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Figure 1. Possible brane configurations for the holographic dual to a BCFT state on a cylinder.
A and B represent possible conformal boundary conditions at each connected component of the
boundary. Figure 1c in particular represents a non-smooth merging of two different branes.

1 Introduction

Traditionally, boundary conformal field theory (BCFT) [1–3] refers to a quantum field
theory on a manifold with a boundary that has “boundary” conformal symmetry. On
a flat manifold, boundary conformal symmetries are contained in the subgroup of the
global conformal group that preserves the location of the boundary. Hence a BCFT comes
equipped with “conformal” boundary conditions [1] that respect this subgroup. BCFT has
seen various applications, from being a natural descriptor of critical phenomena in finite
systems [4, 5] to its role in the worldsheet description of D-branes in string theory [6–9].
However, just like CFT, BCFT is difficult to study at strong coupling. This motivates the
use of holography to better understand physics of boundaries.

The relevant extension of holography is known as the AdS/BCFT correspondence [10–
12] in which a BCFT is dual to AdS gravity with a bulk codimension-1 end-of-the-
world (EOW) brane. This correspondence provides a geometrization of strongly coupled
BCFT [13] and has been applied to a number of studies on entanglement entropy dynamics
in toy models of black holes [14–24]. The construction we employ is bottom-up in that
we are starting with Einstein gravity, but there are also top-down constructions in the
literature [25–38].

As is usual in holography, EOW branes are dynamical objects subject to backreaction
and interactions with other fields of the bulk theory. For example, two separated branes can
interact by exchanging light bulk fields which may drive them to merge with one another
and give rise to novel brane-merging saddles in the gravitational path integral (figure 1).
In this work, we are interested in how such brane dynamics are encoded in the dual field
theory and what they tell us about data of a 2-dimensional BCFT.

In a minimal model consisting of just Einstein gravity and branes of fixed tension [11],
it has been shown that the merging of two branes of equal tensions is dual to a transition
between the closed-string and open-string channels of a BCFT with two circular boundaries.
However, the main shortcoming of this model is that it does not include excited states in
either channel. The spectrum is thus extremely simple. This is most exemplified by the
available boundary-condition-changing (BCC) operators, i.e. the open-string ground states
arising when the boundary conditions on the circular boundaries are different [39]. In the
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minimal model, [40] only finds BCC operators with scaling dimension at the black hole
threshold (∆bcc = c

12).
We thus extend the holographic setup by introducing scalar fields, point particles, and

non-smooth brane intersections to the model. The scalar fields and point particles lead
to long-distance interactions between two highly separated EOW branes on the gravity
side, and they can be used to describe excited closed-string states in the BCFT. For
scalar-field interactions, we extend the single-brane model used in [41] to describe a probe
scalar field coupled to two separate branes. The probe scalar field calculation produces
the SL(2,R)-character of a light O(c0) closed-string operator whose dimension is related
to the scalar mass. On the other hand, point particle interactions are dual to exchanges
of heavy O(c) closed-string and open-string operators whose scaling dimensions lie below
the black hole threshold, i.e. ∆ ∈

(
0, c12

)
.

As the two branes get close, their interactions become strongly coupled, and the branes
eventually merge. When the conformal boundary conditions and the brane tensions are
different, these merging configurations cannot be smooth as in [40]. In 3-dimensional
gravity, one is thus forced to consider non-smooth brane intersections, and these allow for
“sub-threshold” BCC operators (∆bcc <

c
12) in the BCFT (see also [20]). To support non-

smooth configurations, the bulk theory requires matter content at the brane intersections.
We show that it is exactly this matter content that determines the scaling dimension of
the BCC operator. We find that the dimension falls into the range ∆bcc ∈

(
0, c12

)
without

an extra gap of the type argued in [20]. In the limit ∆bcc → 0, the intersection becomes
smooth, thereby reproducing the configuration of [40].

In allowing for non-smooth brane intersections, we look for other types of intersecting
configurations. As a result, we find a new Euclidean wormhole saddle (of the bra-ket
type [42]) whose throat is bounded by two non-smoothly intersecting EOW branes. We
also find brane mergers that appear to belong to the closed-string sector of the BCFT
as black hole states above the threshold. However, these states turn out to be physically
problematic — their scaling dimensions depend on the modular parameter, even though
such data should be input of a conformal theory — and so their interpretation is subtle.

Overview. To keep this article self-contained, we first review some facts about BCFT
in section 2, discussing specifics about BCFT on a cylinder and duality between the open-
string and closed-string channels. This machinery makes manifest the idea that conformal
boundary conditions may be treated algebraically as “boundary states” [43–45]. Our BCFT
conventions are defined here.

We then review the AdS/BCFT correspondence in section 3, laying out our bulk con-
ventions in the process. Specifically, we consider Einstein gravity in Euclidean spaces with
boundaries and corners, which involves the corner Einstein equation proven in appendix A.
We also describe our bulk brane constructions therein.

To illustrate long-distance interactions between branes, we first consider the infinite-
width-cylinder limit in section 4. In this limit, one expects exchanges to be mediated by
the lightest mode, which for simplicity we assume to be a scalar. We demonstrate that
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the scalar exchange in the bulk directly reflects the exchange of an SL(2,R) representation
between the boundary states.

In section 5, we take the finite-width cylinder. In pure gravity [11, 12, 40], one only
considers the sort of saddles shown in figures 1a and 1b— a very strong constraint. However
with gravity furnished by a corner term [46], we find the existence of two novel brane-
merging saddles of the gravitational path integral that both schematically look like figure 1c.
Although the corresponding exchanges in the dual BCFT are strongly coupled, holography
gives us access to such physics.

In section 6, we reiterate our general findings. We also discuss some of the more
mysterious configurations, expanding briefly on the relationship between our bra-ket-type
wormholes and ensemble averaging, the analytic continuation of particular closed-string
black hole states to the open-string channel, and the existence of multi-intersecting config-
urations.

Note. At the final stages of this work, another paper [47] appeared which also studied
intersecting branes in AdS/BCFT. Their results have some overlap with ours on the inter-
secting annulus branes. In particular, they are also able to achieve BCC operators of any
sub-threshold dimension.

2 Review of 2-dimensional BCFT

We first review the key basic facts about 2-dimensional Euclidean BCFT in a relatively
self-contained manner.1 Because our goal is to study multi-brane interactions and overlaps
of different boundary states, we start by discussing BCFT with two boundaries, each with
their own boundary conditions. Specifically, we focus on BCFTs living on a finite cylinder
with two circular boundaries.

2.1 The open-string and closed-string sectors

When considering two boundaries, the BCFT partition function can be equivalently ex-
panded in two different channels: an open-string channel and a closed-string channel.
As indicated by the names, the former describes the worldsheet theory of an open-string
running between the two boundaries (figure 2a) while the latter describes the worldsheet
theory of a closed string homotopic to the boundaries (figure 2b).2 The statement that
these two ways of computing the partition function give the same result is known as the
open-closed-string duality.

In the open-string channel, boundary conditions constrain the values of fundamental
fields at the boundaries and appear as restrictions on the open-string spectrum. Meanwhile,
in the closed-string channel the boundary conditions are encoded by associated boundary
states [43–45] representing “initial” and “final” states of some transition amplitude. The
duality between these two channels imposes constraints on the energy spectrum and on the
possible boundary conditions that can appear in the BCFT.

1See [3] for a canonical review.
2Regardless of naming conventions, note that the BCFTs considered in this work are not worldsheet

theories of any string theory.
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A

B

(a) Open-string channel.

|A〉

|B〉

(b) Closed-string channel.

Figure 2. The slicings of the cylinder corresponding to the (a) open-string and (b) closed-string
channels. In (a), the cylinder is sliced into intervals along the periodic coordinate, and so the
partition function is thermal. In (b), the boundary conditions represent initial and final states
belonging to a CFT quantized on the circle.

Open-closed-string duality. Start with a Euclidean cylinder with circumference β and
width W . For now, we keep these parameters general. There is a single dimensionless
“shape modulus” W

β which characterizes this cylinder up to its conformal class. Note that
conformal symmetry allows us to rescale β and W so long as W

β is unchanged.
Consider now the Euclidean path integral ZAB of a CFT over the cylinder with bound-

ary conditions A and B at the boundaries. There are two ways to slice the path integral
and interpret it from the point of view of the operator formalism. One is as a thermal
partition function

Zop
AB = Tr

(
e−βH

op) (2.1)

of a theory quantized on the interval with boundary conditions A and B at the two ends
— the open-string channel (figure 2a). The other is as a transition amplitude

Zcl
AB = 〈A| e−WHcl |B〉 (2.2)

in a theory quantized on the circle — the closed-string channel (figure 2b). These two
quantizations lead to different Hilbert spaces of states Hop

AB andHcl on which the trace (2.1)
and the matrix element (2.2) are respectively evaluated. These two Hilbert spaces are
called, respectively, the open-string and closed-string sectors of the CFT. The open-closed-
string duality then states that

ZAB = Zop
AB = Zcl

AB, (2.3)

which imposes constraints on allowed boundary conditions of the BCFT. In string theory,
this duality relates closed-string (graviton) amplitudes to open-string excitations (gauge
fields). Its classical version corresponds to the double-copy relations [48]. Because of
conformal invariance andW and β being the only scales in the setup, the partition function
depends only on W

β .3

3The open-string Hamiltonian depends on W and the closed-string Hamiltonian on β such that only the
combination W

β
appears, as we will see below.
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Ishibashi states. For the boundary conditions to preserve restricted conformal symme-
try, the corresponding boundary states |B〉 have to satisfy

Ln|B〉 = L̄−n|B〉, ∀n ∈ Z, (2.4)

where {Ln} and {L̄n} each generate the holomorphic and antiholomorphic copies of the
Virasoro algebra. Recall the defining commutation relation of the Virasoro algebra:

[Ln,Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn,−m, L†n = L−n. (2.5)

A general state in Hcl which solves (2.4) is a linear combination of Ishibashi states [43, 44],4

|Ih〉 =
∑
m

|h,m〉 ⊗ |h,m〉, (2.6)

where m is any multiset of positive integers. We define the holomorphic states as

|h, {m1, . . . ,mn}〉 =
n∏
k=1
L−mk |h〉, L0|h〉 = h|h〉, Ln>0|h〉 = 0, (2.7)

with a similar definition for |h,m〉 in terms of L̄n. Essentially, each Ishibashi state is
obtained by taking a spinless5 primary (h, h) in the closed-string sector and summing
over “symmetric” descendants for which the holomorphic and antiholomorphic factors are
described by the same m (i.e. constructed from isomorphic Virasoro generators).

The inner products of Ishibashi states are infinite series that do not converge, so they
are nonnormalizable states. However, for any 0 < p̃ < 1, they satisfy the equality

〈Ih|p̃
1
2(L0+L̄0− c

12)|Ih′〉 = δhh′χh(p̃). (2.8)

χh(p̃) is the Virasoro character of the weight h irreducible representation Hh. For c > 1
(meaning that there are no null states descended from the h > 0 primaries), this is

χh(p̃) = TrHh
(
p̃L0− c

24
)

=


p̃h−

c
24∏∞

k=1 (1− p̃k) , if h > 0,

p̃h−
c
24∏∞

k=2 (1− p̃k) , if h = 0.
(2.9)

Eq. (2.8) can be seen by reorganizing the sum in (2.6) to be over descendant level Nd and
noting that, for fixed level, each m is a partition of Nd (or the empty multiset for Nd = 0).

Furthermore, we note the linear transformation rule for Virasoro characters under
modular S-transformations [3, 50],

χh(p̃) =
∑
h′

Shh′χh′(p), (2.10)

where p = e4π2/ log p̃ is the modular S-transform of p̃.
4See also [49] for a proof of this statement based on the Schur lemma.
5That an Ishibashi state can only be constructed from a spinless primary comes from the n = 0 case

of (2.4), which is the level-matching condition.
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Hop Unwrap
into strip

Hop Conformal
transformation

•
L0

(a) Open-string Hamiltonian.

Hcl

Conformal
transformation

L0 + L̄0

(b) Closed-string Hamiltonian.

Figure 3. The conformal transformations by which we see that the open-string Hamiltonian
and closed-string Hamiltonian respectively correspond to (a) dilatation on the upper half-plane
generated by L0 and (b) dilatation on the full plane generated by L0 + L̄0. The additional −c term
in (2.12) and (2.15) comes from the Schwarzian derivatives of these conformal transformations.

Decomposition into Virasoro characters. We can use the open-closed-string dual-
ity (2.3) to expand the Euclidean path integral on the cylinder as a sum over states in the
open-string and closed-string sectors respectively. We show this now.

The open-string sector consists of irreducible representations of the Virasoro algebra,

Hop
AB =

⊕
h

N h
ABHh. (2.11)

The coefficients N h
AB ≥ 0 are degeneracy factors of the open-string spectrum. The open-

string Hamiltonian Hop generates translation around the cylinder, which is equivalent to
translation along a strip of width W . By using a conformal transformation from this strip
to the upper half-plane and employing the conformal boundary condition [3], we can relate
Hop to the generator of dilatations on the upper half-plane L0 (figure 3a),

Hop = π

W

(
L0 −

c

24

)
. (2.12)

Defining q = e−πβ/W , it follows that

Zop
AB = TrHop

AB

(
qL0− c

24
)

=
∑
h

N h
ABχh(q), (2.13)

When the path integral is sliced by circles, both copies of the Virasoro algebra are
preserved. Thus the closed-string sector instead decomposes according to two copies of the
Virasoro algebra (2.5) generated by Ln and L̄n,

Hcl =
⊕
h,h̄

dhh̄Hh ⊗ H̄h̄, (2.14)
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with a second set of degeneracy factors dhh̄ ≥ 0 depending on the circle CFT in question.
The closed-string Hamiltonian Hcl generates longitudinal translation along the cylinder
and so, after a conformal transformation, corresponds to the generator of dilatation on the
plane D = L0 + L̄0 [3] (figure 3b),

Hcl = 2π
β

(
L0 + L̄0 −

c

12

)
. (2.15)

It follows that
Zcl
AB = 〈A| q̃

1
2 (L0+L̄0− c

12 ) |B〉 , (2.16)

where q̃ = e−4πW/β is related to q = e4π2/ log q̃ by a modular S-transformation:

q = e2πiω, q̃ = e−
2πi
ω , ω = iβ

2W . (2.17)

To decompose this into characters, we use the fact that a general boundary state is a linear
combination of Ishibashi states,

|B〉 =
∑
h

〈Ih|B〉 |Ih〉 , (2.18)

and the orthogonality relation [49]

〈Ih| q̃
1
2(L0+L̄0− c

12) |Ih′〉 = δhh′χh(q̃), 0 < q̃ < 1, (2.19)

to write the transition amplitude (2.16) as

Zcl
AB =

∑
h

〈A|Ih〉 〈Ih|B〉χh(q̃). (2.20)

Open- and closed-string limits. The duality (2.3) between the open-string and closed-
string channels leads to constraints on the allowed boundary states — the so-called Cardy
conditions. Specifically, recall the definition of the Virasoro character (2.9) and its linear
transformation rule under S (2.10). In conjunction with open-closed-string duality (2.3)
and the linear independence of the Virasoro characters, we obtain the following two equiv-
alent constraints:

N h
AB =

∑
h′

Shh′ 〈A|Ih′〉 〈Ih′ |B〉 , (2.21)∑
h

Shh′N h
AB = 〈A|Ih′〉 〈Ih′ |B〉 . (2.22)

These are the Cardy conditions. Boundary states which satisfy these are called Cardy
states. The coefficients of Cardy states in the Ishibashi-state basis are specified by BCFT
data — particularly S and the irreducible representations.

In a BCFT whose data and boundary conditions that obey the Cardy conditions (2.22),
the Euclidean path integral has the two equivalent series representations

ZAB =
∑
h

N h
AB χh(q) =

∑
h

〈A|Ih〉 〈Ih|B〉χh(q̃). (2.23)

– 8 –
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Now in the limit W
β → 0 in which q → 0 and q̃ → 1, the Virasoro characters behave as

χh(q) = qh−
c
24 + . . . , χh(q̃) =

∑
h′

Shh′q
h′− c

24 + . . . ,
W

β
→ 0, (2.24)

where we have used the modular transformation law (2.10). We may either use the first of
these expansions directly or the second of these expansions in conjunction with the Cardy
conditions to write ZAB as

ZAB =
∑
h

N h
AB e

−πβ
W (h− c

24) + . . . ,
W

β
→ 0, (2.25)

where contributions from open-string sector representations with weight h ∈
[
0, c24

)
are

divergent while those with weight h ∈
(
c

24 ,∞
)
are exponentially suppressed. We refer to

the W
β → 0 limit as the open-string limit.
In the opposite limit W

β → ∞ in which q → 1 and q̃ → 0, we may similarly and
unambiguously expand the partition function as

ZAB =
∑
h

〈A|Ih〉 〈Ih|B〉 e−
4πW
β (h− c

24) + . . . ,
W

β
→∞, (2.26)

where contributions from closed-string representations with weight h ∈
[
0, c24

)
diverge while

those with weight h ∈
(
c

24 ,∞
)
are suppressed. The limit W

β →∞ is called the closed-string
limit.

