 -750
Simulation time [s] 1437 2150

Figure 2.3: Colormaps of the two Vlasiator simulations used in this work. On the left panel is
the BCQ simulation and on the right panel is the BCV simulation.

The locations for the velocity distribution functions are visible as black dots. Many
timesteps of both simulations were used but the general shape of the shock in the
simulations remains as pictured.

In simulation BCV, seen in the right panel of Figure 2.3, the magnetic field is
purely northward, pointing northward perpendicular to the ecliptic plane, causing
the bow shock to be symmetrical in the z-direction. The shock is also almost
completely quasi-perpendicular with only little quasi-parallel regions at the left side
of the figure (X . −25RE). In simulation BCQ, seen in the left panel of Figure 2.3
the magnetic field points towards the Sun southward in a 45◦ angle to the Earth-Sun
line, causing the shock to have clear quasi-perpendicular and quasi-parallel sides.
The quasi-parallel side has a large foreshock region whereas the quasi-perpendicular
side has district shock ramp.



16 CHAPTER 2. VLASIATOR

2.3 This work

While the Earth’s quasi-parallel bow shock has been the subject of many Vlasiator
studies [e.g., Kempf et al., 2015; Turc et al., 2018; Battarbee et al., 2020], the
quasi-perpendicular bow shock has not been studied in Vlasiator with such detail.
The goal of this thesis is to study how are ions reflected (in what way and how
efficiently) in the quasi-perpendicular bow shock in Vlasiator. In Chapter 3, we will
derive expressions for velocities of ions reflected from the quasi-perpendicular bow
shock and use these to estimate reflection in different models to investigate which
models fit the observed reflected ion populations. In Chapter 4, we will study the
properties of the bow shock and ion dynamics, such as ion reflection efficiency, at
the shock. In Chapter 5, we will summarise the results of the previous chapters and
give conclusions about the results.



3. Reflected ion populations

3.1 Specular reflection

Supercritical shocks are unable to slow down the solar wind fast enough with dissi-
pation so a portion of the incoming ions are reflected back upstream. It is common
in shock physics to assume that ions are reflected off a shock by specular reflec-
tion, where only the shock normal component of the velocity changes sign and the
tangential velocity is preserved. The incoming ions experience the shock ramp as
an impenetrable wall [Balogh and Treumann, 2013] and get reflected. In quasi-
perpendicular shocks, the reflected ions gyrate around the magnetic field, being
accelerated in the process.

The reflected ions play a major role in the downstream heating process and
affect the structure of the shock in timescale of ion gyroperiod. The reflected ions
are also a possible source for populations of upstream ions near the boundary of
the foreshock called field-aligned beam (FAB) ions [Burgess et al., 2012]. The ions
that are reflected multiple times are accelerated with each reflection. This process
is called the shock drift acceleration (SDA). Eventually these ions reach the end of
the quasi-perpendicular shock where they continue gyrating with the magnetic field
forming FABs. It is therefore important to know in detail, how are ions reflected.

In this section we will investigate how are ions reflected off the Earths quasi-
perpendicular bow shock in Vlasiator.

3.1.1 Reflected ion velocities

To study whether the ion reflection at the bow shock follows specular reflection
or not, we need expressions for the velocities of the reflected ions. This was done
by Schwartz et al. [1983] using the deHoffman-Teller frame. The downside of the
deHoffman-Teller frame is that it breaks down when θBn approaches 90◦. For this
reason a more convenient frame is the normal incidence (NI) frame commonly used

17
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V = (Vn, 0, 0)

B = (Bn, Bt, 0)

E = (0, 0,−BtVn)

ShockUpstream

Figure 3.1: An illustration of normal incidence frame. The shock is shown as the dashed line
with the normal vector drawn from it. The upstream velocity, magnetic field and the electric field
are shown. Adapted from Johlander [2019].

in shock physics which is valid even when θBn = 90◦. In normal incidence frame,
see Figure 3.1, the upstream plasma velocity is along the shock normal vector. The
expressions for reflected ion velocities in normal incidence frame will be derived next.

We choose a coordinate system where the plasma flow velocity is

V = (Vn, 0, 0) (3.1)

the magnetic field in the upstream

B = (Bn, Bt, 0), (3.2)

and the electric field E = −V×B

E = (0, 0,−BtVn). (3.3)

There is a constant stream of plasma heading towards the shock at a speed of Vn.
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Assuming specular reflection, right after the reflection the ion has a velocity

v(0) = (−Vn, 0, 0). (3.4)

Using Newton’s second law and the Lorentz force

F = q(E + v×B) (3.5)

we get three equation of motions

ẍ = − q

m
Btż

ÿ = q
m
Bnż

z̈ = q
m

(Btẋ−Bnẏ −BtVn),

(3.6)

where the double dot means time derivative twice and single dot means time deriva-
tive once. Integrating ẍ over time yields

ẋ = − q

m
Bt

∫
żdt′ = − q

m
Btz + C. (3.7)

From initial conditions we get ẋ(0) = −Vn and z(0) = 0. Now the previous integral
becomes

ẋ = − q

m
Btz − Vn. (3.8)

Similarly integrating ÿ over time yields

ẏ = q

m
Bnz. (3.9)

Now we can use these to calculate z̈ in equation (3.6)

z̈ = q

m
(− q

m
B2

t z − VnBt −
q

m
B2

nz −BtVn) (3.10)

= − q2

m2 (B2
t +B2

n)z − 2q
m

(VnBt). (3.11)

Using gyrofrequency
ωci = q

m
B (3.12)

and B2 = B2
n +B2

t , we get a differential equation

z̈ + ω2
ciz + 2q

m
VnBt = 0. (3.13)
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We can solve the equation using initial conditions ż(0) = 0 and z(0) = 0

z =
2BtVn

q
m

ω2
ci

(cos(ωcit)− 1). (3.14)

Time derivative of equation (3.14) yields us the z-component of the reflected ion
velocity

vz = ż = −
2BtVn

q
m

ωci

sin(ωcit). (3.15)

We can derive this further by using the equation for gyrofrequency in (3.12)

vz = −2Bt

B
Vn sin(ωcit) (3.16)

We can calculate vx and vy using the derived z in equation (3.14) in equations (3.8)
and (3.9)

vx = ẋ = −2B2
t

B2 Vn(cos(ωcit)− 1)− Vn (3.17)

and
vy = ẏ = 2BtBn

B2 Vn(cos(ωcit)− 1). (3.18)

We can simplify the velocities further by using sin θBn = Bt/B and cos θBn = Bn/B


vx = −2 sin2(θBn)Vn(cos(ωcit)− 1)− Vn

vy = sin(2θBn)Vn(cos(ωcit)− 1)

vz = −2 sin(θBn)Vn sin(ωcit).