We are mainly interested in holographic BCFTs with large central charge c → ∞. In
this limit, there are light and heavy states depending on whether their dimension is of the
order O(c0) or O(c), respectively. All light states in the open-string (or closed-string) sector
give divergent contributions to the open-string (or closed-string) limit, but the same is not
true for heavy states: only heavy states h = c

24(1− α2) with α ∈ [0, 1] give divergent con-
tributions, while the rest of the heavy states are suppressed. The transition from divergent
to suppressed contributions happens at h = c

24 , which is known as the black hole threshold.

2.2 Boundary entropy

The boundary entropy is a quantity which represents a particularly basic piece of informa-
tion about boundary states. Specifically, it is the temperature independent contribution to
the thermal entropy of the open-string theory in the thermodynamic limit W → ∞ [51].
The thermal entropy Sth is obtained from the thermal free energy Fth = −β−1 logZop

AB (of
the open-string theory) as

Sth = β2∂Fth
∂β

. (2.27)

We can expand (2.27) in the thermodynamic limit by noting that it is equivalent to the
closed-string limit W

β →∞ with β fixed. Using the duality (2.3) and the expansion (2.26),
we get that

Zop
AB = gAgB e

πW
β

c
6 + . . . , W →∞, (2.28)
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where we have defined gA = 〈A|0〉 and gB = 〈0|B〉. Hence the thermal entropy (2.27) has
the expansion

Sth =
(
πc

3

)
W

β
+ sA + sB + . . . , W →∞, (2.29)

where sA = log gA and sB = log gB are the boundary entropies associated to the boundary
conditions A and B respectively. Because sA,B are independent of the temperature, they
give zero-temperature microcanonical entropy, so gA,B are also called “ground state degen-
eracies” which can be non-integer in the thermodynamic limit [51].6 Note that the phase of
the closed-string vacuum |0〉 can be chosen such that its overlaps with all boundary states
are real and positive, i.e. 〈A|0〉 = 〈0|A〉 > 0, 〈0|B〉 = 〈B|0〉 > 0, and sA,B ∈ R.

2.3 Boundary-condition-changing operators

An aspect of BCFT which requires at least two boundaries to describe is the notion of
a boundary-condition-changing (BCC) operator. Imprints of such operators are seen in
correlation functions in a BCFT with different boundary conditions A 6= B [3].

Formally, a BCC operator is defined as the primary of smallest dimension7 in the
open-string spectrum given a pair of different boundary conditions A,B. Specifically, we
generally require that N 0

AB = δAB. In other words, if the two boundary conditions are the
same, then the lowest-dimension operator that may be inserted is the identity (which is
unique in a unitary theory) acting on Hop

AA. If the two boundary conditions are different,
however, then the lowest-dimension operator cannot be the identity and by unitarity must
have strictly positive dimension. The dimension ∆bcc of the BCC operator can be extracted
from the open-string limit W

β → 0 (2.25) of the Euclidean path integral

ZAB = N bcc
AB e−

πβ
2W (∆bcc− c

12) + · · · , W

β
→ 0. (2.30)

where N bcc
AB counts the degeneracy of this operator which can be any positive integer. This

is the zero-temperature limit of the open-string theory so that ∆bcc measures the increase
in ground state energy due to different boundary conditions at the end-points [39].

3 Extending bottom-up AdS/BCFT

We now review the AdS/BCFT correspondence. We set the speed of light and ~ to 1
and κ = 8πGN , and we work in Euclidean signature. Additionally, while we present the
actions in this section in general d, we will perform more concrete calculations specifically
in d = 2. There we may recast gravitational couplings in terms of the boundary central
charge through the Brown-Henneaux formula [53],

c = 12π`
κ

, (3.1)

6The quantity gA is also called the g-function and is similar to the usual c-function in that it is monotonic
under RG flow [51, 52], making it a good count of the degrees of freedom associated to a single boundary.

7Note that the open-string spectrum does not accommodate states with spin because there is only one
Virasoro algebra. So, any primary of weight h will have conformal dimension ∆ = 2h.
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where ` is the AdS radius. Since we are concerned with studying the Euclidean BCFT
partition function, we will work in Euclidean signature in this paper, using the same con-
ventions for the overall signs of Euclidean actions as [11, 12, 40]. However, much of the
AdS/BCFT machinery presented here works in Lorentzian signature, as well.

Lastly, for convenience we only write the integration measures (or, more specifically,
the differentials) when the coordinates are specified in the integrand.

3.1 AdS gravity with intersecting branes

A holographic d-dimensional BCFT is dual to AdS gravity on a (d + 1)-dimensional
manifoldM containing a d-dimensional EOW brane Q.8 The brane is a boundary of the
bulk geometry and thus necessitates the presence of a Gibbons-Hawking-York boundary
term [54, 55]. We then take then this brane to satisfy a dynamical Neumann-type9

boundary condition [11, 12] which determines the embedding of Q in M. A simple toy
model for AdS/BCFT is Einstein gravity with a negative cosmological constant onM and
a constant brane tension T ,

IG = − 1
2κ

∫
M

√
g

(
R+ d(d− 1)

`2

)
− 1
κ

∫
Q

√
h (K − T ), (3.2)

where ` is the AdS radius, hab = gab − nanb is the projector onto Q, na is the outward-
directed unit normal of Q, Kab = hcah

d
b ∇cnd is the extrinsic curvature of Q, and

K = gabKab. The tension term T is sometimes called a Randall-Sundrum (RS) term [56].
We take the tension to be “subcritical” (|T |` < d− 1), in which case Q is a Karch-Randall
(KR) brane [10, 57]. As T is in a one-to-one relationship with possible holographic bound-
ary entropies [11], we denote the corresponding boundary state in the dual BCFT as |T 〉.10

We are interested in studying more comprehensive setups which accommodate two-
brane interactions and intersections at corners (represented as C). The action is

I = − 1
2κ

∫
M

√
g

(
R+ d(d− 1)

`2
− LM

)
− 1
κ

∫
Q

√
h (K − LQ)− 1

κ

∫
C

√
σ (Θ− LC), (3.3)

where σab = gab − nanb − tatb is the projector onto the corner C, ta is the tangent vector
of Q (so that nata = 0), and Θ is the local intersection angle between the two branes
comprising C. The last term involving Θ is the Hayward corner term [46]. In addition, we
have included arbitrary (for now) bulk LM, brane LQ and corner LC matter Lagrangians
to the action.

The variational problem for the action (3.3) is to keep embeddings of the branes Q
(and hence those of the corners C) fixed while varying the component functions gab of the
inverse metric in the region M bounded by the branes. Under δgab, the variation of the

8This discussion, and in particular the notation Q, is schematic. Q may represent multiple branes which
are either disconnected or have a non-smooth intersection in the bulk.

9We do this as opposed to taking a Dirichlet boundary condition.
10We emphasize that |T 〉 is actually defined from bulk parameters. In principle, it may be any boundary

state whose boundary entropy is computed by T , or it may even be an ensemble average of such boundary
states.
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action (3.3) is11 (see appendix A for details)

δI = − 1
2κ

∫
M

√
g

(
Gab −

d(d− 1)
2`2 gab + 1

2T
M
ab

)
δgab

− 1
2κ

∫
Q

√
h
(
Kab −Khab + TQab

)
δhab

+ 1
2κ

∫
C

√
σ
(
Θσab − T Cab

)
δσab,

(3.4)

where TMab , T
Q
ab, and T Cab are respectively the bulk, boundary, and corner stress tensors:

TMab = − 2
√
g

∂(√gLM)
∂gab

, TQab = − 2√
h

∂(
√
hLQ)
∂hab

, T Cab = − 2√
σ

∂(
√
σLC)

∂σab
. (3.5)

The variational principle δI = 0 then produces the usual bulk Einstein equation coupled
to matter,

Gab −
d(d− 1)

2`2 gab + 1
2T
M
ab = 0, (3.6)

and the “boundary” Einstein equation,

Kab −Khab + TQab = 0, (3.7)

since we will not impose Dirichlet boundary conditions for the induced metrics of the
branes. As a result, the induced metric of the corner C is not fixed either, so we get the
“corner” Einstein equation

Θσab − T Cab = 0. (3.8)

An on-shell bulk metric gab satisfies these three Einstein equations from which the on-shell
induced metrics hab, σab and the extrinsic data Kab,Θ are determined.

In our first calculation of section 4, we will consider a scalar-field sector which couples
to Q,

LM = κ

κΦ

(
∇aΦ∇aΦ +m2

ΦΦ2
)
, LQ = T − κ

κΦ
V (Φ), (3.9)

where T is the subcritical brane tension, V (Φ) is brane localized potential, and κ/κΦ is a
dimensionless normalization factor. This action will provide the model for long range inter-
actions between highly separated branes that do not intersect so that C = ∅. Specifically,
we will take a probe limit (see section 4.1 for details) in which the equations of motion
become (with ` = 1):

Rab −
1
2Rgab −

d(d− 1)
2 gab = 0, Kab − (K − T )hab = 0,

(∇a∇a −m2
Φ)Φ = 0,

[
na∂aΦ− V ′(Φ)

]
|Q = 0.

(3.10)

In our analysis of brane-merging saddles in section 5, we will only work in three bulk
dimensions (d+ 1 = 3) and take the matter Lagrangians to be

LM = mδD, LQ = T, LC = M, (3.11)
11Note the opposite overall sign multiplying the corner integral.
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where m is the mass of a point particle with worldline D (δD being a localized Dirac delta
function on D), T is again a subcritical brane tension, and M is a tension parameter for
the corner C at the intersection of two branes (and thus called the “intersection mass”).
The resulting stress tensors are given by

TMab = mgab δD, TQab = Thab, T Cab = Mσab. (3.12)

The corresponding Einstein equations for gab become (again with ` = 1)

Rab −
1
2Rgab − gab + 1

2 mgab δD = 0, Kab − (K − T )hab = 0, Θ−M = 0 (3.13)

We will solve these equations in the next two sections.

3.2 Brane embeddings in conical AdS3

We start by solving for geometries sourced by a single point particle and containing a
single EOW brane. Intersecting brane configurations that also involve the corner Einstein
equation are studied in the next section. First, consider the locally AdS3 metric (with
radius ` = 1) given by

ds2 = fα(r) dτ2 + dr2

fα(r) + r2dφ2, (3.14)

where fα(r) = r2 + α2 with α > 0 being a free parameter. The coordinates have ranges
τ ∈ R, r ≥ 0, and φ ∈ R with φ ∼ φ + 2π. Topologically, the space is an infinite solid
cylinder, and the conformal boundary is an infinite cylinder equipped with the flat metric
ds2 = dτ2 + dφ2.

The metric is locally AdS3, so it solves the bulk Einstein equation in the region r > 0.
For α 6= 1, the metric has a conical line defect at r = 0 with a deficit angle 2π (1−α). The
conical line defect has to be supported by a point particle whose mass m is related to α.
Using the results of [58], we have for the ττ -component that

Rττ −
1
2Rgττ − gττ = −2π (1− α) gττ δD, (3.15)

so the bulk Einstein equation (3.13) implies

m = 4π (1− α). (3.16)

To keep the mass positive, we only consider α ∈ [0, 1]. If α > 1, then the dual operator
breaks the CFT unitarity bound [59] (see also section 5).

There are two types of brane embeddings that solve the boundary Einstein equation
locally in the point mass background (3.14) (figure 4).12 We write both in the coordinates
of (3.14). The first type consists of “disk” branes (figure 4a) given by

τ = F (r;T, τ0) ≡ τ0 + 1
α
Tanh−1

(
Tα√

fα(r)− T 2 r2

)
, r ≥ 0. (3.17)

12See appendix B to see how these embeddings are constructed as foliations of smooth AdS space. These
can be translated into the coordinates (3.14).
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τ = τ0 ττ = τ0τ = τ0
τ

φ

(a) Disk brane in conical AdS.

τ = τ0 ττ = τ0τ = τ0
τ

φ

(b) Strip brane in conical AdS.

Figure 4. (a) A disk brane and (b) a strip brane in conical AdS. The conical defect at r = 0 is
represented by the green line. The disk brane is a φ-symmetric slice of the bulk, while the strip
brane is a τ -symmetric slice of the bulk.

T denotes the tension,13 and τ0 ≡ F (∞;T, τ0) is a free constant denoting the value of τ
at which the brane asymptotes to the conformal boundary. The disk branes are invariant
under φ-translation.

The second type consists of “strip” branes. These may be written in a branched way as

φ = P (r;T, φ0), φ = π

α
+ 2φ0 − P (r;T, φ0), (3.18)

where we have defined

P (r;T, φ0) ≡ φ0 −
1
α
Tan−1

(
Tα√

r2 − T 2fα(r)

)
, r ≥ |T |α√

1− T 2
. (3.19)

Here, φ0 is a free parameter, and the brane intersects the conformal boundary at φ = φ0
and φ = φ0 + π

α . Note that it is more convenient to parameterize the strip branes as

r = p(φ;T, φ0), (3.20)

where p(P (r;T, φ0);T, φ0) = r. Then we may write each strip brane in terms of a single
expression,

p(φ;T, φ0) = − Tα√
1− T 2

csc [α (φ− φ0)], φ ∈
(
φ0, φ0 + π

α

)
, (3.21)

where we use the standard convention of polar coordinates where (r, φ) for r < 0 corre-
sponds to (|r|, φ + π). Strip branes project onto lines in the (r cos (αφ), r sin (αφ))-plane
such that the zero-tension (T = 0) brane runs through the origin:

r sin (αφ) = r cos (αφ) tan (αφ0)− Tα√
1− T 2

sec(αφ0). (3.22)

13In treating this as an EOW brane with tension T , we are assuming that the part of the geometry τ >
F (r;T, τ0) is being excised. If we excise the complementary region instead, then the tension would be −T .
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Figure 5. Cross sections of |T | = 1/2 strip branes for decreasing values of α. For α = 1, the
brane’s endpoints are antipodal. For α < 1/2, the brane self-intersects in the bulk.

It is enlightening to plot these lines on the Poincaré disk, which has the radial coordinate

ρ = −1 +
√

1 + r2

r
∈ [0, 1). (3.23)

We have done so in figure 5. When α < 1
2 , the brane wraps around the defect and

intersects with itself in the bulk [20].
We note that disk and strip brane embeddings are related to each other by analytic

continuation and changes of variables. By first analytically continuing α → iα and then
subsequently doing the coordinate transformation r →

√
fα(r), the disk brane embedding

function transforms to a strip brane embedding function:

F (r;T, τ0)→ P (r;T, τ0). (3.24)

We will utilize this analytic continuation later to describe a mapping of “bad” holographic
closed-string states to “good” open-string states.

Disk and strip branes can be used to construct bulk geometries that asymptote to a
finite cylinder with modulus W

β . Depending on the brane tensions, there may be both
disconnected and connected brane configurations. The connected configurations can also
include non-smooth intersections between branes.

3.3 Brane configurations dual to a finite cylinder

We now categorize Euclidean brane configurations which asymptote to a finite cylinder
of fixed modulus. In particular, this lays the groundwork for our action calculations in
section 5. A representative sample of the relevant configurations is shown in figure 6.

Non-intersecting disk branes. Consider two non-intersecting disk branes with differ-
ent parameters,

τ = −F1(r) ≡ −F (r;T1, τ1), τ = F2(r) ≡ F (r;T2, τ2), (3.25)

with τi > 0 so that the branes asymptote to τ = −τ1 and τ = τ2 respectively. To keep
two disk branes disconnected, the geodesic distance between these branes α [F1(r) + F2(r)]
must be positive. This is equivalent to the following constraint on the brane tensions:(1 + T1

1− T1

)(1 + T2
1− T2

)
> e−2α(τ1+τ2). (3.26)
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(a) (b) (c) (d)

Figure 6. Four types of disk-brane configurations studied in this paper: (a) disconnected
positive-tension branes, (b) intersecting positive-tension branes obtained by cutting and gluing
along the dashed black lines, (c) disconnected negative-tension branes, and (d) intersecting
negative-tension branes.

For now, we only focus on branes and values of α that satisfy (3.26). In this case, the bulk
region bounded by two disk branes,

− F1(r) < τ < F2(r), r > 0, (3.27)

asymptotes to a finite cylinder (τ, φ) ∈ [τ1, τ2]× S1 of width τ1 + τ2 and modulus

τ1 + τ2
2π = W

β
. (3.28)

By setting τ1 + τ2 = 2πW
β , we obtain a cylinder of the required modulus on the confor-

mal boundary. Doing so defines a one-parameter family of non-intersecting disk-brane
configurations labeled by α, with α = 1 being the disconnected configuration of [11]. Im-
posing (3.28) also allows us to rewrite (3.26) in terms of the boundary modulus,(1 + T1

1− T1

)(1 + T2
1− T2

)
> e
− 4πW

β
α = q̃α. (3.29)

Furthermore, requiring that the branes are non-intersecting for all moduli (and in particular
as W

β → 0) gives the inequality
T1 + T2 > 0. (3.30)

In particular, this inequality implies that any two negative tension branes Ti < 0 will
intersect for some finite value of the modulus.

Intersecting disk branes. We now assume that the two disk branes intersect and that
their intersection is supported by a corner stress tensor. There are two ways to realize such
solutions. A priori, at a fixed modulus, the disk branes either intersect automatically if they
violate the bound (3.29) or may be made to intersect by a cutting-and-gluing procedure
otherwise. In the latter class of construction, the conical line defect is exposed to the
conformal boundary, whereas it is hidden in the former.

More specifically, keeping T1, T2, and q̃ (or, equivalently, the boundary modulus W
β )

fixed, we may consider three possible scenarios based on (3.29) and the stronger con-
straint (3.30):
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Figure 7. The configuration obtained by cutting and gluing two disk branes together at a disk of
radius r = r∗ (shown in blue). This may be interpreted as the embedding of two disk branes in a
torus such that they intersect without “hiding” the defect.

(i) When the brane tensions satisfy the inequality (3.30), they can only be made to
intersect by cutting and gluing. This also leaves the conical line defect exposed. In
this case, we get a two-parameter family of disk-brane configurations labeled by the
defect parameter α and the intersection depth of the identified branes r∗.

(ii) When the brane tensions violate (3.30), we may still have that (3.29) holds. In this
case, in principle we can make the branes intersect by a cutting-and-gluing procedure,
leading to the same sort of two-parameter family of configurations as in case (i).
However, we can actually prove that this case leads to a contradiction, which implies
that cutting and gluing is only mathematically consistent in case (i) if (3.30) holds
— see appendix C.

(iii) We may consider branes which violate not just (3.30) but also (3.29), i.e. branes corre-
sponding to finite boundary modulus but with negative geodesic distance. This time,
the conical line defect is behind the branes and thus “hidden” from the boundary. The
configurations in this case comprise a one-parameter family of solutions labeled by α.

Let us first consider the cutting-and-gluing constructions of cases (i) and (ii) in detail. We
assume that we cut the solid cylinder at τ = −τ1∗ and τ = τ2∗ such that both of the branes
will be cut along a circle of radius r = r∗. The branes can be glued together at these circles
by periodically identifying in the τ -direction.

Another way to think about this construction is as the embedding of two disk branes in
a solid torus in a way that makes the branes intersect — see figure 7. From this perspective,
the freedom associated with the r∗ parameter is captured by the circumference of the torus.
Additionally, for the cutting-and-gluing to be a well-defined procedure, we must have that

τ1∗ + τ2∗ > τ1 + τ2. (3.31)

This is just the condition that the width of the boundary cylinder must be shorter than
the circumference of the torus obtained from the τ -identification. We can use this to show
that case (i) is consistent with a well-defined cutting-and-gluing procedure, whereas case
(ii) is not and so need not be considered. See appendix C for details.

Because cutting and gluing requires that (3.30) be satisfied, we need at least one
positive tension brane. Upon following through with the procedure, we have the following
bulk regions:

−F1(r) < τ < F2(r), r > r∗,

−F1(r∗) < τ < F2(r∗), r∗ ≥ r > 0,
(3.32)
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Additionally, the periodic identification of τ turns the r = 0 central line of the cylinder
into a circle.

This construction gives us a two-parameter family of intersecting disk-brane configura-
tions parametrized by (α, r∗). The intersection depth r∗ can be traded for the intersection
angle Θ, which is given by14

cos Θ = 1
fα(r∗)

(
T1T2 r

2
∗ −

√
fα(r∗)− T 2

1 r
2
∗

√
fα(r∗)− T 2

2 r
2
∗

)
. (3.33)

Observe that for 0 ≤ r∗ <∞, Θ is bounded to the interval

− 1 ≤ cos Θ < T1T2 −
√

1− T 2
1

√
1− T 2

2 < 1. (3.34)

The lower bound corresponds to Θ = π where the tips of the two branes barely intersect
and the normal vectors of the branes point in opposite directions.

A single solution from the family (α,Θ) is chosen by the bulk matter content via the
Einstein equations: the value of the point particle mass m fixes the deficit angle via (3.16)
while the intersection mass M = Θ fixes the intersection angle.

Now, let us then consider the case (iii) which corresponds to the only intersecting
construction consistent with T1 +T2 ≤ 0. In this case, the disk branes will always intersect
for q̃ ≤ q̃c where

q̃αc =
(1 + T1

1− T1

)(1 + T2
1− T2

)
. (3.35)

The intersection angle is given by (3.33). However, the intersection depth r∗ = r∗(q̃) is
no longer a free parameter. This leads us to being able to write α as a function of the
boundary modulus. While this dependence is mathematically sensible, we find it to be
physically inconsistent because it implies that the dual operator dimension may be treated
as a function of the modulus, despite such a quantity being data of the BCFT. Nonetheless,
seeing this inconsistency requires performing the bulk analysis, as we do in section 5.2.

Intersecting annulus branes. An alternative construction of the cylinder is realized
when quotienting the region bounded by a single infinite strip brane (3.18). Specifically,
we periodically identify τ ∼ τ + τ0, where τ0 corresponds a circumference on the boundary.
After cutting and gluing in this manner, an infinite strip brane inherits the topology of an
annulus, and so we will call it an annulus brane.15

On the conformal boundary, a single annulus brane with tension T has domain φ ∈(
φ0, φ0 + π

α

)
. To prevent this brane from self-intersecting, we must take α > 1

2 as in [20].
The size of this interval and the sign of T determine the angular width ∆φ of the region
included in the bulk. Specifically, a negative-tension brane bounds the interval

(
φ0, φ0 + π

α

)
,

14This is found by computing the inner product of the outward-pointing unit normal vectors (given
in (E.2)) of the two branes at the intersection depth r = r∗.

15These are precisely the same annulus branes as those constructed natively in BTZ coordinates. See
appendix B.4 for details.

– 18 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
8

(a) (b) (c) (d)

Figure 8. Intersecting annulus brane configurations obtained from taking two different strip
branes at α = 2

3 < 1 and rotating them with respect to each other. By taking particular legs of
the individual branes that meet at a single intersection point, we get (b) from (a) and (d) from (c).
The Lorentzian version of this picture was also considered by [20].

while a positive-tension brane bounds the complementary interval:16

T > 0 =⇒ ∆φ = 2π − π

α
,

T < 0 =⇒ ∆φ = π

α
.

(3.36)

Meanwhile, the circumference of the cylinder is τ0 after quotienting, so taking

τ0 = β

W
∆φ (3.37)

gives a cylinder of the required modulus W
β . The result is a bulk configuration with a single

connected brane of fixed tension T interpolating between the two ends of the cylinder. For
α = 1, this is the connected configuration of [11].

However, a single annulus brane is not enough if the two brane tensions, and thus
the boundary conditions in the dual BCFT, are different, and so configurations with just
one annulus brane cannot describe BCC operators in the open-string spectrum [40]. This
problem is remedied by allowing two annulus branes with parameters (T1, φ1) and (T2, φ2)
to intersect non-smoothly. Assuming that

0 ≤ φ1 < φ2 < 2π, α ≤ 1, (3.38)

the branes intersect non-trivially since the second brane has been rotated counter-clockwise
with respect to the first. We may then construct a single, non-smooth brane by keeping
particular “legs” of the two initial annulus branes that meet at an intersection point — see
figure 8. The resulting configuration is an annulus of the form figure 9.

If the circumference τ0 of the dual cylinder is (3.37), then the intersecting configuration
will correspond to a different modulus than those of either of the individual branes. Specif-
ically, the width ∆φ of this new boundary cylinder is a function of φ1 and φ2 depending on
which legs and which side of the bulk we keep. Furthermore, the choice of legs determines

16Observe that a T = 0 brane will always have a kink unless α = 1, and so we cannot have a conical
defect for a smooth T = 0 annulus brane.
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Figure 9. The configuration obtained by making two annular branes intersect at a finite radius
r = r∗ (shown in blue). We also show the conical defect (in green). Both the corner and the conical
are τ -cycles.

the relative sign of the two brane tensions, and the absolute signs are set by which side of
the bulk we then keep.

For example, assume that we keep the leg of Q1 that intersects the boundary at
φ = φ1. If we also keep the leg of Q2 that intersects the conformal boundary at φ = φ2
(e.g. figure 8b), then the two brane tensions will have opposite signs — this is the “positive-
negative” case. We may then either keep the side of the bulk with the interval φ ∈ (φ1, φ2)
or its complement. In the former case, we have that T1 < 0, T2 > 0, and ∆φ = φ2−φ1. In
the latter case, the tensions have the opposite signs, and ∆φ = 2π − (φ2 − φ1).

In contrast, if we keep the φ = φ1 leg of Q1 and the φ = φ2 + π
α (modulo 2π) leg

of Q2, then the two brane tensions will have the same sign. In figure 8d for example, we
may then keep the side of the bulk containing either the interval φ ∈

(
φ1, φ2 − 2π + π

α

)
or

its complement. In the former case, we have T1,2 < 0 (the “negative-negative” case) and
∆φ = φ2 − φ1 − 2π + π

α . In the latter, we have T1,2 > 0 (the “positive-positive” case) and
∆φ = 4π −

(
φ2 − φ1 + π

α

)
.

To summarize, it is possible to use these intersecting-annulus-brane configurations with
any combination of two brane tensions to realize BCFT on a cylinder of width ∆φ. To
achieve a modulus W

β , we must identify τ such that

τ0 = β

W
∆φ. (3.39)

For simplicity, from here on out we focus on the positive-negative case; we will see that
this is sufficient to show that intersecting-annulus configurations realize BCC operators of
any sub-threshold scaling dimension.

So far, for fixed tensions, we have a two-parameter family of intersecting brane con-
figurations (α,Θ) which are dual to states on a cylinder with fixed modulus W

β . However,
observe that the intersection angle Θ of the branes is

cos Θ = 1
r2
∗

(
T1T2fα(r∗) +

√
r2
∗ − T 2

1 fα(r∗)
√
r2
∗ − T 2

2 fα(r∗)
)
, (3.40)

where the intersection depth r∗ may be found by writing the branes in the form (3.22):17

r2
∗ = α2 csc2 (α∆φ)

(
T 2

1
1− T 2

1
+ T 2

2
1− T 2

2
+ 2T1T2 cos (α∆φ)√

1− T 2
1

√
1− T 2

2

)
. (3.41)

17Note that we may take φ1 = 0 and φ2 = ∆φ without loss of generality. Only the difference in the
anchoring points of the legs on the conformal boundary is important here.
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Figure 10. A cross-section of an intersecting annulus brane configuration involving three branes.
The red shaded region is taken to be the bulk region dual to the BCFT. There are two corners,
both of which involve a brane not directly attached to the conformal boundary.

By plugging (3.41) into (3.40), we can see that the individual factors of α cancel and
Θ = Θ(α∆φ). Thus, Θ may be traded for α∆φ. Recalling the equations of motion (3.13),
we then note that the intersection mass M picks out a particular value for α∆φ.

At this stage, it is convenient to restrict ourselves to a particular interval size. When
doing so, we are also restricting to a one-parameter family of intersecting-annulus-brane
configurations labeled by α. The natural value to consider is ∆φ = π, because then the
boundary cylinder’s width then does not depend on which side of the bulk we keep. In this
case, the modulus is

β

W
= τ0
π
, (3.42)

and the intersection depth is

r2
∗ = α2 csc2 (πα)

(
T 2

1
1− T 2

1
+ T 2

2
1− T 2

2
+ 2T1T2 cos (πα)√

1− T 2
1

√
1− T 2

2

)
. (3.43)

Furthermore, because M picks out some value for α, we have a constraint on the point
particle mass m (when the conical line defect is included in the geometry):

m = 4π [1− α(M)] . (3.44)

One can understand this as a type of stability condition for the interaction between the
point particle and the intersection. Indeed, without a point particle (i.e. if m = 0), we
cannot have a non-smooth intersection of two different-tension branes because α = 1 implies
that the intersection point (3.43) runs to the conformal boundary r∗ =∞.18

Note that this construction from two strips does not exhaustively lead to all possible
configurations with a cylindrical boundary. In principle, we may also consider geometries
comprised of multiple EOW branes, with only two being anchored to the conformal bound-
ary and the rest “floating” in the bulk — see figure 10. This would require multiple corner
terms and could accommodate multiple independent intersection masses. We speculate on
these configurations in section 6, but we leave further analysis to future work.

18The exception is when T1 = T2, but for ∆φ = π this configuration is really just that of a single brane
with no conical defect.
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4 Scalar exchanges in the closed-string limit

As a proof of concept, we first explore the long-range interaction between two highly
separated disk branes. By considering the branes to be far apart, the interaction is mediated
by a light bulk field, which we model as being a probe scalar field with mass mΦ propagating
on the disk brane background. We will work in the closed-string limit of the dual BCFT,

W

β
→∞, (4.1)

which ensures that the disk branes are far apart and in the disconnected phase. Further-
more, we turn off sources at the conformal boundary.

Let us be clear about what exactly we are computing here. Schematically, we will
consider a total action I = IG + IS, where

IG = − 1
2κ

∫
M

√
g

[
R+ d(d− 1)

`2

]
− 1
κ

∫
Q

√
h (K − T ), (4.2)

IS = 1
2κΦ

∫
M

√
g
(
∇aΦ∇aΦ +m2

ΦΦ2
)
− 1
κΦ

∫
Q

√
hV (Φ), (4.3)

as a minimal toy model for interactions between AdS branes. κ−1 measures the number of
dual CFT degrees of freedom and in d = 2 is related to the dual CFT central charge c by
the Brown-Henneaux formula (3.1). Meanwhile, κ−1

Φ measures the number of bulk scalar
degrees of freedom.

As there is no conical deficit angle in the space, the bulk geometry will be smooth.
Additionally, we will work in a probe limit κ/κΦ � 1. It turns out that IS � IG in our
regime of interest, and so we will approximate the semiclassical partition function of the
Einstein + scalar theory as

Z ≈ e−Ion-shell
G

(
1− Ion-shellS

)
, (4.4)

where we have taken precisely the minimal saddles in the saddle-point approximation and
kept the first subleading term in small IS. We will split this subleading term into “self-
energy” and “exchange” terms. Focusing on the latter, we will then find that it reproduces
an SL(2,R) character corresponding to a scalar primary operator exchange in the closed-
string channel expansion (2.20) of the BCFT. In other words, we will deduce that the
exchange of a scalar between the bulk branes is accounted for by a dual scalar operator
and its SL(2,R) descendants in the closed-string sector of the BCFT.

4.1 Equations of motion and convenient limits

While Φ is a Klein-Gordon field in the bulk, in principle it may have any potential V on
the brane.19 For now, we will keep V generic. The classical dynamics are then governed

19Without loss of generality, we may assume that V does not have a constant term. This is because any
such term may be absorbed into the RS tension term.
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by the following four equations of motion (defining � = −∇a∇a):

Gab −
d(d− 1)

2`2 gab = κ

κΦ

[
∇aΦ∇bΦ−

gab
2
(
∇cΦ∇cΦ +m2

ΦΦ2
)]
, (4.5)

Kab −
[
K − T + κ

κΦ
V (Φ)

]
hab = 0, (4.6)(

� +m2
Φ

)
Φ = 0, (4.7)[

na∂aΦ− V ′(Φ)
]
|Q = 0. (4.8)

Eq. (4.5) and (4.6) are respectively the Einstein equation with scalar matter and the bound-
ary condition dictating the dynamics of the brane, all obtained from varying the action
with respect to the metric. Eq. (4.7) and (4.8) are the Klein-Gordon equations and the
boundary conditions on Φ, all from varying the action with respect to Φ. Note that na

denotes the outward-pointing unit normal vector at the brane Q.
Equations (4.5)–(4.8) are necessary to fully analyze backreaction on the metric due to

the presence of the scalar field. However, we aim to use the scalar field as a toy model for
long-range “light” interactions between two infinitely-separated branes. To this end, it is
convenient to work in particular limits of the theory in which the physics simplifies.

One limit that we will make extensive use of is the probe limit. This is described by
the following double scaling limit (in units of ` = 1):

κ−1, κ−1
Φ →∞, κ

κΦ
= fixed� 1. (4.9)

Physically, the limit κ−1
Φ →∞ corresponds to taking the total number of scalar fields to be

large. The probe limit (4.9) is the statement that the number κ−1 →∞ of D-branes sourc-
ing the AdS geometry is much larger so that the gravitational backreaction of the scalars is
negligible. In a top-down context where scalar-field actions can be uplifted to flavor-brane
actions [60], the limit (4.9) is dual to the quenched approximation of the CFT [61].

In the probe limit, (4.5)–(4.6) reduce to the vacuum equations. Thus, the metric and
branes are solutions to pure gravity, and solving (4.7)–(4.8) becomes a matter of doing field
theory on a curved background and with a field-independent embedding of the boundary.
In this regime, obtaining analytic results becomes more feasible.20

Another simple regime is the large-mass limit, mΦ`→∞. Recall that the bulk scalar
field is dual to a boundary scalar operator OΦ with conformal dimension ∆Φ such that [62]

(mΦ`)2 = ∆Φ(∆Φ − d). (4.10)

Working in standard quantization ∆Φ > d
2 , the large mΦ` corresponds to large ∆Φ, so the

mass-dimension relation (4.10) simplifies to

mΦ` ≈ ∆Φ. (4.11)

It is in this regime that correlation functions of OΦ in the BCFT are encoded by geodesics
probing classical geometry in the bulk [41, 63, 64]. Furthermore, the classical bulk fields
are easier to compute analytically in this limit, as we will see later in this section.