(3.19)

We have now expressions for the velocity of reflected ions. These expressions will
next be used to compare with the observed reflected ion populations in Vlasiator.

3.1.2 Transformation to the simulation frame

We now adopt the notation of v being the velocity of a reflected ion in the simulation
frame and v′ being the ion velocity in the normal incidence frame and given by
equation (3.19). To compare with the reflected ion populations in Vlasiator we need
to transform these expressions back to the simulation frame and coordinate system.
First the reflected ion velocities need to be rotated back to the simulation coordinate
system. The simulation coordinate system is represented by x̂, ŷ, ẑ and the shock
coordinate system by x̂′, ŷ′, ẑ′. From Johlander et al. [2016], x̂′ = n̂, ẑ′ = n̂×B

|n̂×B| and
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ŷ′ = ẑ′× n̂. The rotation to the simulation coordinate system can then be done by

A−1v′, (3.20)

where A is the rotation matrix

A =


n̂x n̂y n̂z

ŷ′x ŷ′y ŷ′z

ẑ′x ẑ′y ẑ′z

 . (3.21)

To move back to the simulation frame we use

v = v′ + VNIF, (3.22)

where VNIF is the velocity of the normal incidence frame given by Schwartz [1998]

VNIF = V− (V · n̂− Vsh)n̂, (3.23)

where Vsh is the velocity of the shock, which we assume to be zero unless stated
otherwise. Now with the expressions for velocity and the frame and coordinate
transformation we have the tools to estimate specular reflections in Vlasiator simu-
lations.

3.1.3 Estimating specular reflection

Now we use the Vlasiator BCV simulation, which is in the xz-plane and has a purely
northward magnetic field along the z-axis. The solar wind speed is 750 km s−1

towards the left along the x-axis. A velocity distribution function from the nose of
the bow shock at z = 0 and x = 21RE is shown in Figure 3.2. Since the magnetic
field is northward and n̂ points straight towards the Sun at the peak of the shock,
θBn = 90◦. The velocity distribution function is from just upstream of the shock
which is why there is a distinct solar wind velocity population centered around
vx = −750 km s−1 in the xy-plane. The velocities of the reflected ions form the
other population curving around the solar wind beam. In the xz-plane the reflected
population is located around and to the right of the solar wind.

The expressions for ion velocities in equation (3.19) are each dependent on
the angle between the normal vector and magnetic field θBn, and the ion gyrophase
ωcit. When θBn is known, a curve can be drawn for a range of gyrophases on top
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of the velocity distribution function to where specularly reflected ion populations
would be and compare that to the actual reflected ion populations. In Figure 3.2 a
dashed line is drawn for θBn = 90◦ and ωcit from 0 to 2π. This does not take into
account the fact that, for a quasi-perpendicular shock, the ion does not complete
the whole gyration. Because of this, the velocity populations of reflected ions can
only be found at the part of the circle where the ions are upstream of the shock.

For a more accurate estimation we can analyze the movement of the ion nu-
merically. We use Euler method to integrate the path of a reflected ion, using
equation (3.19), until it returns to the shock. A more advanced integration method
is not necessary as Euler method is sufficiently accurate for this work. This method
provides only the part of the reflection circle where the ion is upstream of the shock,
meaning the equations are solved when x > 0. In Figure 3.2 this is drawn as the
solid line.

Figure 3.2: Estimations for specular reflection on top of a velocity distribution function from
Vlasiator BCV simulation. The analytically calculated circle is plotted as the dashed line and the
numerically calculated circle up until the first reflection is plotted as the continuous line.

In Figure 3.2, both the full circle and the numerically calculated part of the
circle are plotted on top of a VDF from Vlasiator simulation. The plot of the
simulation projects the whole VDF to the two planes. This is not a true projection
of the VDF but it does indicate where there are ions. We can see that in the xy-
plane the population follows the numerically calculated section of the circle well but
is well inside the circle. In xz-plane the circle is just a line at vz = 0. The x-extent
of the continuous line, i.e. the numerically calculated estimate, is close to the width
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of the simulated population. From both planes it can be seen that the Vlasiator
simulation population is nearly, but not perfectly, specularly reflected.

This estimate works well when θBn can easily be seen from the simulation, for
example at the front of the shock where θBn = 90◦ such as in Figure 3.2. At other
parts of the shock, estimating θBn is increasingly hard which leads to inaccuracies in
the reflection estimation. For accurate estimation we need to find a way to determine
the shock normal vector at arbitrary part on the shock.

3.2 Determination of the shock normal vector

Since the expressions in equation (3.19) are all dependent on θBn, the normal vector
n̂ must be known to use these. We will use a method where n̂ is calculated from the
shape of the bow shock for given coordinates. The point of the shock ramp can be
estimated for a number of lines of the colormap by iterating the density from right
to left until the density is above twice the solar wind value n > 2nsw [Battarbee
et al., 2020]. Since the quasi-perpendicular shock is quite smooth this method finds
the shock ramp well. Next a curve can be fitted to these points. A fourth degree
polynomial fit with only even terms was used in this work

x = A+ Cz2 + Ez4. (3.24)

Two simulations with curves fitted to the bowshock can be seen in Figure 3.3,
one for BCQ simulation and one for BCV. In the left panel the curve is fitted to half
of the shock. This is because in the BCQ simulation the magnetic field, as seen in
Table 2.1, causes the shock to be visibly asymmetric with the quasi-perpendicular
bow shock being smoother than the quasi-parallel bow shock. In the left panel of
Figure 3.3 the curve fit of the shock starts to visibly deviate quickly when z < 0.

A tangential vector t̂ of the shock curve can be used to calculate the normal
vector. The tangential vector

dt =
dx

dz

 ∝
x′

1

 (3.25)

can be rotated 90◦ clockwise to get the normal vector at any point of the curve

dn =
 0 1
−1 0

 ·
x′

1

 =
 1
−x′

 , (3.26)



24 CHAPTER 3. REFLECTED ION POPULATIONS

Figure 3.3: The calculated estimates of the shock plotted on top of two Vlasiator simulations.
On the left is the BCQ simulation and on the right is the BCV simulation. The estimates are
plotted as the red line.

which is then used to obtain the unit normal vector n̂. This rotation ensures that
n̂ always points upstream. The normal vector can then be calculated using the
derivative of the function used to fit the curve

x′ = 2Cz + 4Ez3. (3.27)

We can now estimate specular reflection at any point of the shock. In Figure 3.4
the specular reflection is estimated at x = 8.0RE, z = 30.0RE, where θBn = 45.6◦.
In the xy-plane the estimate is a good fit with a approximately matching shape
of the vy < 0 ion velocity population. It is clear that there are more mechanisms
going on than just a one specular reflection as there is a clear population on the
vy > 0 side as well. In the xz-plane the specular reflection estimate fits the first
population quite well although the estimation is a little too wide for the population
in the x-axis. Here again there is another population with a greater velocity parallel
to the magnetic field suggesting the presence of other mechanisms producing the
other populations.