20It would still be interesting to consider backreaction effects which are neglected in the probe limit. This
would likely require numerics. We leave such an analysis to future work.
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4.2 Computing scalar actions with branes

To solve the boundary condition for the scalar field, we split it as

Φ = ϕB + ϕ. (4.12)

ϕB is the background field, which we take as always on-shell. By expanding the brane
potential around ϕ = 0,

V (Φ) = V (ϕB) + V ′(ϕB)ϕ+ V ′′(ϕB)
2 ϕ2 +O(ϕ3), (4.13)

the boundary condition (4.8) becomes[
na∂aϕB + na∂aϕ−

(
V ′(ϕB) + V ′′(ϕB)ϕ+O(ϕ2)

)]∣∣∣
Q

= 0. (4.14)

Imposing separate boundary conditions on ϕB and ϕ,[
na∂aϕB − V ′(ϕB)

]∣∣
Q = 0,

[
na∂aϕ−

(
V ′′(ϕB)ϕ+O(ϕ2)

)]∣∣∣
Q

= 0, (4.15)

is consistent with (4.14), and so the variational principle for Φ is well defined.
The purpose of the on-shell background field is to absorb the linear source term V ′(0)

of the brane-localized potential. Furthermore, near the conformal boundary we require ϕB
to contain the nonnormalizable mode determining the source J in the dual field theory. In
that case, ϕ is a normalizable fluctuation with a Neumann-type boundary condition (4.15)
at the brane, and this fluctuation is integrated over in the bulk path integral.

After integration by parts, the scalar action (4.3) can be written as (defining � =
−∇a∇a)

IS = 1
2κΦ

∫
M

√
g
[
ϕB
(
� +m2

Φ

)
ϕB + 2ϕ

(
� +m2

Φ

)
ϕB + ϕ

(
� +m2

Φ

)
ϕ
]

− 1
κΦ

∫
Q

√
h

[(
V (ϕB)− 1

2ϕBn
a∂aϕB

)
−
(
na∂aϕB − V ′(ϕB)

)
ϕ

]
+ 1

2κΦ

∫
Q

√
h

[
na∂aϕ−

(
V ′′(ϕB)ϕ+O(ϕ2)

)]
ϕ

+ 1
2κΦ

∫
B

√
γ (ϕBr

a∂aϕB + 2ϕ ra∂aϕB + ϕ ra∂aϕ) . (4.16)

We have two boundary terms — one supported on Q (whose outward-directed unit normal
vector is na) and another on an asymptotic cutoff surface B (whose outward-directed unit
normal vector is ra). With ϕB on-shell, the only remaining bulk term is the quadratic term
ϕ(�+m2

Φ)ϕ which can be integrated over in the bulk path integral in the usual way (with
appropriate boundary conditions at the brane). However, in approximating such a path
integral by a saddle-point approximation, we also put ϕ on-shell in the bulk. The resulting
action consists purely of boundary terms,

Ion-shellS = − 1
κΦ

∫
Q

√
h

[(
V (ϕB)− 1

2ϕBn
a∂aϕB

)
−
(
na∂aϕB − V ′(ϕB)

)
ϕ

]
+ 1

2κΦ

∫
Q

√
h

[
na∂aϕ−

(
V ′′(ϕB)ϕ+O(ϕ2)

)]
ϕ

+ 1
κΦ

∫
B

√
γ

(1
2ϕBr

a∂aϕB + ϕ ra∂aϕB + 1
2ϕ r

a∂aϕ

)
. (4.17)
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We will now take the source to be turned off in the CFT. The B term in (4.17) then vanishes
both because ϕB and ϕ are normalizable and we are in the standard quantization scheme
∆Φ > d

2 . Thus,

Ion-shellS

∣∣∣
J=0

= − 1
κΦ

∫
Q

√
h

[(
V (ϕB)− 1

2ϕBn
a∂aϕB

)
−
(
na∂aϕB − V ′(ϕB)

)
ϕ

]
+ 1

2κΦ

∫
Q

√
h

[
na∂aϕ−

(
V ′′(ϕB)ϕ+O(ϕ2)

)]
ϕ,

(4.18)

which after imposing the boundary conditions (4.15) takes the form

Ion-shellS = − 1
κΦ

∫
Q

√
h

[
V (ϕB)− 1

2 ϕBV
′(ϕB) +O(ϕ3)

]
. (4.19)

The O(ϕ3) terms remain because the boundary condition for ϕ does not generally cancel
the O(ϕ2) term in (4.18). However, the coefficients of these terms are all proportional to
three-point or higher-point couplings of the scalar to the brane,21 so in the discussion that
follows they identically vanish.

In the following subsection, we will focus on the minimal case of a linear potential

V (Φ) = λΦ. (4.21)

For this potential, the boundary condition (4.15) is

(na∂aϕB − λ)|Q = 0, na∂aϕ|Q = 0, (4.22)

and we can solve for the background field with this boundary condition in terms of a bulk-
to-bulk propagator satisfying a Neumann condition at the brane. Furthermore, the on-shell
action (4.19) is simply

Ion-shellS = − 1
2κΦ

∫
Q

√
hλϕB, (4.23)

and so can be evaluated once we solve for ϕB.
This procedure can also be applied to the case when V (Φ) contains higher-order poly-

nomial interactions, but we reiterate that such terms generally modify both the boundary
conditions (4.15) and the on-shell action (4.19). In fact, the on-shell action with higher-
order couplings generally depends on the fluctuation ϕ. However, there is one unusual
exception — when the potential is quadratic. In this case, just as for the linear poten-
tial the action (4.19) only depends on the background field, but we get Robin boundary
conditions on ϕB and ϕ:

V (Φ) = λΦ + 1
2ηΦ2 =⇒

(na∂aϕB − λ− ηϕB)|Q = 0,
(na∂aϕ− ηϕ)|Q = 0.

(4.24)

Hence the bulk-to-bulk propagator must satisfy a Robin condition instead of a Neumann
one, even though the on-shell action is independent of the fluctuation.

21By keeping careful track of the higher-order terms, we find that they contribute to the action (4.19) as

Ion-shell
S

∣∣
O(ϕ3)

= − 1
2κΦ

∫
Q

√
h

∞∑
k=3

(2− k)
k! V (k)(ϕB)ϕk. (4.20)
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4.3 Scalar exchange between two branes

The discussion thus far has been schematic, with Q representing some configuration of
EOW branes. We are now ready to consider the case where we have two disconnected
branes, i.e. Q = Q1 ∪ Q2. We respectively furnish these branes with distinct linear
potentials:

VQ1(Φ) = λ1Φ, VQ2(Φ) = λ2Φ. (4.25)

Thus, from (4.23), the on-shell action is

Ion-shellS = − 1
2κΦ

(
λ1

∫
Q1

√
h1 ϕB + λ2

∫
Q2

√
h2 ϕB

)
. (4.26)

To compute this, we have to solve the boundary value problem,

(� +m2
Φ)ϕB = 0, (nai ∂aϕB − λi)|Qi = 0, (i = 1, 2). (4.27)

To do so, we will use an approach involving the propagator that yields a controlled
expansion when the branes are far away from each other.

First, note that the boundary value problem (4.27) can be solved using the bulk-to-
bulk propagator GN(X,X ′) (X,X ′ ∈M) that obeys Neumann boundary conditions at the
two branes,(

� +m2
Φ

)
GN(X,X ′) = δM(X,X ′), nai ∂aGN(X,X ′)

∣∣
X→Qi = 0, (i = 1, 2), (4.28)

where the derivative in the boundary condition is on X. In terms of this propagator, the
solution of (4.27) is given by [65, 66]

ϕB(X) = λ1

∫
Q1
ddx̂1

√
h1GN(X, x̂1) + λ2

∫
Q2
ddx̂2

√
h2GN(X, x̂2), (4.29)

where x̂i denotes worldvolume coordinates of Qi and we have used the short-hand
GN(X, x̂) ≡ GN(X,Ei(x̂)), with Ei(x̂) ∈ M being the embedding of the point x̂ ∈ Qi
into the bulk. This expression satisfies the required boundary condition (4.27) due to the
identity [65]22

nai ∂aGN(X, x̂′)
∣∣
X→E(x̂) = δQi(x̂, x̂′), (i = 1, 2), (4.30)

where the limit is taken from the interior and δQi is the Dirac delta function on the
worldvolume of the brane Qi. Substituting (4.29) to (4.26) gives

Ion-shellS = IselfS + IexchangeS , (4.31)

where the scalar self-interaction term is

IselfS = − 1
2κΦ

2∑
i=1

λ2
i

∫
Qi
ddx̂i

√
hi

∫
Qi
ddx̂′i

√
h′iGN(x̂i, x̂′i), (4.32)

and the scalar exchange term is

IexchangeS = −λ1λ2
κΦ

∫
Q1
ddx̂1

√
h1

∫
Q2
ddx̂2

√
h2GN(x̂1, x̂2). (4.33)

22Compared to [65], our na is outward-pointing so there is no minus sign on the right-hand side of (4.30).
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For our purposes, we focus on the exchange contribution (4.33). The self-interaction term
corresponds to a Feynman diagram with a line whose both points end on the same brane,
while the exchange term corresponds to a diagram with a line running between the two
branes.

For general brane configurations, solving for the Neumann propagator GN is very
difficult. However, it can be written formally as an infinite series expansion of nested
integrals of the pure AdSd+1 bulk-to-bulk propagator G(X,X ′), which satisfies Green’s
equation without any boundary conditions,

(� +m2
Φ)G(X,X ′) = δM(X,X ′). (4.34)

The first two terms in the expansion are given by [67–69] as

GN(X,X ′) = G(X,X ′)− 2
2∑
i=1

∫
Qi
ddx̂i

√
hiG(X, x̂i)nai ∂aG(x̂i, X ′) + · · · . (4.35)

In the literature, this is called the multiple-reflection expansion for the Neumann propaga-
tor, and it also exists for the Dirichlet propagator.

The multiple-reflection expansion truncates at the first term when the proper distance
between the two branes is very large. Thus in this limit, we can replace GN(X,X ′) in (4.33)
by G(X,X ′),

IexchangeS = −λ1λ2
κΦ

∫
Q1
ddx̂1

√
h1

∫
Q2
ddx̂2

√
h2G(x̂1, x̂2) + · · · . (4.36)

In the following discussion, we compute this term explicitly for d = 2 and show that it
produces the SL(2,R) character of a scalar operator in the closed-string channel.

4.4 Reproducing the scalar character

We now focus on the case of a scalar field propagating between two disconnected disk
branes in AdS3. The region bounded by the two branes is given in equation (3.27) in
global AdS3 coordinates and we set the conical defect parameter α = 1. Equivalently, we
can work in Poincaré AdS coordinates in which the disk branes are hemispheres bounding
an annulus with radii R1 < R2 on the conformal boundary (see figure 11). The ratio R2/

R1 = e2πW/β is related to the modular parameter W
β of the cylinder of the CFT. Without

loss of generality, we set R1 = 1 and R2 = q̃−1/2 where q̃ = e−4πW/β is defined in (2.17).
In Poincaré coordinates, the metric of AdS3 is (setting ` = 1)

ds2 = dz2 + dy2 + dx2

z2 , z > 0, (y, x) ∈ R2. (4.37)

In these coordinates, the embeddings (3.25) of the two disk branes Q1 and Q2 are explicitly
(see also appendix B)

Brane 1: (z − cot θ1)2 + y2 + x2 = csc2 θ1, (4.38)

Brane 2: (z + q̃−1/2 cot θ2)2 + y2 + x2 = q̃−1 csc2 θ2, (4.39)
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•

•

x
y

z

Q1

Q2

√
y2 + x2

z

θ1 θ2•• ••

•

•

Q1

Q2

Figure 11. On the left, we show the region M bounded by two spherical branes Q1 and Q2.
On the right, we take a transverse slice to better depict the angles θ1 and θ2 that Q1 and Q2
respectively make with the conformal boundary. The minimal geodesic between the two branes,
which is ultimately the main object of interest in this section, is shown in black.

and they intersect the conformal boundary at angles θ1 and θ2, respectively (see figure 11).23

The tensions of the branes are given by

T1 = − cos θ1, T2 = − cos θ2. (4.40)

We parametrize the embeddings in terms of the Cartesian coordinates (y, x) so that z =
z1(y, x) solves (4.38) and z = z2(y, x) solves (4.39). In terms of the embedding maps, we
write that Ei(y, x) = (zi(y, x), y, x) ∈M (where i = 1, 2) and the worldvolume coordinates
of both branes are x̂ = (y, x).

Lastly, we may write the AdS3 bulk-to-bulk propagator in these coordinates. Generally
the AdS3 propagator is given by (see for example [70])

G(X,X ′) = 1
2π

e−∆ΦL

1− e−2L , (4.41)

where L = L(X,X ′) is the geodesic distance between two bulk points and ∆Φ > d
2 is

given by the mass mΦ through (4.10). In Poincaré coordinates with X = (z, y, x) and
X ′ = (z′, y′, x′), this distance is

L = log
(1 +

√
1− ξ2

ξ

)
, ξ = 2zz′

z2 + z′2 + (y − y′)2 + (x− x′)2 . (4.42)

Thus, to leading order in the multiple-reflection expansion, the scalar exchange term (4.36)
becomes

IexchangeS = − λ1λ2
2πκΦ

∫
Q1
d2x̂1

∫
Q2
d2x̂2

√
h1
√
h2

e−∆ΦL

1− e−2L , (4.43)

23Note that the way in which the angle for Q1 is defined here is the opposite from how the angles are
defined in appendix B. Thus, we must plug π−θ1 into the expression (B.10), which is why we have a minus
sign below.
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where the geodesics being integrated over are restricted to those connecting Q1 and Q2.24

The product of induced metric determinants for disk branes (4.38)–(4.39) is

√
h1
√
h2 = q̃−1/2 csc θ1 csc θ2

z1(y1, x1)2z2(y2, x2)2
√

(csc2 θ1 − y2
1 − x2

2)(q̃−1 csc2 θ2 − y2
2 − x2

2)
. (4.44)

Analytically performing this integral for general ∆Φ is unfeasible. Hence we consider the
large-mass limit ∆Φ → ∞ where the integral can be computed using the saddle-point
approximation. To this end, we introduce the vector ~v = (x1, y1, x2, y2) so that the integral
is computed in R4, and we denote the bulk geodesic anchored to the branes at E1(y1, x1)
and E2(y2, x2) as L(~v). For a general integral over any open subset Ω of Rn,25 the saddle-
point approximation states that

∫
Ω

n∏
i=1

dvi g(~v)e−∆ΦL(~v) =
( 2π

∆Φ

)n/2 g(~v∗) e−∆ΦL(~v∗)√
det (Lij)

[
1 +O(∆−1

Φ )
]
, (4.45)

where ~v∗ ∈ Ω is a minimum of L(~v) and Lij is the Hessian of L(~v) at the saddle-point,

Lij =
(

∂2L

∂vi∂vj

)∣∣∣∣
~v=~v∗

. (4.46)

The minimal geodesic runs between the inner-most points, i.e. the turning points, of the
two branes which are located at the origin of the transverse plane ~v = 0. The radial depths
z1∗, z2∗ of these two points are

z1∗ = cot θ1
2 , z2∗ = q̃−1/2 tan θ2

2 , (4.47)

such that z2∗ > z1∗. Thus this geodesic has length

L∗ = log z2∗
z1∗

= log
(
q̃−1/2 tan θ1

2 tan θ2
2

)
. (4.48)

Applying (4.45) with n = 4 to our integral (4.43), we get

IexchangeS = −2π
κΦ

λ1λ2
∆2

Φ

1
z2

1∗z
2
2∗

√
det (Lij)

e−∆ΦL∗

1− e−2L∗ , ∆Φ →∞. (4.49)

which is valid up to O(∆−3
Φ ) corrections. Furthermore, we may compute the saddle-point

values of the components of the Hessian explicitly.26 Because the Hessian is symmetric, we
24Note that L in this integral should be read as a function of two points with one on each brane, i.e. as a

function of four free variables, rather than as a function of two bulk points consisting of six free variables.
25The shape of the integration region is not relevant in the saddle-point approximation due to the rapid

exponential damping of the integral away from the saddle-point.
26We do so by differentiating (4.38) and (4.39) to solve for the first and second derivatives of zi(yi, xi),

then setting yi = xi = 0 and using (4.47).
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only need to evaluate 10 of its components:

L11 = L22 = z2
1∗ + z2

2∗ + (z2
2∗ − z2

1∗) cos θ1
z2

1∗(z2
2∗ − z2

1∗)
, (4.50)

L33 = L44 = z2
1∗ + z2

2∗ + (z2
2∗ − z2

1∗) cos θ2
z2

2∗(z2
2∗ − z2

1∗)
, (4.51)

L13 = L24 = 2
z2

1∗ − z2
2∗
, (4.52)

L12 = L14 = L23 = L34 = 0. (4.53)

We then find that

1√
det(Lij)

= (z2
2∗ − z2

1∗)z2
1∗z

2
2∗

(1 + cos θ1)(1 + cos θ2)z2
2∗ − (1− cos θ1)(1− cos θ2)z2

1∗
. (4.54)

Using (4.47) and (4.48), we can write (4.54) as

1√
det(Lij)

= csc θ1 csc θ2
1− q̃

1− e−2L∗

cot θ12 cot θ22
z2

1∗z
2
2∗. (4.55)

Substituting into (4.49), we get

IexchangeS = −2π
κΦ

λ1λ2
∆2

Φ

csc θ1 csc θ2

cot θ12 cot θ22

e−∆ΦL∗

1− q̃ , ∆Φ →∞. (4.56)

Since e−∆ΦL∗ = q̃∆Φ/2
(
cot θ12 cot θ22

)∆Φ , we finally write the scalar exchange term
explicitly as

IexchangeS = −2π
κΦ

(
λ1 csc θ1

∆Φ

)(
λ2 csc θ2

∆Φ

)(
cot θ1

2 cot θ2
2

)∆Φ−1 q̃∆Φ/2

1− q̃ , ∆Φ →∞. (4.57)

Lastly, recall that the integrand of the path integral also incorporates the pure gravitational
action with two disconnected branes. We will compute its on-shell value Ion-shellG with a
defect present in section 5.3. For now, we take the result (5.22) and set α = 1 to write

Ion-shellG = − c6

(
πW

β
+ Tanh−1T1 + Tanh−1T2

)
=⇒ e−I

on-shell
G = q̃−

c
24

(1 + T1
1− T1

) c
12
(1 + T2

1− T2

) c
12
.