In Figure 3.5 we can see a specular reflection estimate in the same 3D VDF as
in Figure 2.2. Here, the estimate follows the curvature of the population well but is
further away from the solar wind population.

With the a way to calculate n̂ at an arbitrary point of the shock we can now
start looking for ways of estimating ion velocity populations other than a single
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Figure 3.4: Estimates for specular reflection where θBn 6= 90◦ plotted on top of a velocity
distribution function from BCV simulation. Normal vector as solid line and tangential vector as
dashed line are drawn on the vx-vz-plane as a crosshair. Direction of the magnetic field is shown
as an arrow. ∆n is the distance to the polynomial fit of the curve in the direction of n̂.

specular reflection.

3.3 Beyond specular reflection

Previously in this work, ions have been assumed to get specularly reflected off a static
shock to get estimates for the reflection. While the estimates are good, we will also
look into other mechanisms. In this chapter we will inspect velocity distribution
functions from four different locations from the two simulation runs. This will allow
us to study ion reflection at multiple parts of the shock. These points are shown
in Figure 3.6. In these panels it can be seen that there are local properties of the
shock that in some case can affect the results.

3.3.1 Reflection in other frames

Downstream frame reflection

In our previous estimates in the NI-frame, the shock is static wall the particles hit
and get reflected off. In reality, the particles penetrate the shock by their gyroradius
as the reflection is not an instantaneous reflection. Because of this we will look in
to the case where the ions are specularly reflected but in a frame moving with
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Figure 3.5: Estimate for specular reflection in a 3D plot. Same VDF as in Figure 2.2 with
estimate for specular reflection in NI frame.

the downstream plasma, instead of reflection in the NI-frame. This assumption was
used by Caprioli et al. [2015] studying ion acceleration at non-relativistic collisionless
shocks. This assumption is analogous to bouncing a ball to the back of a moving
truck instead of a wall. From the NI-frame this downstream frame reflection works
similarly as before in equation (3.4) with the velocity changing sign but now it also
loses velocity from the moving frame

v(0) = −Vn + 2VD, (3.28)

where VD is the downstream velocity. VD needs to be added two times since the
frame needs to be first transformed into the downstream frame for the reflection and
then back into NI-frame. The downstream velocity is determined by the density
compression ratio r = ND/NU , where NU is the upstream density, so that VD =
(1/r)Vn. Here we use a compression factor of 4 which is often observed at the
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Figure 3.6: Locations of four points used in this chapter. Simulation name and time of the
simulation are indicated above each image.

Earth’s bow shock [Formisano et al., 1973]. We also observe similar compression
factor in Vlasiator, see Chapter 4.

Specular reflection estimates in both the NI-frame and the downstream frame
are shown in Figure 3.7. The VDF is at coordinates x = 21.2 RE, z = 0.0 RE,
as shown in Figure 3.6a. The path in velocity space of the ion reflected in the
downstream frame is much shorter than its NI-frame counterpart in both planes and
in the xz-plane is a little closer to the solar wind population at vx = −750 kms−1.
A reflected ion population is present in the close proximity of the estimates with the
downstream frame estimate being right on top of the population and the NI-frame
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estimate being on the edge of the main reflected population.

Figure 3.7: Ion reflection upstream of the perpendicular shock in two frames. The reflection in
the NI-frame is drawn as the red line and the downstream frame is drawn as the magenta line.
Same format as Figure 3.4.

Like before, the specular reflection estimates calculated in two frames are plot-
ted in Figure 3.8. The point of the VDF is shown in Figure 3.6b. This time the
distance to the shock is greater than before, about 0.25RE, which is comparable to
the gyroradius of a reflected ion. The shock is clearly in the quasi-perpendicular re-
gion with θBn = 62.7◦. The ion populations appear smaller than in previous figures.
This is because the VDF is close to the turning point of the ions where the trajec-
tories of the reflected ions start to turn back to the shock. In an ideal case there is
only one beam of reflected ions in this region [Sckopke et al., 1983], which is why the
population in the VDF is only slightly elongated compared VDFs in previous figures
where there ideally would be two beams and the solar wind beam. In Figure 3.8
estimates of the specular reflection are a good fit to the main reflected population.
There is a distinct, less dense population in addition to the denser reflected popu-
lation. This is likely reflected ions that have undergone a second reflection. We will
investigate this population further later in the report.

Hall frame

We will now investigate a case in which the electric field vanishes. This frame can
be found with the generalized Ohm’s law (equation 2.3) by moving the frame in
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Figure 3.8: Ion reflection upstream of the quasi-prependicular shock. Same format as Figure 3.7.

frame of reference of the electrons at the shock according to the Hall term 1
qne

j×B,
hence the name Hall frame. In this frame, only the magnetic field can change how
the particle moves [Battarbee et al., 2021], which causes the ions to be reflected by
magnetic mirroring. The frame is similar to downstream frame as it is also moving
with the downstream flow speed but it has an additional velocity caused by moving
with the electron flow. The frame is moving in ẑ′-direction with an approximate
velocity of

Ve ∼ −
1
qne

j, (3.29)

where the current density can be approximated from Ampère’s law

j ∼ Bd −Bu

∆xµ0
, (3.30)

where Bd and Bu are the magnetic field in the downstream and upstream respec-
tively, ∆x is the thickness of the shock and µ0 vacuum permeability. Here we use
Bd = 15 nT, Bu = 5 nT approximated from Vlasiator. For the shock thickness
we use ∆x = 300 km which is the velocity cell resolution for the simulations used.
Using these values we get Ve = 66.2 km s−1 and j = 26.5 nA/m2.

Ion reflection in this frame can be estimated using the same method as before.
In this frame the reflection in the vx happens according to the downstream frame
reflection (equation 3.28) but also has an additional velocity vz(0) = −2Ve.

Figure 3.9 shows reflection estimates for both downstream frame and Hall
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Figure 3.9: Ion reflection in the upstream of the quasi-perpendicular shock with the downstream
frame (magenta) and Hall frame (black) estimates. Same VDF as Figure 3.7.

frame reflection. The difference between the two is small, however the Hall frame
estimate allows for a wider range for the reflected population, as can be seen from the
black Hall frame estimate that extends further than the downstream frame estimate.
In the vx-vz-plane the estimate is shifted by −2Ve. The normal component of the
electric field in the shock is mostly caused by the Hall term. We can calculate the
Hall term to investigate the electric field resulting in En ≈ 1 mV/m which is small
compared to typical electric fields found in the quasi-perpendicular bow shock that
are around 10 mV/m [Walker et al., 2004]. The calculated electric field is in line
with electric fields found in the simulation runs used as seen in Section 4.1. En is
roughly the same as Ex as shown later in Section 4.2. The small electric field is
due to the spatial resolution of the simulation run. With a better resolution the
shock would be thinner and the current would be higher. This would cause the Hall
frame reflection to be more distinct from the downstream frame reflection. Hence
in the future, finer resolution Vlasiator simulations could be used to further study
ion reflection in the Hall frame.
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Intermediate frame

In many VDFs, the observed ion population have been between the specularly re-
flected and the downstream reflection estimates. This is why we adopted another
estimate where the frame is exactly between the downstream and NI frame so that
the ions are reflected from a surface moving with half the speed of the downstream
flow speed VIF = 1/8Vn. This reflection model will be referred as the intermediate
case estimate.

In Figure 3.10 all three frames are drawn on top of a BCQ simulation VDF.
The location of the VDF is shown in Figure 3.6c. Although the location is upstream
of the shock, it is right next to a local wave-like structure almost hitting it from the
side. This may cause ions to be reflected at a surface where n̂ is very different from
the n̂ of the estimated shock that is just a polynomial curve with no local features.
Because of this even if the ions would be specularly reflected some of them would
not fit the estimates. This is possibly seen in the right panel where there are two
distinct populations as well as the solar wind beam. The specular reflection estimates
are accurate with the less energetic one, which means the other population could
be ions reflected from the wave. In the left panel, there is a population seemingly
spreading from the solar wind beam. We speculate that these could be ions gyrating
downstream of the shock, temporarily crossing into upstream.

We can see that the intermediate case estimate fits the reflected ion population
very well in the xy-frame, where the NI frame and downstream frame are a good fit
but the center of the population is between them. In the xz-frame two populations
are present with the all estimates fitting the less energetic one pretty much equally
well. From now on, the intermediate case will be drawn in the figures along with
the NI frame and the downstream frame.

3.3.2 Two reflections

In the previous VDFs, there have often been smaller, less dense ion populations
with higher velocities in addition to the main reflected ion population. The higher
velocities indicate that these could be reflected ions that, upon hitting the shock,
are reflected again and thus accelerated further. Only a portion of the ions hitting
to shock get reflected and this portion gets smaller and smaller with each reflection.
These reflected ions gain energy via shock drift acceleration and eventually either
cross the shock downstream or escape upstream.

We will assume that the second reflection is a specular reflection just like the
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Figure 3.10: From BCQ simulation with the same format as Figure 3.8 with the addition of an
intermediate case reflection.

first. However, this is just an assumption as the second reflection would not have
to be specular just because the first is. Unlike before, it is impossible to solve the
second reflection analytically as equation (3.19) does not have an analytical solution
to x = 0 as it reduces to cos(x) = x, which is a transcendental equation. This means
it is necessary to use a numerical method. We will use the same method as before,
where the path of the reflected ion is calculated from equation (3.19) using Euler
method, but now changing the velocity of the ion according to equation (3.4) as it
hits the shock. In this case this is

vx → −vx + 2VS, (3.31)

where vx is the normal component of the ion velocity and VS is the velocity of the
moving frame: 0 for NI-frame, Vn/4 for the downstream frame and Vn/8 for the
intermediate frame.

The number of possible reflections depends on θBn. Assuming specular reflec-
tion, the reflected particles escape upstream to the foreshock region when θBn <

39.9◦ [Schwartz et al., 1983]. When θBn = 90◦, the ion can go through very large
number of reflections as it never gains parallel speed, which is needed to escape the
shock. For 39.9◦ < θBn < 90◦ the ions return to the shock and can be reflected again
gaining energy, and repeating the process many times. Using the same numerical
method as before, where the path of the reflected ion is integrated with the Euler
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Figure 3.11: Maximum number of reflections possible for an ion that is always reflected off the
shock as a function of θBn in three frames.

method using equation (3.19), the number of specular reflections until an ion, that is
always reflected when hitting the shock, escapes upstream is plotted in Figure 3.11.
We can see that in the NI-frame, the ion can be reflected only once for θBn between
0◦ and 39.9◦ as expected. The required angle for a new reflection gets smaller and
smaller forming a curve that approaches infinity as θBn → 90◦. In the intermediate
frame the ion loses energy from the moving frame, making the number of possible
reflections higher for a given θBn compared to the NI-frame.

For the downstream frame it can be seen that only two reflections are ever
possible. The ions gain energy as they gyrate back to the shock but lose energy as
the are reflected off a moving frame. In the case of the downstream frame, after
the second reflection the ion never gains enough energy to be reflected again and
is unable to continue the reflection process. As the third reflection happens, the
ion velocity vx stays negative because |vx| < |2VS| in equation (3.31) and the ion
continues moving downstream. Ions being reflected more than two times, like in
[Caprioli et al., 2015], is therefore not consistent with repeated specular reflections
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in the downstream frame.

Figure 3.12: The direction in which an ion that is always reflected when hitting the shock
escapes as a function of θBn. The green side means escapes upstream and the red side means
escapes downstream.

When integrating the path of an ion that is reflected every time it encounters
the shock using the Euler method, as is done here, the ion always escapes eventually
upstream in the NI frame. However in the downstream and intermediate frames the
ion can escape downstream if vx < 0 after the reflection. The direction in which
the ion escapes is plotted in Figure 3.12. In the downstream frame the ion has a
period of downstream escapes before the first reflection. After the reflection it has
escapes upstream until θBn & 40◦ after which it always escapes downstream. In the
intermediate frame the ion has spikes of downstream escapes at around θBn values
where a new reflection becomes possible. For θBn > 60◦ the ion can only escape
downstream.

In Figure 3.13 is the same VDF as in Figure 3.7, but this time showing two
reflections in three frames. The second reflection estimates are plotted as dashed
lines. Though the VDF is a messy one the intermediate frame estimate is a good
fit to the reflected population. The first reflection estimate lies in the middle of the
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main reflected population in the xy-plane while the second reflection estimate hits
a less dense population further away. In the other two frames the second reflections
do not represent any of the populations in the VDF with the same accuracy.