(4.58)

We note that Ion-shellS � Ion-shellG ,27 and so we may use the approximation (4.4) to write
the contribution of the exchange term to the partition function as

Zexchange = −e−Ion-shell
G IexchangeS , (4.59)

27It is reasonable to think that the λ couplings may compensate for the fact that κ/κΦ � 1. However,
as we are working in the closed-string limit, Ion-shell

S will still be subleading to Ion-shell
G with respect to q̃.

– 30 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
8

Putting everything together, we get

Zexchange = 2π
κΦ

2∏
i=1

λi
∆Φ(1− Ti)

(1 + Ti
1− Ti

) c
12−hΦ

χ
SL(2,R)
hΦ

(q̃), (4.60)

where hΦ = ∆Φ
2 is the weight of the dual scalar operator (which is spinless). Additionally,

we have used (4.40) and defined

χ
SL(2,R)
h = q̃h−

c
24

1− q̃ . (4.61)

This is the character of an SL(2,R) irreducible representation of weight h.28 We can
see that Zexchange gives exactly the contribution of a scalar primary state |∆Φ〉 and its
SL(2,R) descendants to the closed-string limit (2.26) of the Euclidean path integral of the
BCFT. From (4.60) we can then identify the overlaps

〈Ti|∆Φ〉 =
√

2π
κΦ

λi
∆Φ(1− Ti)

(1 + Ti
1− Ti

) c
12−hΦ

. (4.63)

which are valid at leading order in the large-∆Φ limit. Subleading corrections to the
geodesic approximation (4.45) only modify the coefficient of the character by terms of
order O(∆−3

Φ ). Hence the q̃-dependence remains the same at finite ∆Φ, which is expected
from the CFT side.

We conclude that a scalar field in the disk-brane background describes a light closed-
string state whose dimension is fixed by the scalar mass and whose overlaps with boundary
states are given by (4.63). The reason why we obtained contributions from global de-
scendants is that we took into account fluctuations around the minimal geodesic running
between the tips of two the branes; the 1-loop correction (4.55) to the geodesic approxi-
mation contains the factor (1 − q̃)−1 encoding the descendants. These fluctuations in the
geodesic position can be equivalently described as small fluctuations of the classical back-
ground metric that correspond to tree level graviton-scalar interactions. The appearance of
the full Virasoro character would require taking into account 1-loop interactions between
gravitons and the scalar field which goes beyond our large-c classical bulk computation
above. We leave exploration of such subleading effects to future work.

5 Conical defect exchanges at finite modulus

We now depart from the W
β →∞ regime dominated by light brane interactions in the bulk

and focus on finite moduli. Geometrically, this corresponds to the branes being close so
that merging configurations become possible.

28Recall that this character is computed as the trace of q̃L0−c/24 over the SL(2,R) subalgebra (generated
by {L−1,L0,L1}) of the Virasoro algebra,

χ
SL(2,R)
h (q̃) = TrSL(2,R)

(
q̃L0−c/24) =

∞∑
N=0

q̃h+N−c/24 = q̃h−c/24

1− q̃ . (4.62)
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In the bulk, we schematically have three possible EOW brane configurations corre-
sponding to a cylinder of fixed modulus on the boundary (as shown in section 3.3): two
disconnected “disk” branes (figure 1a), one smooth and connected “annular” brane (fig-
ure 1b), and one non-smooth and connected brane (figure 1c). In addition to branes and
their intersections, each configuration also contains a conical line defect.

In this section, we compute Euclidean on-shell actions of these brane configurations and
extract dual BCFT data. We compute the actions by writing them as boundary integrals
consisting of the ADM mass and the Wald entropy. We find that disconnected-disk-brane
configurations are dual to heavy closed-string states whose dimensions are of order O(c)
and below the black hole threshold, i.e. ∆cl < c

12 . Similarly, intersecting annulus brane
configurations are dual to heavy open-string states whose dimensions are also below the
threshold. We identify these open-string states with BCC operators, and we demonstrate
that the gap ∆bcc ∈

(
0, c12

)
can be filled.

5.1 Euclidean on-shell action and the ADM mass

We first discuss how to compute Euclidean on-shell actions of our bulk brane configurations
as boundary integrals. We can do so because all of our bulk geometries have a global Killing
vector that can be used to foliate the spacetime. As a result, the gravitational on-shell
action reduces to a difference between the Arnowitt-Deser-Misner (ADM) mass and the
Wald entropy, each of which are codimension-2 integrals.

Consider a Euclidean manifold that has a Killing vector field ξa obeying ∇(aξb) = 0.
The vector ξa generates a flow, and we foliate the space by Cauchy slices Σu labeled by a
parameter u ∈ (0, u0) (which we will suppress for convenience) — see figure 12 for a pair
of examples in conical AdS3. These Cauchy slices are orthogonal to the flow lines of ξa.
This is essentially a general Euclidean version of the ADM decomposition [71] in which the
metric takes the form

ds2 = N2du2 + ds2
Σ. (5.1)

The Killing vector satisfies ξaξa = N2, and so the unit normal vector field associated with
it is ua = N−1 ξa such that uaua = 1. Since ξa is a Killing vector, the lapse does not depend
on u, i.e. ∂uN = 0. We will assume that the u-direction is also periodic with period u0 so
that there are no future or past boundaries in the u-direction. This turns out to be the
case for our brane configurations.

We start by considering the BCFT Hamiltonian which is an integral of the stress tensor.
On the gravity side, it corresponds to the on-shell value of the gravitational Hamiltonian.
This is a pure boundary term in the presence of a Killing vector, and it is identified as the
ADM mass [72, 73],29

MADM = −1
κ

∫
B∩Σ

√
γ̂
(
uarb∇[aξb] +NK

)
, (5.2)

29There is a choice of orientation for the surface B which shows up as a sign in the first term of (5.2).
We have chosen the orientation such that ra is outward pointing and ua points towards the direction of
increasing u. If we were foliating a Lorentzian spacetime with ua being timelike and future directed, then
we would get an additional minus sign in the first term of (5.2).
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τ = τ0 ττ = τ0τ = τ0

u = φ

(a) φ-foliation.

τ = τ0 ττ = τ0τ = τ0
u = τ

u = φ

(b) τ -foliation.

Figure 12. Two ADM foliations of conical AdS3 (3.14). In (a), we take the foliation coordinate u
to be φ, which is periodic. Additionally, the u-cycle shrinks to 0 at r = 0, which is a horizon that
acts as a boundary for each Cauchy slice Σ. In (b), we take the foliation coordinate to be τ and
we may make it periodic (resulting in a decomposition of the torus into disks). For this foliation,
the slices do not contain horizons acting as boundaries in the bulk, and the conical line defect runs
orthogonally to the slices. These are the decompositions relevant to our particular configurations.

where B ∩ Σ is a slice of the cutoff surface B near infinity, ra is its the outward-pointing
unit normal vector (which is orthogonal to ua), and

γab = gab − rarb, γ̂ab = gab − rarb − uaub, Kab = γcaγ
d
b ∇crd. (5.3)

The projector γ gives the induced metric on B, and the projector γ̂ gives the induced
metric on B ∩ Σ. The first term in (5.2) is proportional to the Komar mass, which is the
Noether charge of the Killing symmetry at infinity, and the second term arises from the
Gibbons-Hawking-York boundary term of the gravitational action [72, 73].

In asymptotically locally AdSd+1 spaces, the expression (5.2) for the ADM mass is
divergent. It can be renormalized by adding a counterterm LB that only depends on the
induced metric γ of the cutoff surface B:

M ren
ADM = −1

κ

∫
B∩Σ

√
γ̂
(
uarb∇[aξb] +N (K − LB)

)
. (5.4)

This (renormalized) ADM mass satisfies the equation [72]

Irenon-shell = u0

(
M ren

ADM −
κs
2π SW

)
, SW = 2π

κ
AH, (5.5)

where Irenon-shell is the renormalized Euclidean on-shell action, AH is the area of a horizon
acting as a boundary in the Cauchy slice (with SW being the associated Wald entropy
functional [72] in Einstein gravity), and κs is the surface gravity of the horizon. In Euclidean
signature, a horizon corresponds to a surface where the u-circle shrinks to zero size.30 For
a given a gravitational theory on the left-hand side, we emphasize this equation can be
seen as the definition of the ADM mass (and Wald entropy) in that theory.

30If the u-direction is non-compact, there are no horizons and the temperature is zero.
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The punchline is that we can calculate the Euclidean on-shell action from the ADM
mass and Wald entropy, and so this is how we perform our later calculations. Prior to doing
so, let us discuss how the expression for the ADM mass (5.4) can be simplified. We define

ĝab = gab − uaub, K̂ab = ĝca ĝ
d
b Kcd (5.6)

which are respectively the projector onto the slice Σ and the extrinsic curvature of the
cutoff surface B ∩Σ as embedded in the slice. We can then write the trace of the extrinsic
curvature as

K = K̂ + uaubKab = K̂ −N−1 uarb∇[aξb], (5.7)

where we have used rau
a = 0, ua = N−1 ξa, and ∇(aξb) = 0. Substituting to the

formula (5.4) for the ADM mass, we get31

M ren
ADM = −1

κ

∫
B∩Σ

N
√
γ̂ (K̂ − LB), (5.9)

where the contribution from the Noether charge has cancelled. This form of the mass
allows for easier computation.

The formula (5.4) (and (5.9)) is valid when there are no additional boundaries such as
EOW branes present in the geometry. In the presence of intersecting branes with matter
content LQ and LC , we claim that the formula (5.4) is modified to

M ren
ADM = −1

κ

∫
B∩Σ

√
γ̂
(
uarb∇[aξb] +N (K − LB)

)
− 1
κ

∫
Q∩Σ

√
ĥ
(
uanb∇[aξb] +N (K − LQ)

)
− 1
κ

∫
C∩Σ

N
√
σ̂ (Θ− LC), (5.10)

where we now have extra terms localized on the branes and on their intersections.32 This
new formula for the ADM mass is proven in appendix D by showing that it reproduces the
defining equation (5.5). In addition, the result of the calculation in appendix D shows that
an action LM ∝ δD of a codimension-2 conical defect D does not directly contribute to the
on-shell action appearing (5.5) when the worldsheet of D is tangent to the Killing vector ξa.

Applying the identity (5.7) to the extrinsic curvatures in (5.10), we can write it as

M ren
ADM = −1

κ

∫
B∩Σ

N
√
γ̂ (K̂−LB)− 1

κ

∫
Q∩Σ

N

√
ĥ (K̂−LQ)− 1

κ

∫
C∩Σ

N
√
σ̂ (Θ−LC). (5.11)

with extra terms compared to (5.9). With this machinery, we can compute Euclidean
on-shell actions of our bulk brane configurations simply by computing the ADM mass

31This can be seen as the “absolute” ADM mass. The “relative” ADM mass is the difference

M rel
ADM ≡M ren

ADM −M ren
ADM|(0)= −

1
κ

∫
B∩Σ

N
√
γ̂
(
K̂ − K̂|(0)

)
, (5.8)

and is the formula originally presented in [74] in asymptotically flat spaces.
32There are also Hayward terms and counterterms at the corners Q ∩ B shared by the branes and the

conformal boundary. However, they are both purely divergent and will cancel each other without leaving
any finite contributions as shown in our explicit disk-brane action calculation in appendix E. Hence, we will
neglect such divergences in the formula (5.10) and later computations.
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and areas of horizons. Both of these quantities are simple surface integrals that allow
us to sidestep the volume integration appearing in the Euclidean action. This is rather
convenient because such volume integrals can be complicated for multi-intersecting brane
configurations.

With three bulk dimensions d = 2, only the area counterterm is needed to renormalize
the ADM mass (and the on-shell action — see appendix E), and the coefficient is unity
— LB = 1. For constant tension branes with LQ = T , the boundary Einstein equation
implies thatKab|Q= T hab|Q, and when projected onto Q∩Σ this further implies K̂ab|Q∩Σ =
T ĥab|Q∩Σ. Taking the trace gives

K̂ − T = 0. (5.12)

Similarly, for a corner mass term LC = M , the corner Einstein equation states that

Θ−M = 0. (5.13)

Hence the last two terms in the formula (5.11) for the ADM mass vanish and we simply get

M ren
ADM = −1

κ

∫
B∩Σ

N
√
γ̂ (K̂ − 1). (5.14)

Combining this with the defining expression (5.5) we can compute Euclidean on-shell
actions with ease. As a result in three bulk dimensions, brane matter content does
not directly contribute to the on-shell action, but they can contribute indirectly by
determining locations of the branes: the Wald entropy term in (5.5) can be sensitive to
how the branes are embedded deep in the bulk. The same holds true for the point particle
action LM = mδD, which does not directly contribute to the on-shell action either (when
the worldline D is tangent to ξa). However, the presence of the particle can show up
indirectly through the deficit angle created by its backreaction.33

5.2 On-shell actions of disk-brane configurations

We first compute on-shell actions of disk-brane configurations presented in section 3.3.
These configurations enjoy translation symmetry in the φ-direction. Hence we foliate the
conical global AdS3 geometry (3.14) by constant-φ slices so that

N = r, ua = 1
r
δaφ, ξa = δaφ. (5.15)

See figure 13 for visual representations of this foliation. Note that the central r = 0 line acts
as a horizon in these Cauchy slices, and so the Euclidean on-shell actions of the disk-brane
configurations may see contributions from Wald entropy terms.

Non-intersecting disk branes. Consider now two disconnected disk branes in the de-
fect AdS3 geometry such that there is a line defect exposed running between the two tips

33Including the point particle action LM = mδD to the on-shell action would show up as an extra bulk
contribution to the ADM mass (5.14). This is unphysical from the CFT perspective, because the ADM
mass is dual to an integral of the CFT stress tensor expectation value which is a boundary object. Indeed, it
can be shown [59] (which we also see below) that the mass (5.14) without the point particle action computes
correctly the scaling dimension of a heavy sub-threshold operator.
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(a) (b) (c)

Figure 13. Slicings of disk brane configurations used in the computation of their Euclidean on-
shell actions. We identify u with the angular (φ) direction in (3.14). Note that the central r = 0
line (which is the position of the conical defect) is a horizon in this slicing.

of the branes. As shown in figure 13a, we slice the geometry by constant-φ slices so that
the representative Cauchy slice is

Σ = {φ = 0, 0 < r < Λ, −F1(r) < τ < F2(r)} (5.16)

with Fi(r) ≡ F (r;Ti, τi). The foliation is parameterized by φ ∈ (0, 2π), so u0 = 2π. The
Cauchy slice has three boundary components — Q1∩Σ, Q2∩Σ, and D — with the conical
line defect at r = 0 being a horizon where the φ-circle shrinks to zero. The Euclidean
on-shell action is thus given by,

Irenon-shell = 2π
(
M ren

ADM −
κs
2π SW

)
, (5.17)

where the ADM mass is

M ren
ADM = − lim

Λ→∞

1
κ

∫ F2(Λ)

−F1(Λ)
dτ Λ

√
fα(Λ)

[
f ′α(Λ)

2
√
fα(Λ)

− 1
]

= 1
2κ α

2 (τ1 + τ2), (5.18)

and the Wald entropy term is proportional to the proper length of the conical line defect,

κs
2π SW = κs

κ

∫ F2(0)

−F1(0)
dτ α = 1

κ
α2 (τ1 + τ2) + 1

κ
α (Tanh−1 T1 + Tanh−1 T2). (5.19)

Note that we have used Fi(0) = τi + 1
α Tanh−1 Ti and that the surface gravity in is given

by κs = α.34 By plugging these expressions into the Euclidean on-shell action (5.17), we
find that

Irenon-shell = −2π
κ

[1
2 α

2 (τ1 + τ2) + α (Tanh−1 T1 + Tanh−1 T2)
]
, (5.20)

which we have reproduced by an explicit calculation of the renormalized action in ap-
pendix E.