Figure 3.13: Same as Figure 3.7, now also shows three frames and second reflections as dashed
lines.

Figure 3.14 is the same VDF as in Figure 3.8 with three frames and estimates
for two reflections. Here, in the xy-plane, the NI frame estimates seem to fit the pop-
ulation the best. The second reflection of the NI frame estimate goes right through
the higher-energy less dense population. In the xz-plane the intermediate frame
estimate seems closer to the reflected population as it almost hits the second reflec-
tion population. In this case the NI frame estimate is good for the perpendicular
velocity, while the intermediate frame estimate is better for the parallel speed.

In our observations it has been a recurring theme that in the xy-plane the
estimates for specular reflection have been good while in the xz-plane the estimates
have not been as good. In Figure 3.15 is a downstream population right after the
shock. The location of this VDF is in Figure 3.6d. However, in the xy-plane we
can see a clear downstream population where the estimates are not very good at
all, which is expected because the gyration center is different in the downstream
compared to the upstream where the estimates are calculated. In the xz-plane we
see that the NI frame estimate fits a population well for the first and the second
reflection. As the ions get reflected they penetrate the shock by some amount. The
reflected population in the xz-plane may be these ions that have been reflected but
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Figure 3.14: Same VDF as Figure 3.8 with three frames and two reflections.

are downstream. These ions have gained parallel acceleration in the direction of the
magnetic field which we see in the VDF.

Figure 3.15: Same format as Figure 3.13 for a downstream point in BCQ simulation.
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3.4 Traversing the shock, analysis of one quasi-
perpendicular shock crossing

Previously we have looked at single points from different parts of bow shocks. In this
section we will take a closer look at a single point as it traverses through the shock.
In Vlasiator the shock moves sunward with time so a single simulation cell can act
as a virtual spacecraft moving through the shock. This is not unlike real spacecraft
shock crossings where the shock moves over a spacecraft. However in Vlasiator the
shock only moves forward as time progresses whereas the real bow shock moves a
few Earth radii back and forth depending on the upstream plasma conditions. We
will take a look at four points in time to study how the VDF evolves while crossing
the shock. The shock at these four times is pictured in Figure 3.16. The path of
the virtual spacecraft goes near a wave like structure, almost surfing the wave as it
moves on the shock surface, after which it slowly crosses the shock. An estimate
of the virtual spacecraft’s apparent trajectory, as the shock waves move along the
shock, is drawn in Figure 3.17. In the ∼ 20 seconds the crossing takes, the shape of
the shock evolves quite a lot, which is why the trajectory is not a straight line but
rather a curve.

Figure 3.16: Virtual spacecraft crossing the quasi-perpendicular shock at four different times.
Time is expressed in seconds.

The simulation used in this section is the BCQ simulation, see Table 2.1.
The location of the shock crossing is chosen so θBn ≈ 75◦, making the virtual
spacecraft cross a clearly quasi-perpendicular shock. In this section we will only use
the intermediate frame for our estimates. The first and second specular reflection
estimates are shown in the VDFs.

The first VDF at t = 830 s is still rather far from the shock. Estimating from
Figure 3.16a the distance is about 0.2RE which is very close to the ion gyroradius
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Figure 3.17: Trajectory estimate of the virtual spacecraft. The shock moves through a stationary
point which forms a trajectory relative to the shock drawn in the figure. Relative position of the
virtual spacecraft at four times are shown in the image. The colormap is of the shock when
t = 830 s.

which is the furthest reflected ions travel from the shock as they gyrate back to
the shock. This means the VDF is from the turning point region. The VDF is
plotted in Figure 3.18. A reflected population is clearly visible in both of the panels
as turquoise-green shape next to the solar wind population. From the theoretical
velocity space image in the lower panel of Figure 1.3, we can see that in the turning
point region only a single dot-like population would be present. The relatively small
size of the "banana" in Figure 3.18 indicates that we indeed are near the turning
point region. Only ions close or at the turning point are present in the reflected
population in the VDF.

The reflected population fits the estimated first specular reflection curve well
in both panels. There are less dense ions surrounding the reflected population. A
second reflection population could be present further from the first reflection as the
second reflection estimate is not far off from this population.

As we move forward in time we arrive to the second VDF at t = 840 s. In
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Figure 3.18: VDF of the quasi-perpendicular shock crossing when t = 830 s. Location of the
VDF is panel a from Figure 3.16.

Figure 3.19: VDF of the quasi-perpendicular shock crossing when t = 840 s. Location of the
VDF is panel b from Figure 3.16.

Figure 3.16b it can be seen that we are now close to the shock ramp. Instead of
arriving head-on to the ramp the shock evolves in a way that the virtual spacecraft
moves very close to a wave like structure, skimming the shock surface as the virtual
spacecraft approaches the ramp.

In the VDF a clear reflected ion population is present in xy-plane, as seen in the
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left panel of Figure 3.19. This VDF has previously been studied in Figure 3.10. The
reflected ion population fits the estimation well in the perpendicular direction. A
second reflection population is also present which fits the estimation well. The solar
wind beam is extending towards the reflected population. The ions in the anomaly
population have very low velocities in the normal direction. We speculate that these
are ions, that did not get reflected gyrating in the downstream, temporarily crossing
into upstream. In the parallel direction two populations are present with the solar
wind population. As discussed previously, these are are likely ions reflected off a
different local shock geometry resulting in different velocities for specularly reflected
ions.

Figure 3.20: VDF of the quasi-perpendicular shock crossing when t = 845 s. Location of the
VDF is panel c from Figure 3.16.

Moving forward, the virtual spacecraft is now at the shock ramp at t = 845 s.
As the reflection is actively happening in the ramp the VDF looks very messy with
the solar wind ions seemingly spreading to the reflected ion region from previous
VDFs, see Figure 3.20. The VDF is now populated with upstream ions soon to
be reflected, downstream ions that penetrated the shock, reflected ions, and ions
being reflected from the shock. The specular reflection estimates do not show much
correspondence with the populations as the ions are still undergoing reflection at
the ramp.

Moving forward to t = 851.5 s the virtual spacecraft has now crossed the shock
ramp and moved downstream. The VDF is a clear downstream population being just
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Figure 3.21: VDF of the quasi-perpendicular shock crossing when t = 851.5 s. Location of the
VDF is panel d from Figure 3.16.

a single round population in the xy-plane, and an elliptical shape in xz-plane as seen
in the left panel of Figure 3.21. In 3D this means the bulk population has a shape
resembling a pancake. The gyration center of the bulk population has changed due
to the plasma slowing down in the downstream and ions are now gyrating around
the downstream flow velocity.

In the xz-plane, there is another significant population that fits the second
reflection estimate well. The other population has gained parallel acceleration and
is similar to one seen in previously in Figure 3.15. These ions may have gained
the parallel acceleration via shock drift acceleration, where the ions gain velocity
with every reflection from the shock. For θBn between 60◦ and 70◦, the ions can
continue this process and gain enough energy to drift to the nose of the bow shock
and escape upstream along the magnetic field forming a field aligned beam in the
foreshock [Burgess et al., 2012].
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4. Structure of the
quasi-perpendicular bow shock

4.1 Bow shock cross section

A way to study the bow shock is to plot quantities from a simulated data across the
shock in a single time step. This cross section of a bow shock is very similar in form
to data from spacecraft observations but instead of time in the x-axis there is now
distance. Here we will study cross section of the shock with three different times in
a span of 20 seconds from a BCQ simulation. Location of the cross section in all
three times is shown in Figure 4.1, where the blue line indicates the cross section.
The location of the cross section is chosen around the same velocity cell, drawn here
as a crosshair, used as the virtual spacecraft in Section 3.4.

Quantities from a cross section of a bow shock is plotted in Figure 4.2. The
closest available velocity cell to the shock is shown as a blue vertical line. Though
the different times vary quite much, a lot of common features between the three
times can be seen, as expected. Upon hitting the shock the plasma is shocked and
the magnetic field and number density both have a jump. This is the shock ramp
located around the blue vertical line in Figure 4.2. There is a phase shift between the
two where magnetic field is slightly ahead of the number density. The velocity drops
as the solar wind speed slows down coming from the upstream to the downstream.
The electric field has a more chaotic reaction to being shocked as the three times
vary quite a lot from each other though there is a clear peak of Ex ∼ 1 mV/m at
the ramp. This is small compared to electric fields found in nature [Walker et al.,
2004].

After the ramp a more turbulent downstream region begins where the the val-
ues behave according to different wave modes. Very clear undershoot and overshoot
regions are present. When comparing the magnetic field to the density, we can see
that the waves seem to mirror each other; when the magnetic field wave is at a local
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maximum the number density is at a local minimum. This indicates that mirror
mode waves are present in the shock [Hoilijoki et al., 2016].

The movement of the shock can be seen in all four panels as the three times
are distinctly seen in each one. The major features of the shock are present in each
time step, but local features are different through the different times. This means
the local features of the shock evolve in a timescale less than 10 s.

Figure 4.1: Colormaps of the bow shock at three times used in Figure 4.2 with a location of the
cross section drawn as a blue line. The nearest velocity cell is drawn as blue crosshair. Direction
of the upstream magnetic field is drawn as an arrow.

4.2 Virtual spacecraft

Another way to analyze simulated data of a bow shock is by choosing coordinates in a
single spot and then taking enough time steps for the shock to move across the chosen
coordinates. This virtual spacecraft method was previously used in Section 3.4 of
this thesis. Here we will analyze the properties of the shock using the same virtual
spacecraft as before.

Data from virtual spacecraft crossing the bow shock is shown in Figure 4.3.
Here the shock crossing is seen as a time series where it takes around 30 seconds for
the spacecraft to move fully from upstream to downstream. In the simulation, the
shock is moving towards the Sun with a velocity of Vsh ≈ 50 km s−1. This means the
shock crossing is about ∼ 1500 km ≈ 0.235RE long in length which is around the
size of the shock ramp and its surroundings in the cross section seen in Figure 4.2.
In the virtual spacecraft data, the shock crossing appears to take longer, however
this is only due to scaling of the x-axis. Even though the shock crossing is similar
in both methods it is apparent that the virtual spacecraft has a better resolution
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Figure 4.2: Cross section of the quasi-perpendicular bow shock from three times. Plotted quan-
tities are the magnetic field, number density, velocity and the x-component of the electric field.
The closest velocity cell is drawn as a vertical blue line.

compared to the shock cross section.
Looking from the upstream, the shock looks very much like expected with clear

foot and a ramp visible. After the shock ramp there is a possible overshoot region.
The overshoot region does not have such a clear shape as in the cross section but
instead has three separate peaks seen in Figure 4.3b. The peaks are seen as wave-like
structure in magnetic field with the first one being clearly larger than the other two.
This can brings up uncertainty whether the overshoot is the three peaks combined
of just the first one. After the overshoot, there is an undershoot region which ends
abruptly as the number density rises again. This could be a mirror-mode wave
as the magnetic field decreases at the same time as the number density starts to
increase. The overall shape of the number density is similar to the t = 851.5 s curve
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of the shock cross section with both having overshoot, undershoot and then another
increase in density. The velocity drops expectedly as the solar wind is shocked and
slowed down. The electric field components are shown in Figure 4.3d including the
electric field component along the shock normal vector En. As expected Ex and En

are very similar in shape though at the shock ramp En has a higher peak.
The forces acting on an ion are different depending whether the they act along

or perpendicular to B. This causes the temperature T to have different distributions
parallel T‖ and perpendicular T⊥ to the magnetic field. Reflected ions produce highly
anisotropic temperature distributions [Winske and Quest, 1988]. This temperature
anisotropy can be seen in Figure 4.3d, where T⊥ starts to rise at the very beginning
of the shock foot, whereas T‖ stays relatively low during the whole crossing. The
anisotropy ratio T⊥/T‖ ≈ 15. In nature, the anisotropy ratio is about order of
magnitude smaller [Johlander et al., 2018]. The high T⊥/T‖ is common in the shock
in Vlasiator [Dubart et al., 2020].

4.3 Shock potential

One advantage of the virtual spacecraft is that it provides the VDF through the
shock. This makes it possible to calculate quantities that are impossible to measure
from the cross section of the shock. The electric field (seen in Figure 4.3c) plays
an important role in the plasma dynamics in the shock. While the electric field can
simply be measured from the cross section, the same is not possible for the cross-
shock potential as it requires the spatial integration of the electric field across the
shock. The work done on to move a charge q from a to b is

W =
∫ b

a
F · dl = −q

∫ b

a
E · dl = q[Φ(b)− Φ(a)], (4.1)

where Φ is the electric potential [Griffiths, 1999]. Much like measuring altitude, the
choice of the origin point a is important as the choice of origin directly affects the
calculated potential. A common convention is that the electric potential upstream
of the shock is 0. This way we can calculate change in the electric potential through
the shock. We will use the name shock potential Φ for this value from now on.