34One can compute Wald entropy explicitly (see (D.4)) using φan
D
b ∇[aξb]|r=0 = −

√
fα(r) |r=0 = −α,

where nDa = −ra is the outward-pointing unit normal of D. The minus sign is cancelled, because the
integration direction over D is in the negative τ -direction (opposite to the integration direction of B ∩ Σ
which is in the positive τ -direction) leading to (5.19).
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Now, we write this in terms of boundary data. Recall that the modulus of the boundary
cylinder is given by

τ1 + τ2
2π = W

β
, (5.21)

which gives τ1 + τ2 = 2πW
β . By plugging this into (5.20), we write

Irenon-shell = −2π
κ

[
α2 πW

β
+ α

(
Tanh−1 T1 + Tanh−1 T2

)]
. (5.22)

The corresponding contribution to the BCFT partition function is

e−I
ren
on-shell =

(1 + T1
1− T1

) c
12α

(1 + T2
1− T2

) c
12α

q̃−
c
24α

2 (5.23)

where we have used 2π
κ = c

6 and q̃ = e−4πW/β . From the dependence on q̃, it follows
that this geometry is dual to an eigenstate |∆cl〉 of the closed-string Hamiltonian Hcl with
dimension (noting that the spin vanishes)

∆cl = c

12 (1− α2) (5.24)

and with overlaps

〈Ti|∆cl〉 =
(1 + Ti

1− Ti

) c
12α

. (5.25)

For α = 1, the dual state is the closed-string vacuum as in [11]. Meanwhile, for α < 1, the
dual states are excited and comprise a heavy but sub-threshold spectrum, since ∆cl = O(c)
and ∆cl < c

12 .

Intersecting disk branes. We now consider two intersecting disk branes. Recall that
there are two ways in which such branes may intersect:

T1 + T2 > 0 =⇒ cutting and gluing,
T1 + T2 ≤ 0 =⇒ decreasing the modulus.

(5.26)

Let us start with the action of the first type of configuration for which the conical line
defect is contained in the bulk. We assume that the branes are cut and glued at radial
depth r = r∗, which is a free parameter. Any representative Cauchy slice consists of two
pieces (3.32). The outer r ∈ (r∗,Λ) part of the φ = 0 Cauchy slice is

Σr>r∗ = {φ = 0, r∗ < r < Λ, −F1(r) < τ < F2(r)}, (5.27)

and the inner r ∈ [0, r∗] part is

Σr<r∗ = {φ = 0, 0 ≤ r ≤ r∗, −F1(r∗) < τ < F2(r∗)}, (5.28)

As an example, the configuration with two positive-tension branes is shown in figure 13b.
Just as before, the on-shell action is given by (5.17). The ADM mass is the same as

in the non-intersecting case (5.18). The only difference this time is the calculation of the
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Wald entropy. Specifically, by integrating over the conical line defect in the domain (5.28),
we have that

κs
2π SW = κs

κ

∫ F2(r∗)

−F1(r∗)
dτ α = 1

κ
α2 [F1(r∗) + F2(r∗)]. (5.29)

Because r∗ > 0, this term takes the form

κs
2π SW = 1

κ
α2(τ1 + τ2) + 1

κ
α
[
Tanh−1 T eff

1 (r∗) + Tanh−1 T eff
2 (r∗)

]
, (5.30)

where we have defined “effective” tensions which depend on r∗,

T eff
i (r∗) = Tiα√

fα(r∗)− T 2
i r

2
∗

. (5.31)

Note that we may also use the corner Einstein equation Θ(r∗) = M , where the intersection
angle is given in terms of r∗ in (3.33), to write the effective tensions as functions of M :

T eff
i (M) = Ti

√√√√1− (1− T 2
i ) sin2M

(Tj − Ti cosM)2 , j 6= i. (5.32)

In terms of the effective tensions, the Wald entropy term is the same as in the disconnected
case. So, the remainder of the calculation is the same as above, and we have that the
contribution to the BCFT partition function from the cut-and-glued configuration is

e−I
ren
on-shell =

(
1 + T eff

1
1− T eff

1

) c
12α

(
1 + T eff

2
1− T eff

2

) c
12α

q̃−
c
24α

2
. (5.33)

Naively, we may think this is dual to a closed-string state |∆cl〉 with the same dimension
as the disconnected configuration (5.24). However, the product of overlaps,

〈Ti|∆cl〉 =
(

1 + T eff
i (M)

1− T eff
i (M)

) c
12α

, (5.34)

does not factorize in general for any value of the intersection mass strictly between 0
and π, and so the existence of these cut-and-glued configurations presents a factorization
puzzle [75]. We thus posit that they compute ensemble-averaged overlaps, as we discuss in
section 6.

Now we consider the second case in (5.26). In this case, the conical line defect is hidden
behind the EOW branes. As a result, there is no Wald entropy term because the Cauchy
slice does not have a extra boundary in the interior (see figure 13c). Thus, the on-shell
action is simply proportional to the ADM mass,

Irenon-shell = 2πM ren
ADM. (5.35)

The ADM mass is again (5.18), and after again fixing the modulus (5.21), we find that

Irenon-shell = 2π
κ
α2 πW

β
, (5.36)
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and the corresponding contribution to the BCFT partition function is

e−I
ren
on-shell = q̃

c
24α

2
. (5.37)

The action (5.36) has the opposite sign compared to (5.22), so it gives the dimension

∆cl = c

12 (1 + α2) > c

12 , (5.38)

which is a heavy state above the black hole threshold. The overlaps are simply 〈Ti|∆cl〉 = 1.
We conclude that the result (5.38) is actually unphysical for the merging disk branes.

Specifically, for fixed tensions T1,2 and fixed defect masses m,M , we may use the condition
that the branes intersect at r = r∗ to write α as a function of r∗ and the modulus W

β . We
then use (3.33) to say that α depends only on the modulus. It follows from (5.38) that
the state dual to an intersecting-disk-brane configuration and supported by particular bulk
parameters has modulus-dependent dimension. This contradicts the fact that such data is
supposed to be input for the BCFT.

While this seems problematic, we are able to avoid a puzzle surrounding these states.
First, note that these intersecting-disk-brane configurations represent states above the black
hole threshold, and so they are exponentially suppressed in the closed-string expansion of
the BCFT partition function. We may ask if they are actually describing open-string
contributions. Indeed, we find that an analytic continuation α → iα flips the sign of the
on-shell action (5.36), and if we then S-transform q̃ → q, it matches with the action of an
annulus brane configuration computed in the next section. This mapping is related to the
analytic continuation of disk branes to strip branes (3.24), as we further discuss in section 6.

5.3 On-shell actions of annulus-brane configurations

Now we now compute Euclidean on-shell actions of the annulus brane configurations pre-
sented in section 3.3. These configurations enjoy translation symmetry in the periodic τ -
direction. Hence this time, we foliate the conical global AdS3 geometry (3.14) by constant-τ
slices so that

N =
√
fα(r), ua = 1√

fα(r)
δaφ, ξa = δaτ . (5.39)

This foliation is shown in figure 14. Note that there is no horizon in this foliation, so
the Wald entropy will always be zero. Furthermore, the conical defect, when present in
the bulk, entirely runs along the foliation direction τ and so does not contribute — see
appendix D for details on this point. Thus, the Euclidean on-shell action of the annulus-
brane configurations is entirely accounted for by the ADM mass.

Single smooth annulus brane. We first consider a single smooth annulus brane of
tension T with the conical line defect being either behind or in front of the brane (depending
on the sign of the brane tension). For positive and negative tensions, respectively, the
representative Cauchy slices which we consider are

ΣT>0 =
{
τ = 0, φ0 < φ < φ0 + π

α
, r > p(φ;−T, φ0)

}c
,

ΣT<0 =
{
τ = 0, φ0 < φ < φ0 + π

α
, r > p(φ;T, φ0)

}
,

(5.40)
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(a) (b)

Figure 14. Slicings of annulus brane configurations used in the computation of their Euclidean
on-shell actions. We identify u with the angular (τ) direction in (3.14). In (b), the conical defect
is integrated over in the slice, but it does not actually contribute to the on-shell action because it
is orthogonal to each Cauchy slice.

where the brane embedding is (3.21). The c on the set defining ΣT>0 indicates that the
positive-tension Cauchy slice is the complement of a bulk region bounded by a negative-
tension brane.

In both cases, the on-shell action is entirely determined by the ADM mass and, recall-
ing (3.39), takes the form

Irenon-shell = τ0M
ren
ADM = ∆φ β

W
M ren

ADM, (5.41)

where ∆φ is a function of α that depends on the sign of the tension (3.36). For now, how-
ever, we keep ∆φ generic. By employing the cutoff surface r = Λ and plugging into (5.14),
we find that

M ren
ADM = − lim

Λ→∞

1
κ

∫ φ0+∆φ

φ0
dφΛ

√
fα(Λ)

(√
fα(Λ)
Λ − 1

)
= −∆φα

2

2κ. (5.42)

The Euclidean on-shell action and, consequently, the contribution to the partition function
are

Irenon-shell = −(α∆φ)2

2κ
β

W
=⇒ e−I

ren
on-shell = q−

c
24(α∆φ

π )2
, (5.43)

Thus, this configuration is dual to an open-string eigenstate |∆op〉 with dimension

∆op = c

12

[
1−

(
α∆φ
π

)2]
=


0, if T < 0,
c

3 α(1− α), if T > 0,
(5.44)

where we have utilized the equations (3.36) for the angular width in both cases. As a sanity
check, observe that the configurations for all tensions corresponding to α = 1, which are
the original connected configurations in [11], simply describe open-string vacuum states
∆op = 0. Additionally, the ADM mass above for the positive-tension case is

M ren
ADM|T>0 = − c

24α (2α− 1), (5.45)

which is consistent with the literature [76–79].35

35Note that matching the ADM mass across different coordinate systems is subtle because it does not
transform as a scalar, but rather as a 1-form. We have checked that we match with [79] by performing the
appropriate coordinate transformation.
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Figure 15. The intersection depth in terms of (a) the Poincaré disk radial coordinate (3.23) and
(b) the intersection angle of two annulus branes with tensions T ≡ T1 = −T2 as a function of the
conical defect parameter α.

For α < 1, the negative-tension configurations, for which the bulk geometries do not
contain the conical defect, correspond to vacuum states. However, the positive-tension
configurations, for which the bulk geometries include the conical defect, describe excited
states in the open-string channel. Furthermore, because of the requirement that the brane
does not self-intersect, these states have a maximal dimension,

∆op|T>0 <
c

12 , (5.46)

which notably coincides with the black hole threshold. Thus, the open-string excited states
constructed here fill the subthreshold window

(
0, c12

)
.

Intersecting annulus branes. Consider now intersecting annulus branes in the defect
AdS3 geometry. Having the defect outside of the bulk (and not “hidden” by the EOW
branes) requires at least one of the brane tensions to be negative (figure 14a). Meanwhile
for two positive tension branes, the defect will be visible (corresponding to the complement
of the shaded region in figure 14b).

The Cauchy slice in this case is the part of a constant-τ surface bounded by two annulus
branes. However, recall that we are taking ∆φ = π for these configurations, which implies
that τ0 = πβ/W . The ADM mass and resulting on-shell action are the same as in the
smooth brane case (5.42), and after setting ∆φ = π we get36

M ren
ADM = − π

2κ α
2. (5.47)

To reiterate, this is the only contribution to the Euclidean on-shell action, even if the defect
is present in the bulk. Thus, we plug into (5.41) to write

Irenon-shell = τ0M
ren
ADM = −π

2

2κ α
2 β

W
(5.48)

36If we do not fix the interval length at π, then the on-shell action would still only depend on the product
α∆φ, which itself is fixed by the intersection mass M .
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The corresponding contribution to the BCFT partition function is

e−I
ren
on-shell = q−

c
24α

2
. (5.49)

From the dependence on q, it follows that this geometry is dual to an eigenstate |∆op〉 of
the open-string Hamiltonian Hop with dimension (noting that the spin vanishes)

∆op = c

12 (1− α2). (5.50)

The conical defect parameter α = α(M) and hence ∆op are fixed by the brane intersection
mass M through the corner Einstein equation Θ(α) = M .37

We now analyze the possible range of dimensions obtained from this model. For
simplicity, we consider the special states for which the branes have opposite but equal
tensions T ≡ T1 = −T2, as in the configuration of figure 8b. In this case, the intersection
depth (3.43) is simply

r∗ = |T |α√
1− T 2

sec
(
πα

2

)
, (5.51)

and the intersection angle (3.40) becomes

cos Θ = −T 2 − (1− T 2) cos (πα). (5.52)

These have been plotted as a function of α ∈ [0, 1] in figure 15 for different values of the
tension T . We find that for the range cos Θ ∈ (−1, 1− 2T 2), we have that α ∈ (0, 1). Thus
by tuning M , we can engineer the range

∆bcc ∈
(

0, c12

)
. (5.53)

Observe that the intersection point runs to the conformal boundary r∗ →∞ when α→ 1.
This means that the configuration dual to a BCC operator of dimension ∆bcc → 0 is
arbitrarily close to a single smooth strip brane (see figure 16a). In the opposite limit
r∗ → 0, the dimension ∆bcc → c

12 and the configuration is a spiral (see figure 16b). We
also find that the irreducible representation corresponding to the BCC operator (5.50) has
degeneracy logN bcc

AB = O(c0).

6 Conclusions and discussion

In this work, we consider the holographic model of Euclidean BCFTs in terms of EOW
branes and extended it by the addition of scalar fields, point particles, and non-smooth
brane intersections. The extended model allows for the description of primary opera-
tor exchanges in the closed-string channel (through scalar fields and point particles) and
boundary-condition-changing operators in the open-string channel (through brane inter-
sections). We also find novel wormhole configurations in our analysis.

37This is still true even if we do not fix ∆φ, since we would ultimately get that the action is a function
of the product α∆φ which can then be traded for the intersection angle Θ as discussed in section 3.3.
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(a) (b)

Figure 16. Two examples of intersecting annulus brane configurations. In (a) α = 0.95, so the
intersection is close to the conformal boundary and the configuration is almost like a single smooth
brane. In (b) α = 0.2, so the intersection point is close to the center. The configuration (a) is dual
to a BCC operator with dimension ∆bcc ≈ 0, and the configuration (b) is dual to ∆bcc ≈ c

12 .

To obtain dimensions of the dual operators, we compute Euclidean on-shell actions
of the corresponding brane configurations. This requires taking into account Gibbons-
Hawking-York terms on boundaries and Hayward terms on corners, and one also needs
matter content at corners to support intersections. In 3-dimensional gravity however,
there is no backreaction and the only effect of the Einstein equations is to fix the branes’
extrinsic curvatures, their intersection angles, and deficit angles of conical defects. To
simplify the computations, we derive a general formula that reduces the on-shell action to a
boundary integral involving the Wald entropy and the ADM mass along the lines of [72, 73].
In doing so, we provide a generalization of the ADM mass formula for geometries with
intersecting branes. In this process, we also see explicitly that actions of point particles
that source conical line defects do not contribute directly to the on-shell actions of our
bulk configurations. Lastly, we show that, in 3-dimensional gravity, the brane and brane-
intersection matter content do not contribute to the ADM mass.

The general theme with heavy states in 3-dimensional gravity is that they are always
dual to geometries containing a line defect supported by a point particle. For example,
excited states are specifically dual to geometries containing a conical line defect of strength
α supported by a point particle of mass m, with the relationship (3.16) between α and m
being determined from the equations of motion. Furthermore, the strength α of the conical
defect is related to the scaling dimension of the dual state via,

∆cl = c

12(1− α2), ∆op = c

3α(1− α), (6.1)

with excited closed-string states being well-defined for α ∈ (0, 1) and excited open-string
states being well-defined for α ∈

(
1
2 , 1
)
. Both equations follows from the computations of

on-shell actions. In both channels, one is able to engineer the full range of α by tuning m
such that the unitarity window ∆cl,op ∈

(
0, c12

)
below the black hole threshold is filled.

Additionally, we consider geometries for which the line defect is a corner shared between
the branes and is supported by a point particle of massM . In the open-string channel, these
are the only configurations compatible with BCFT on a cylinder and with two boundary
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conditions of different boundary entropies, and so we identify them as BCC operators.
We specifically consider a one-parameter family of configurations subject to a stability
condition (3.44) relating M the point particle mass on the conical line defect m.38 These
masses may be tuned together to control α, which in turn controls the dimension of the
dual operator,

∆bcc = c

12(1− α2). (6.2)

Here we may also engineer the full range α ∈ (0, 1) such that the unitarity window below
the black hole threshold is filled.

The wormhole configuration. We construct a family of intersecting disk-brane config-
urations obtained by cutting and gluing two disk branes whose tensions satisfy T1 +T2 > 0
and which are supported by a matter stress tensor at the brane intersection. The resulting
geometry is a type of a Euclidean wormhole where the “future” and “past” boundary states
of the CFT are connected by the wormhole throat (see figure 7). In other words, cutting the
geometry along the BCFT circle does not produce two disconnected components. Hence,
the bulk geometry does not prepare a pure state in the closed-string Hilbert space (which
would always be expected from the CFT side), but instead an entangled state similar to a
thermofield double state. These types of wormholes are known as bra-ket wormholes [42],
but our wormhole is different in the sense that its throat is bounded by two non-smoothly
intersecting EOW branes.