Since Vlasiator uses a cartesian grid to save quantities, it is convenient to
assume that the path to integrate is along x and therefore integrate the line integral
over Ex. It would be more cumbersome to integrate along n̂ to get the normal
incidence potential [Dimmock et al., 2011], since the cells needed for the integral
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Figure 4.3: Virtual spacecraft quasi-perpendicular bow shock crossing. Quantities plotted are
the magnetic field, number density, electric field, temperature and velocity. Distinct features of
the shock are annotated with number density.

would have to be calculated. Integrating Ex is a decent assumption because the
solar wind is along x. In the downstream, this assumption is not as accurate, as
direction of the ions changes as they hit the shock. In the shock, the electric field is
slightly along z-axis, which may cause a slight error when integrating only Ex, but
this error is small. The shock potential is calculated as

Φ(x) = −
∫ x

x+L
Exdr, (4.2)

where x is the location of the virtual spacecraft and L is a distance sufficient to
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reach upstream. In practice, the integral is calculated for every timestep as

Φ(x) =
99∑

i=0
Exi∆r, (4.3)

where Exi is the electric field at ith cell towards the Sun from the position of the
virtual spacecraft and ∆r is the size of one cell ∆r = 300 km. The 100 cells is
an arbitrarily chosen number large enough to reach clearly to the upstream. The
potential at the shock has a peak of Φ(x) = 800 V at the shock (Figure 4.4d). This
is ∼ 30% of the upstream kinetic energy which is in good agreement to observations
[Dimmock et al., 2012].

Using equation (4.3) for shocks in space that are measured by spacecraft is not
realistic as it requires simultaneous observations from 100 spacecraft in a straight
line. Since this is not reasonable, another method is needed to calculate the shock
potential as a spacecraft would "see" it using only data from one cell. This is how
potential is measured in practice [Dimmock et al., 2012]. Instead of using x as the
spatial coordinate to integrate over, we will now use time t

Φ(t) = −
∫ tn

t0
ExVshdt, (4.4)

where Vsh = 50 km s−1 is the shock speed, t0 is the time at the start of the obser-
vations in upstream and tn is the latest observation. The integration is performed
again with a sum

Φ(t) =
n∑

i=0
ExiVsh∆t, (4.5)

where n is the number of the newest observation and ∆t is the length of one timestep
∆t = 0.5 s. The shock potential calculated with time follows Φ(x) but is smoothed
to a degree where the peak value at the shock is Φ(t) ≈ 400 V as seen in Figure 4.4d.
This is ∼ 15% of the upstream kinetic energy. Although this method emulates real
spacecraft observations, the actual observations by Dimmock et al. [2012] are more
in line with Φ(x) as there is a peak in number of shocks observed with ∼ 30%
upstream kinetic energy. This shows that the spacecraft technique to measure Φ
can be somewhat unreliable.
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Figure 4.4: Virtual spacecraft quasi-perpendicular bow shock crossing. Quantities plotted are
the magnitude of the magnetic field, reflection efficiency, h parameter of the entropy and shock
potential. Magnetic field is plotted for easy comparison to the shock profile.

4.4 Ion dynamics at the shock

As the solar wind ions hit the quasi-perpendicular bow shock, a portion of them
are reflected back upstream. Previously we have studied ion reflection in a more
qualitative sense and found that ion reflection is nearly specular in nature. Now we
will look at more quantitative aspects of ion reflection at the shock. A fundamental
quantity is how large of a portion of the ions are reflected. This so called reflection
efficiency plays a major role in shock dynamics. The behaviour of reflected ions was
previously introduced and studied in Chapter 3, but the portion of the reflected ions
is yet to be investigated.
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The percentage of the ions that are reflected can be calculated as the flux of
ions with a positive vn divided by the solar wind flux, as by Leroy et al. [1982]. We
can get the flux by using the first order moment of the velocity distribution function
[Paschmann et al., 1998]. Using this, we get

α =

∑
vn>0

fvn(∆v)3

nswVsw · n̂
, (4.6)

where f is the velocity distribution function, vn is the velocity of the ion in the
direction of n̂, ∆v is the size of a velocity cell, nsw is the solar wind density and
Vsw is the solar wind velocity. Only cells with vn > 0 are calculated in the flux to
get the flux of the reflected ions.

Another way to estimate reflection efficiency is by calculating and compar-
ing the densities of the two ion populations, as in [Sckopke et al., 1983]. Density
can be calculating using the zeroth moment of the velocity distribution function
[Paschmann et al., 1998]. The percentage can be calculated by dividing the density
of reflected ions with the incident ions

α′ =

∑
vn>0

f(∆v)3

∑
vn<0

f(∆v)3
. (4.7)

In practice, the difference between equations (4.6) and (4.7) is that α is the prob-
ability of an ion being reflected compared to α′ which is the fraction of reflected
ions.

Ion reflection efficiency calculated using both the flux α and density α′ is
shown in Figure 4.4b in logarithmic scale. Both flux and density have similar shape
across the shock with α′ being slightly higher throughout the shock except in the
downstream region. The reflection efficiency has a first noticeable bump in the
foot of the shock, after which it has a slight decrease before rising sharply at the
shock. The reflection efficiency reaches its maximum at the shock a few seconds
after the potential and magnetic field maximum. In the downstream the reflection
efficiency stays around the same with α varying around ∼ 0.4 and α′ ≈ 0.3. Leroy
et al. [1982] and Sckopke et al. [1983] measured the reflection efficiency at the peak
of the shock potential. In Figure 4.4, this is at t = 846 s. Here the values are
α ≈ 0.12 and α′ ≈ 0.28. In simulations, Leroy et al. [1982] found that the average
value for α = 0.137 and Sckopke et al. [1983] measured α′ ∼ 0.15 − 0.25 with
spacecraft observations. Our results are in good agreement with literature showing
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that ion reflection efficiency in Vlasiator is in quantitative agreement with previous
simulations and spacecraft observations.

Entropy generation through the bow shock has been studied with spacecraft
data by Parks et al. [2012] and with simulations by Yang et al. [2014]. The entropy
is measured as h parameter in the Gibbs entropy Sg = −kBh

h =
∑

i

pi ln pi, (4.8)

where
pi = fi∆v3/n (4.9)

is the probability of an ion being in a certain velocity cell. The h parameter is
calculated in Figure 4.4c. The h starts around ∼ −7 and starts to decrease at the
shock foot. At the shock ramp the h starts to decrease faster. After the ramp, h
continues to decrease but slower. As the h is negative the entropy increases through
the shock. Since collisions are not modeled in the Vlasiator simulations, the entropy
is expected to remain unchanged through the shock as entropy is preserved without
collisions [Mouhot and Villani, 2011]. Despite this, our results are very similar to
those found by Parks et al. [2012], where the h changed by ∼ −2, compared to
∆h ∼ −3 in our work. It is reasonable to assume that the extra entropy generation
in Vlasiator is numerical in nature.