We find that, for α = 1, the configuration is dual to a closed-string state with the
same scaling dimension as the vacuum state and whose boundary entropies depend on
both tensions of the intersecting branes and the intersection mass.39 This is different
from the usual geometry dual to the vacuum state — corresponding to two disconnected
branes — where each boundary entropy is fixed by a single brane tension. Nonetheless, we
find that the α = 1 wormhole term in the partition function is still always subleading to
that of the disconnected configuration. This is most readily seen by noting that the two
configurations have the same ADM mass, and so the ratio of their partition functions is a
function of the difference of their Wald entropies:

Zwormhole
Zdisconnected

= exp
(
Swormhole
W − Sdisconnected

W

)
. (6.3)

The identification used to construct the wormhole geometry also ensures that the horizon
used to compute Wald entropy is “shorter” than in the disconnected case, and so the
ratio (6.3) must be less than unity (and can in fact be small, depending on the brane
tensions).

In line with the notion that gravity can compute ensemble averages of field-theoretic
observables [80], we propose that this α = 1 wormhole configuration can be understood
using ensemble averaging. The main reason for this is that the wormhole turns a pure state

38This stability condition is only relevant for intersecting configurations in which we have a point particle
in the bulk geometry.

39The discussion readily generalizes to excited states corresponding to bulk configurations with a conical
line defect α < 1 running through the wormhole throat.
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to an entangled state. That the wormhole configuration computes an ensemble-averaged
quantity would be in spite of these states being below the black hole threshold [81], with
the reason being that our theory includes defects. Note that analogous wormholes are also
found in [82].

Specifically, the wormhole should give a connected contribution to the averaged product
of two overlaps which does not factorize:

〈A|0〉〈0|B〉 = 〈A|0〉 〈0|B〉+ (wormhole) + . . . , (6.4)

where the leading factorized contribution is the standard disconnected disk-brane con-
figuration. Such averaged products arise in the averaged partition function ZAB when
expanded in the closed-string channel. This equation indicates a factorization puzzle for
partition functions because a vacuum overlap 〈A|0〉 is equal to the disk partition function
Zdisk
A with the boundary condition A at the boundary of the disk.

We propose that the averaging in (6.4) is performed over all boundary states |A〉 and
|B〉 that respectively correspond to branes of fixed tensions TA and TB, a position also taken
by [78]. This ensures that 〈A|0〉 = 〈TA|0〉 and 〈0|B〉 = 〈0|TB〉, i.e. that these “averaged”
boundary-theory overlaps are computed by specific bulk configurations. Another way to
make sense of the connected contributions in (6.4) would be to employ the Coleman-
Giddings-Strominger mechanism [83–85] of integrating out the wormhole configuration and
interpreting the effective action as a theory with random couplings, an approach which has
recently been used to understand semiclassical 3-dimensional gravity without branes [82].
We leave further, more refined exploration of our bra-ket wormholes to future work.

Analytic continuation of brane configurations. We show that two disk branes whose
tensions satisfy T1+T2 ≤ 0, will always intersect inevitably in the open-string limit W

β → 0.
However, to support such intersections for all moduli W

β requires the intersection mass
term to depend on the modulus M = M

(
W
β

)
. This contradicts the lore that all bulk

parameters are fixed by BCFT data (scaling dimensions and OPE coefficients) and are
hence independent of the modulus. Fortunately, we also find that these configurations are
dual to closed-string states that are above the black hole threshold ∆cl = c

12 (1 +α2) ≥ c
12 ,

so they would be exponentially suppressed in the closed-string limit W
β →∞. However, in

the open-string limit W
β → 0, their contributions may be parametrically large.

We observe that the on-shell action of this configuration is related to the on-shell
action of an intersecting annulus brane configuration by simultaneous analytic continuation
α→ iα and S-transformation q̃ → q. The actions are related by

e−Idisks = q̃
c
24 (1+α2)− c

24 → q
c
24 (1−α2)− c

24 = e−Iannuli (6.5)

The transformed configuration thus has the interpretation as a sub-threshold open-string
state of dimension ∆op = c

12 (1−α2). This relation between the actions might be explained
by the relation between disk and strip brane embeddings themselves; they are related by
the analytic continuation α → iα and subsequent coordinate transformation described
in (3.24).
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In a more realistic holographic model, it is reasonable to expect that disk branes start
to repel each other in the open-string limit W

β → 0. This would mean that there will always
be a non-zero geodesic distance between them, and so the problematic saddles would not
even constitute mathematically consistent solutions in the first place.

Multi-intersecting configurations. We focus on brane configurations that contain two
branes intersecting non-smoothly at a single corner. In principle, one could also have
multi-intersecting configurations consisting of multiple EOW brane components: two of the
brane components are anchored to the conformal boundary while rest of the components
are anchored between intersections (figure 10). Multi-intersecting configurations require
different corner terms at each intersection to support the configuration.

The methods of section 5.1 can be used to compute on-shell actions of such annulus-
brane configurations easily. In such cases, the action is only sensitive to the ADM mass,
which is an integral at the conformal boundary. Thus, any ∆φ = π configuration involving
multi-intersecting annulus branes has the same on-shell action as that of two intersecting
annulus branes (5.49) and hence is dual to an open-string state whose dimension has
the same dependence on α. The difference, however, lies in how the intersection masses
determine the BCC scaling dimensions, since we would have that ∆op = ∆op(M1,M2, . . .).
These configurations may describe a different possible range of BCC scaling dimensions
than the configurations consisting of only two branes.

Future directions. In this paper, we focus only on 2-dimensional BCFTs that are dual
to 3-dimensional Einstein gravity. This means that branes and intersections do not back-
react on the geometry and that their actions do not directly contribute to the on-shell
actions. A natural extension is to consider higher-dimensional setups where such back-
reaction effects becomes relevant. It would be interesting to construct intersecting EOW
branes configurations in higher dimensions.

In our scalar model, we only study a probe limit of the full theory in which gravitational
backreaction is suppressed. It would thus be interesting to study scalar-field interactions
in backreacted backgrounds. Additionally, we only consider the classical saddle-point con-
tribution to the bulk path integral without any quantum corrections. Hence, we do not
produce the full Virasoro character containing contributions of all the descendants of the
corresponding dual eigenstate |∆Φ〉. The full character of the brane configurations would
be reproduced by a 1-loop bulk computation along the lines of [86, 87].

One could also try to reproduce a unitary BCFT partition function by summing over all
intersecting brane geometries with point particles, similarly to how [88] addresses the non-
unitarity of pure 3-dimensional gravity [89–91]. It is an interesting question to understand
if 3-dimensional gravity with EOW branes has a CFT dual.

We would like to understand how this bottom-up model is related to more refined
top-down realizations of BCFT. A setup similar to our model is the tensionless limit of
string theory on AdS3 × S3 × T4 studied in [92]. They also consider branes of disk and
strip topology to which open strings can attach. These are D-branes, and they correspond
to boundary conditions in a symmetric product orbifold theory (also studied by [93]).
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Concretely, our model of a scalar-field exchange between disk branes might be possible to
understand as a point-particle limit of the closed-string exchange in [92].
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A Derivation of the corner Einstein equation

Consider the Einstein-Hilbert action with Gibbons-Hawking-York terms on all EOW branes
Q and Hayward terms on all corners C. In addition, we allow matter degrees of freedom
in the bulk, on the branes, and on the corners. Schematically, the action is

I = − 1
2κ

∫
M

√
g (R− 2Λ− LM)− 1

κ

∫
Q

√
h (K − LQ)− 1

κ

∫
C

√
σ (Θ− LC). (A.1)

The variational problem consists of keeping the coordinates and embeddings of the bound-
aries fixed while varying the inverse metric. The extremum of the action then fixes the
metricM. Defining the bulk, boundary, and corner stress tensors as

TMab = − 2
√
g

∂(√gLM)
∂gab

, TQab = − 2√
h

∂(
√
hLQ)
∂hab

, T Cab = − 2√
σ

∂(
√
σLC)

∂σab
, (A.2)

the variation of (A.1) with two intersecting branes Qs (s = 1, 2) sharing a corner C ≡
Q1 ∩Q2 becomes

δI = − 1
2κ

∫
M

√
g

(
Gab + Λgab + 1

2T
M
ab

)
δgab

−
2∑
s=1

1
2κ

∫
Qs

√
hs
(
Ksab −Kshsab + TQsab

)
δhabs −

2∑
s=1

1
2κ

∫
Qs

√
hsDsaδ̄U

a
s

+ 1
2κ

∫
C

√
σ
(
Θσab − T Cab

)
δσab − 1

κ

∫
C

√
σ δΘ,

(A.3)

where Da
s is the covariant derivative compatible the induced metric of Qs and

δ̄Uas = nsb δg
ab + 2gab δnsb. (A.4)

Here nas is the outward-pointing unit normal vector of Qs. Note that the s is not a spatial
index but rather a label corresponding to the brane.

The first two lines of (A.3) come from the variation of the Einstein-Hilbert and
Gibbons-Hawking-York terms [94, 95]. Additionally, the total derivative term Daδ̄U

a sums
with the variation of the Hayward term. We deduce that the bulk, boundary, and corner
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C
Θ

ta1

na1
ta2 na2
•

Q1

Q2

Figure 17. The normal and tangent vectors for two branes Q1 and Q2 located at their shared
corner C. Note that for either brane, the corresponding normal and tangent vectors are orthogonal.
The normal vectors of the two branes form an angle Θ.

Einstein equations are

Gab + Λgab + 1
2T
M
ab = 0, (A.5)

Ksab −Kshsab + TQsab = 0, (A.6)
Θσab − T Cab = 0. (A.7)

Upon imposing these, the variation (A.3) should vanish. However, when we do so, we are
left with

δI = − 1
2κ

∫
C

√
σ (2δΘ + t1aδ̄U

a
1 + t2aδ̄U

a
2 ) . (A.8)

where tas a unit tangent vector of Qs positioned as an outward-pointing unit normal vector
of ∂Qs = C — see figure 17.

So, for the variational principle to be consistent with (A.5)–(A.7), the remaining corner
term (A.8) has to vanish. This is indeed the case without imposing extra conditions on
the variation. When the embeddings of the boundaries are kept fixed by (A.6), we have
the identity (see [95])

δnsa = δωs nsa, δωs = −1
2nsansb δg

ab. (A.9)

It follows that
tsa δ̄U

a
s = tsansb δg

ab (A.10)

where we have used tsan
a
s = 0. Meanwhile, the two sets of orthonormal unit vectors are

related as
na2 = na1 cos Θ + ta1 sin Θ,
ta2 = na1 sin Θ− ta1 cos Θ.

(A.11)

so that cos Θ = n1 · n2. We may write the variation of Θ as

δΘ = −δ(gabn1an2b) csc Θ = (δω1 − δω2) cot Θ− t1an1b δg
ab. (A.12)

where we have used (A.9) and (A.11) to perform various simplifications. Note that the
definition of Θ is symmetric under the exchange 1↔ 2, and adding the exchanged equation
to (A.12) yields

2 δΘ = −(t1an1b + t2an2b) δgab. (A.13)

By combining this with (A.10), we see that the variation (A.8) indeed vanishes.
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B Foliating AdSd+1 into AdSd

As discussed in [96], families of Karch-Randall branes may be viewed as foliations of bulk
AdSd+1 space into AdSd slices of constant extrinsic curvature.40 In this appendix, we will
describe the foliations which realize a variety of topologies in the boundary field theory —
namely half-spaces, disks, strips, and annuli.

Foliations yielding the first two topologies are standard in the AdS/BCFT litera-
ture [11, 12] and can be done rather easily in Euclidean pure AdS obtained from Wick rota-
tion of Lorentzian pure AdS. The strip, while less standard, can also be done in pure AdS by
compactifying the half-space foliation. However, to obtain a manifestly annular boundary
topology in general dimension, it is more natural foliate Euclidean AdS-Schwarzschild [97]
obtained from Wick rotation of Lorentzian AdS-Schwarzschild.

While the solutions constructed from the foliations described in this section are those
of pure Euclidean gravity with an RS term,41

I = − 1
2κ

∫
M
dd+1X

√
g

[
R+ d(d− 1)

`2

]
− 1
κ

∫
Q
ddx̂
√
h (K − T ), (B.1)

they are also be relevant in the probe limit of the Einstein + scalar theory considered in
the main text.

We note that much of the discussion below is in general d, but specification to d = 2
— the case of interest in this paper — is readily apparent. Interestingly, there is something
special which happens precisely when d = 2; the annular foliation of the Euclidean BTZ
metric is actually an identification of the strip foliation of the pure AdS3 metric. This
is because the pure AdS3 and Euclidean BTZ metrics are locally equivalent up to a
coordinate transformation.

B.1 Half-spaces and disks in pure AdS

We first review the standard foliations which provide either half-space or a disk on the
conformal boundary. We start with the following Euclidean metric ansatz for the full
equations of motion,

ds2 = 1
f(ϑ)2

(
dϑ2 + ds2

AdSd

)
, ϑ ∈ (0, π). (B.2)

The coordinate ϑ labels a particular Euclidean AdSd slice, and backreaction manifests
through the freedom of f(ϑ).42 For pure AdSd+1, the warp factor is

f(ϑ) = sinϑ. (B.3)

A simple foliation is one where we slice the bulk into planes,

ds2
AdSd = 1

w2 (dw2 + d~x2), w ∈ (0,∞). (B.4)

40Implicit in the definition of a “foliation” is that the individual AdSd “leaves” are smooth and topolog-
ically connected. We will not explicitly discuss non-smoothness or disconnectedness in this appendix, but
note that foliations are still relevant to realizing such characteristics.

41Note that we will set the bulk AdS radius ` = 1 for convenience.
42Keeping f(ϑ) generic would be interesting to study effects subleading to the probe limit of matter.
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•◦

ϑ w

2R
(a) Planar foliation.

•◦ •◦

ϑ ww

2R
(b) Disk foliation.

Figure 18. Transverse slices of (a) the planar foliation and (b) the disk foliation (labeled by R
which represents the radius of the (d − 1)-sphere on the boundary) of AdSd+1. ϑ labels different
AdSd slices, starting at 0 and ending at π. In the planar foliation, w = 0 is the conformal boundary
of each individual slice, while w = ∞ is the Poincaré horizon of each slice. In the disk foliation,
w = 0 is still the conformal boundary of each slice, but it reaches a finite maximum value of
w = 2R at the “middle”.

Here, ~x ∈ Rd−1 parameterizes the transverse flat directions. Each constant-ϑ slice is
a Poincaré patch of Euclidean AdSd on an upper half-plane. They share a conformal
boundary at w → 0. We depict the planar foliation of AdSd+1 in figure 18a.

An alternate foliation is the one for which each constant-ϑ slice is Euclidean AdSd in
a disk,

ds2
AdSd = 1

w2

dw2 +
(

1− w2

4R2

)2

R2dΩ2
d−1

 , w ∈ (0, 2R], (B.5)

Here, R > 0 is a free parameter43 labeling the particular foliation we choose, while dΩd−1
is the line element of the transverse (d − 1)-sphere. Geometrically, R is the radius of
the (d − 1)-sphere on the boundary (up to the w−1 boundary divergence) at which the
constant-ϑ slices intersect. We depict this disk foliation in figure 18b.

Each individual leaf of each of these foliations is a valid KR brane which solves the
embedding equation

Kab − (K − T )hab = 0, (B.6)

with the tension T of the leaf ϑ = θ being

T = −(d− 1) cos θ. (B.7)

Thus, the induced AdSd curvature radius ¯̀ is related to the tension by

¯̀2 = 1
sin2 ϑ

= 1
1− T 2/(d− 1)2 . (B.8)

So, we restrict the bulk coordinates to ϑ ∈ (0, θ] to obtain AdSd+1 space with an EOW KR
brane. This “excision” of the subspace ϑ > θ yields a holographic BCFT state on either

43Technically R has length-dimension 1, so the appropriate dimensionless free parameter is R/`.
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(a) Half-space configuration. (b) Disk configuration.

Figure 19. The bulk configuration obtained when selecting a leaf of (a) the planar foliation or (b)
the disk foliation as an end-of-the-world KR brane (in red). For the half-space configuration, we
excise the part of the bulk “behind” the brane. For the disk configuration, we excise the part of
the bulk “outside” of the brane.

half-space (for the planar foliation — see figure 19a) or a disk of radius R (for the disk
foliation — see figure 19b). Note that θ > π

2 characterizes positive tension branes, θ < π
2

describes negative tension branes, and θ = π
2 is the zero tension brane.

As an aside, observe that by taking R → ∞ in (B.5), we obtain (B.4). Thus, the
planar foliation is actually a limit of disk foliations. So for now, we will focus on providing
details about the disk.