All in all ion dynamics in Vlasiator are in line with observations and previous
simulations.
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5. Discussion and conclusions

In this project, we have studied the ion reflection at the Earth’s quasi-perpendicular
bow shock. Using two Vlasiator simulations we investigated velocity distribution
functions (VDF) to see how ions behave at different parts of the quasi-perpendicular
shock. We also simulated what a spacecraft would see crossing the bow shock. This
virtual spacecraft (VSC) was used to study the evolution of a VDF during a quasi-
perpendicular shock crossing. Finally we used a cross section of the bow shock at a
single point in time, and the data from the VSC shock crossing to study properties
such as magnetic field, density, reflection efficiency and cross-shock potential. Ion
dynamics, such as reflection efficiency, was also investigated using the VSC data.

We derived expressions (equation 3.19) for velocities of ions specularly reflected
from the bow shock in the normal incidence frame. These expressions were trans-
formed into the simulation frame to estimate specular reflection as curve where a
reflected ion population is expected to be. Since the expressions are dependent on
the shock normal vector n̂, a method for determining n̂ was created and used to
estimate specular reflection at an arbitrary point on the bow shock. We investi-
gated four kinds of reflection: a specular reflection in the normal incidence frame, a
specular reflection from a surface moving with the downstream flow speed, a spec-
ular reflection from a surface moving with half of the downstream flow speed and a
specular reflection from a surface moving with the electron flow. We found that all
estimates were in good agreement with the observed ion VDFs, which means ions
are nearly specularly reflected. The best estimate varied, but often the reflected
population was most accurately estimated by the "intermediate frame" reflection.
We conclude that ions are nearly specularly reflected off the shock in Vlasiator in a
frame moving with half the downstream flow speed.

In many VDFs we found evidence of ions being reflected off the shock twice,
which can be important for ion acceleration [e.g. Caprioli et al., 2015]. To study
this, we expanded our method so it can estimate more than one specular reflections.
We investigated the number of possible reflections depending on the angle θBn. We

53



54 CHAPTER 5. DISCUSSION AND CONCLUSIONS

found that in the frame moving with downstream flow speed only two reflections are
ever possible, because the ion loses energy as it is reflected from a moving surface. A
reflected ion does not gain enough velocity to turn away from the shock and escapes
downstream. We used the method to study the populations of ions reflected twice.
We found that the model was in good agreement with the observed populations in
the normal incidence frame or the intermediate frame, depending on the VDF. We
also found that the reflection estimates were accurate in the direction perpendicular
to B, but in the parallel direction the model tended to overestimate the speed of
the reflected ions.

In Vlasiator the shock moves away from Earth with time which means a single
velocity cell can act as a virtual spacecraft that crosses the shock. We used this
to study how a VDF evolves crossing the shock. We used the intermediate frame
estimations for two specular reflections to study reflected populations. We found
that upstream of the shock, the reflection estimates were accurate in the direction
perpendicular to the magnetic field. In the parallel direction, two reflected popula-
tions became apparent as the VSC moved closer to the shock. This is likely caused
by incoming ions being reflected off the shock with vastly different n̂ due to local
geometry. Downstream of the shock we found a population which had gained signif-
icant parallel acceleration, possibly gained from shock drift acceleration. The most
energetic of these ions could potentially gain enough energy to drift to and escape
from the nose of the shock.

We used a cross section at three different times to study the properties and
evolution of the shock. The results showed clear features expected from a quasi-
perpendicular bow shock including undershoot and overshoot regions. Downstream
of the shock, the magnetic field and number density showed features that indicated
the presence of mirror mode waves. The movement of the shock was clearly visible
comparing major features of the shock in each time, however the small scale features
were different in each time meaning the shock evolves on timescales less than 10 s.
To further analyze the structure, we used the VSC data to study the properties of
the shock in a similar way. Again, the major features expected in a bow shock were
present but here the undershoot and overshoot regions were not as clear. A high
temperature anisotropy T⊥/T‖ ≈ 15 was found in the VSC data. This is order of
magnitude larger than anisotropy found in nature. The high temperature anisotropy
of the shock has been observed before in Vlasiator and could be due to the spatial
resolution used in the simulations [Dubart et al., 2020].

An advantage in using VSC to study the structure of a bow shock is that it
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provides a VDF through the shock, which makes it possible to study quantities that
cannot be measured from a cross section. We used the VSC to study the cross-
shock potential Φ in two ways: integrating over distance x (the "real" potential),
and over time t, which is what a spacecraft would observe. We found that at the
peak of the shock Φ(x) ≈ 800 V and Φ(t) ≈ 400 V, which is 30% and 15% of the
upstream ion kinetic energy, respectively. Φ(t) appears similar in shape as Φ(x) but
with a more smooth profile. Since spacecraft can only measure Φ(t), this means
spacecraft observations may have quite large uncertainties. Although, observations
[Dimmock et al., 2012] match Φ(x) very well. The VSC was also used to study ion
reflection efficiency α at the shock in two ways: the flux of the reflected ions (vn > 0)
divided by the solar wind flux [Leroy et al., 1982], and the density of the reflected
ion population compared to incident density [Sckopke et al., 1983]. We found that
in both cases α is in good agreement with the observed values. Lastly, we calculated
entropy across the shock. The results were again a good match with observations
[Parks et al., 2012]. However, since the collisions are not modeled in Vlasiator, the
entropy is expected to remain unchanged and the entropy observed in Vlasiator is
of numerical origin.

The results of this thesis have showed that ion reflection in the quasi-perpendicular
bow shock in Vlasiator is in quantitative agreement with observations. The reflected
ions fit our models of specular reflection well. In future work, the specular reflection
estimation model could be fitted with a more accurate model of the shock geometry,
providing n̂ that matches the local geometry of the shock better. The methods
developed here could be used to study acceleration mechanisms and the formation
of the field aligned beam. The analysis used here could also be applied to finer
resolution simulation runs, since the resolution affects the properties of the shock,
and newer simulation runs that have the electron pressure term added to the Ohm’s
law. Additionally the analysis could be performed on 3D simulation runs. The com-
parison of reflection in the different frames could be studied in other simulations or
with spacecraft observations.

Our results with current Vlasiator simulations have already been in good line
with spacecraft observations. In the future, as Vlasiator is developed to be more and
more accurate it can help further our understanding of ion reflection and acceleration
in shocks.
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