Disk branes in Poincaré coordinates. Now consider pure AdS in Poincaré coordi-
nates,

ds2 = dz2 + dy2 + d~x2

z2 . (B.9)

where z > 0 and (y, ~x) ∈ Rd. We find this coordinate system to be more convenient in the
main text for studying a scalar field between two disconnected disk EOW branes. To use
it, we require the disk foliation of Poincaré space which yields a disk of radius R on the
boundary. We may apply a conformal mapping to the disk brane ϑ = θ in the foliation
coordinates (B.2) to write [12, 98]

(z +R cot θ)2 + y2 + ~x2 = R2 csc2 θ. (B.10)

It is useful to write this in terms of brane tension T , instead. By doing so, we get[
z − RT

(d− 1)
√

1− T 2/(d− 1)2

]2

+ y2 + ~x2 = R2

1− T 2/(d− 1)2 . (B.11)

The symmetry of these branes suggest working in an alternate set of spherical coordinates
in the subspace (y, ~x) ∈ Rd,

(y, ~x)→ (%, ψ1, . . . , ψd−2, φ), (B.12)

where % is a radial coordinate and ψ1, . . . , ψd−2, φ parameterize a (d − 1)-sphere; we take
φ to be the 2π-periodic angle. The Poincaré metric takes the form

ds2 =
dz2 + d%2 + %2dΩ2

d−1
z2 . (B.13)
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Thus the disk branes are rotation-invariant,[
z − RT

(d− 1)
√

1− T 2/(d− 1)2

]2

+ %2 = R2

1− T 2/(d− 1)2 . (B.14)

Disk branes in global coordinates. Another embedding we use in the main text is
that of the disk branes in global coordinates. This coordinate chart is how one explicitly
realizes Euclidean BCFT states on the cylinder. The embedding is described in [97]; we
review their construction here.

We start with a generic spherically symmetric metric which fills the R×Sd−1 cylinder,
so the bulk is topologically R×Dd (where Dd denotes a d-dimensional disk). Schematically,
the metric in (τ, r, ψ1, . . . , ψd−2, φ) coordinates is

ds2 = f(r)dτ2 + dr2

f(r) + r2dΩ2
d−1. (B.15)

where τ ∈ R and r > 0, with r =∞ being the conformal boundary. Pure AdS corresponds
to

f(r) = r2 + 1. (B.16)

To get the disk branes in these coordinates, we want a foliation into AdSd slices in balls
anchored to the boundary at some τ = τ0. From the embedding equation (B.6), we may
find that the spherically symmetric branes are described by the equation of motion [97]44

dτ

dr
= − Tr

(d− 1)f(r)
1√

f(r)− T 2r2/(d− 1)2 . (B.17)

By integrating (noting that τ(∞) = τ0), we have that the branes (for any d) are

τ(r)− τ0 =
∫ ∞
r

dr̂
T r̂

(d− 1)f(r̂)
1√

f(r̂)− T 2r̂2/(d− 1)2

= Tanh−1
[

T√
(d− 1)2(r2 + 1)− r2T 2

]
,

(B.18)

where T is the tension.45 As before, these KR branes have an induced AdSd geometry with
the radius given by (B.8). The foliation is depicted in figure 20a, and the bulk geometry
with one of these leaves as an EOW brane is depicted in figure 20b.

The above foliation is obtained independently of the previous constructions. So, as a
sanity check, we should ensure that these disk branes are equivalent to those of the Poincaré
patch. Specifically, we first note that there exists a coordinate transformation from (B.13)
to (B.15) with f(r) = r2 + 1,

τ = 1
2 log

(
z2 + %2

)
, r = %

z
. (B.19)

44This is technically only one branch describing the leaves of the foliation, and we may also consider the
same expression but without a minus sign. The induced geometry would still be AdSd, but the embedding
equation (B.6) would imply that such a brane has tension −T .

45Note that [97] does not have the factors of (d − 1). This is because they incorporate it into the RS
action.
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τ = τ0 τ•◦ •◦ τ = τ0τ = τ0

τ r

(a) Disk foliation of global.

τ = τ0 ττ = τ0τ = τ0

τ τ

φ

(b) Disk brane in global.

Figure 20. (a) A transverse slice of the disk foliation of Euclidean pure AdSd+1 in global co-
ordinates. τ increases upward while r increases outward from the central axis. (b) The bulk
configuration obtained by selecting a leaf of the disk foliation as an end-of-the-world KR brane (in
red), with all transverse spherical coordinates fixed except for the periodic angle φ. We excise the
part of the bulk “above” the brane.

Applying this coordinate transformation to (B.18) produces (B.14) so long as the free
parameters τ0 and R are related by

R = eτ0 . (B.20)

B.2 Strips in pure AdS

We now discuss the foliation of pure AdS into d-dimensional strips, by which we mean
R × Dd−1. As it turns out, this topology comes about when mapping the half-space
foliation in Poincaré coordinates to the global AdS cylinder. In other words, we may think
about the strip foliation as a compactification of the planar foliation on each Dd−1 slice.

First, note that the half-space foliation in Poincaré coordinates (B.9) is described by

y

z
= cot θ = − T

(d− 1)
√

1− T 2/(d− 1)2 , (B.21)

In order to transform into global coordinates, we use (B.12). Concretely, without loss of
generality we may specify the transformation such that

y = % sinφ
d−2∏
i=1

sinψi, (B.22)

where we take {ψi} to be angles such that ψi ∈ [0, π] for i < d − 2 and φ ∼ φ + 2π. By
then using (B.19), we rewrite (B.21) as

r sinφ
d−2∏
i=1

sinψi = − T

(d− 1)
√

1− T 2/(d− 1)2 . (B.23)

Within the pure AdS cylinder (B.15), we note that this foliation is τ -independent and, on
each τ -slice, has the topology of a (d − 1)-disk. Thus a single leaf indeed has topology
R×Dd−1 — that of the d-dimensional strip.
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•◦ •◦

φ

φ = 0φ = π

r

•

(a) Strip foliation of global.

τ = τ0 ττ = τ0τ = τ0

τ τ

φ

(b) Strip brane in global.

Figure 21. (a) The strip foliation of Euclidean pure AdSd+1 in global coordinates, projected onto
the (r, φ) disk. The leaves anchor to antipodal points on the conformal boundary. (b) The bulk
configuration obtained by selecting a leaf of the strip foliation as an end-of-the-world KR brane (in
red), with the transverse (ψ1, . . . , ψd−2) coordinates fixed. We excise the part of the bulk to the
“left” the brane.

To get a clearer idea of how this foliation looks and why we refer to its leaves as strips,
we restrict to the (r, φ) subspace. On this disk, note that the r → ∞ limit only makes
sense in (B.23) if ψi = 0 or π. As such, each leaf of the foliation projects onto a curve which
anchors to the conformal boundary at antipodal points (figure 21a). By taking one of these
leaves as an EOW brane, we are left with a configuration of the sort depicted in figure 21b.

B.3 Annuli in Euclidean AdS-Schwarzschild

We now describe how to construct the smooth, connected branes which yield annular
boundary topologies (equivalent to a finite cylinder). These branes arise as a natural
foliation of the Euclidean AdS-Schwarzschild geometry.

The boundary topology of Euclidean AdS-Schwarzschild is a toroid of the form S1 ×
Sd−1, but it may also be treated as a finite cylinder with (d − 1)-spherical cross-sections
and the ends identified. The bulk metric filling this toroid is spherically symmetric and
thus of the form (B.15), which we now decorate with tildes to avoid confusion with the
previous metric:

ds2 = f̃(r̃)dτ̃2 + dr̃2

f̃(r̃)
+ r̃2dΩ̃2

d−1. (B.24)

However, this time we have that

f̃(r̃) = r̃2 + 1− rd−2
h

r̃d−2

(
r2
h + 1

)
. (B.25)

This metric with range r̃ > rh covers the whole Euclidean manifold. Furthermore, in
this geometry, 2π-periodic angle φ̃ parameterizes the non-contractible circle of the solid
toroid. Meanwhile, τ̃ parameterizes a contractible circle direction. We usually relate this
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τ̃ = βh
2

τ̃ = −βh2

•◦

•◦

τ̃r̃•

(a) Annular foliation of AdS-Schwarzschild.

τ̃

φ̃

(b) Annular brane in AdS-Schwarzschild.

Figure 22. (a) A slice of the annular foliation of Euclidean AdS-Schwarzschild with the spherical
directions fixed and the center point of the τ̃ -cycle blown-up to a vertical line. τ̃ increases upward
while r̃ increases outward. The ends τ̃ = ±βh/2 are identified. (b) The bulk configuration ob-
tained by selecting a leaf of the annular foliation as an end-of-the-world brane, with the transverse
(ψ̃1, . . . , ψ̃d−2) coordinates fixed. The central green line is the non-contractible horizon. Each given
leaf partitions the bulk into a piece containing the horizon and a piece not containing the horizon.
Keeping the horizon corresponds to T > 0, and excising the horizon corresponds to T < 0.

periodicity in τ̃ to the inverse temperature,

βh = 4πrh
(d− 2) + dr2

h

, (B.26)

so we may take the domain of τ̃ to be
[
−βh

2 ,
βh
2

]
.46

Topologically, we want a smooth “annular” foliation of the AdS-Schwarzschild geome-
try; such a foliation is depicted in figure 22a. To do this, without loss of generality we may
consider solutions that are symmetric about τ̃ = 0 and so have dr̃

dτ̃

∣∣∣
τ̃=0

= 0.
The equation of motion (B.17) is branched at this throat. Instead of just taking one

branch as we did before, we must use both branches to write the full solution, with the
signs such that dτ̃

dr̃ > 0 in the τ̃ > 0 branch and dτ̃
dr̃ < 0 in the τ̃ < 0 branch.

dτ̃

dr̃
= sgn(τ̃) |T |r̃

(d− 1)f̃(r̃)
1√

f̃(r̃)− T 2r̃2/(d− 1)2
. (B.27)

Each solution is labeled by the radius of the throat r̃(τ̃ = 0) = r0 which is constrained by
the equation of motion

f̃(r0) =
(
Tr0
d− 1

)2
. (B.28)

46Note that this βh is unrelated to the β defined in our review of BCFT in section 2. Instead, it will be
related to W — i.e. the width of the boundary cylinder.

– 55 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
8

By integrating each branch of (B.27) from the throat, we may obtain the two halves of the
embedding. For example, the τ̃ > 0 branch follows

τ̃(r̃) =
∫ r̃

r0
dr̂

|T |r̂

f̃(r̂)
√
f̃(r̂)− T 2r̂2/(d− 1)2

, (B.29)

while the τ̃ < 0 branch is the same expression times a minus sign.
Given some embedding of this form, we may treat it as an EOW KR brane satisfy-

ing (B.6) and excise part of the bulk to get a state on an annulus. Since the topology
is toroidal, there is a choice in which part of the bulk we excise (see figure 22b). This
ambiguity manifests in the sign of the tension [97].

For the branes to have positive tension, we keep the part of the bulk which includes
the horizon r̃ = rh — geometrically represented as the central axis of the cylinder or the
central cycle of the torus. The resulting half-length of the boundary interval τ+

0 is then

τ+
0 = 2πrh

(d− 2) + dr2
h

−
∫ ∞
r0

dr̃
T r̃

f̃(r̃)
√
f̃(r̃)− T 2r̃2/(d− 1)2

. (B.30)

For the branes to have negative tension however, we excise the part of the bulk which
includes the horizon, in which case the half-length of the boundary interval τ−0 is

τ−0 = −
∫ ∞
r0

dr̃
T r̃

f̃(r̃)
√
f̃(r̃)− T 2r̃2/(d− 1)2

. (B.31)

Unlike the strip foliation in pure AdS, the annular foliation is not generically antipodal
on the (r̃, τ̃) disk. However, there is an exception — the case of d = 2. This is not a
coincidence; when d = 2, the annular foliations is precisely a quotient of the strip foliation.

Euclidean BTZ. Much of the above expressions become simpler in the Euclidean BTZ
metric obtained by setting d = 2 — the case of primary interest in this paper. Here, the
function f̃(r̃) is simply quadratic while βh has a simple relationship with rh,

f̃(r̃) = r̃2 − r2
h, βh = 2π

rh
. (B.32)

Additionally, the constraint (B.28) which determines the throat radius significantly simpli-
fies to

r0
rh

= 1√
1− T 2

. (B.33)

As such, we may solve the integrals expressions in the embeddings above in closed form.
Doing so leads us to the following expression for the embedding (covering both the τ̃ > 0
and τ̃ < 0 branches):

tan2(rhτ̃) = r̃2(1− T 2)− r2
h

T 2r2
h

. (B.34)

This allows us to see that the half-length of the boundary interval is completely tension-
independent, simply being a quarter of a full τ̃ -cycle.

τ+
0 = τ−0 = π

2rh
= βh

4 . (B.35)
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When viewing the projection of these annular branes onto the (τ, r) disk, this condition
means that they intersect the conformal boundary at antipodal points. Put another way,
the width of the boundary cylinder is

W = π

rh
= βh

2 . (B.36)

B.4 Equivalence of strip and annular foliations in d = 2

We now demonstrate that, in d = 2, the strip foliation of pure AdS is in truth the same as
the annular foliation in Euclidean BTZ up to a global topological identification. We exploit
this fact in the main text to perform all of our calculations using the pure AdS metric.

We start with pure AdS3 and its associated strip brane (B.23),

ds2 = (r2 + 1)dτ2 + dr2

r2 + 1 + r2dφ2, r(φ) = − T√
1− T 2

cscφ. (B.37)

This matches with our conventions in the main text (3.21) (taking α = 1 and φ0 = 0).
Furthermore, we take this opportunity to perform the identification

τ ∼ τ + 2πrh, (B.38)

for some rh > 0. We then apply the coordinate transformation

τ = rhφ̃, r = 1
rh

√
r̃2 − r2

h, φ = rh

(
τ̃ + π

2rh

)
. (B.39)

The metric then becomes

ds2 = (r̃2 − r2
h)dτ̃2 + dr̃2

r̃2 − r2
h

+ r̃2dφ̃2, (B.40)

with r̃ > rh, τ̃ ∼ τ̃ + 2π
rh
, and φ̃ ∼ φ̃ + 2π. This is precisely the Euclidean BTZ metric

filling the torus and with inverse temperature βh = 2π
rh
. Furthermore, by applying this very

coordinate transformation to the strip brane, we have that

sec2 (rhτ̃) = (r̃2 − r2
h)(1− T 2)
T 2r2

h

, (B.41)

By applying trigonometric identities, we may rewrite this as

tan2(rhτ̃) = sec2(rhτ̃)− 1 = r̃2(1− T 2)− r2
h

T 2r2
h

. (B.42)

This precisely matches with (B.34), so we indeed have that the strip and annular foliations
in d = 2 are the same up to a global identification of the former. Thus in the main text,
we may restrict ourselves to studying the disk and strip branes in pure AdS.
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C Well-definedness of cutting and gluing disk branes

In this appendix, we show that the cutting-and-gluing procedure for creating an
intersecting-disk-brane configuration in the bulk is only valid when

T1 + T2 > 0. (C.1)

Recall that the disk branes are embedded in the bulk (3.14) as τ = −F1(r) and τ = F2(r),
where

Fi(r) ≡ F (r;Ti, τi) = τi + 1
α

Tanh−1

 Tiα√
fα(r)− T 2

i r
2

 . (C.2)

We cut the first brane at τ = −τ1∗ and the second at τ = τ2∗, with both defined such that

τi∗ = Fi(r∗), (C.3)

for the same r∗ > 0. Thus we may glue both branes along the circle r = r∗. As discussed
in section 3.3, this is only a consistent procedure if

τ1∗ + τ2∗ > τ1 + τ2. (C.4)

We show that this implies (C.1). In doing so, we first use (C.3) to write

τ1∗ + τ2∗ = τ1 + τ2 + 1
2α log


√
fα(r∗)− T 2

1 r
2
∗ + T1r∗√

fα(r∗)− T 2
1 r

2
∗ − T1r∗


√
fα(r∗)− T 2

2 r
2
∗ + T2r∗√

fα(r∗)− T 2
2 r

2
∗ − T2r∗

 .
(C.5)

Now, we consider just the product inside of the log which we denote as Π. Note that

Π|T1+T2=0 = 1. (C.6)

By keeping T1 fixed, we may write

∂Π
∂T2

= 2fα(r∗)r∗√
fα(r∗)− T 2

2 r
2
∗

(
fα(r∗)− 2T2r∗

√
fα(r∗)− T 2

2 r
2
∗

)

√
fα(r∗)− T 2

1 r
2
∗ + T1r∗√

fα(r∗)− T 2
1 r

2
∗ − T1r∗

 .
(C.7)

The first factor can be shown to be positive by noting that
[
fα(r∗)− 2T 2

2 r
2
∗
]2
> 0. The

second factor is equal to e2α(τ1∗−τ1) and so is also positive. We thus deduce that

Π|T1+T2>0 > 1, Π|T1+T2≤0 ≤ 1. (C.8)

It follows that the log term in (C.5) is positive precisely when (C.1) is satisfied. Thus, (C.4)
holds when T1 + T2 > 0 but is broken otherwise, and so we can only cut and glue disk
branes when (C.1) is satisfied.
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D Euclidean on-shell action as a boundary integral

In this appendix, we prove the boundary version of the ADM mass formula (5.10), which
takes into account branes and their intersections in the bulk and serves as a more tractable
formula for the on-shell action via (5.5). All of our notation is defined in section 5.1. To
start, we recall the formula here for convenience:

M ren
ADM = −1

κ

∫
B∩Σ

√
γ̂
(
uarb∇[aξb] +N (K − LB)

)
− 1
κ

∫
Q∩Σ

√
ĥ
(
uanb∇[aξb] +N (K − LQ)

)
− 1
κ

∫
C∩Σ

N
√
σ̂ (Θ− LC). (D.1)

We prove (D.1) by showing that it satisfies the equation (5.5). This amounts to an explicit
version of the calculation done in covariant phase space formalism [72] but with intersecting
EOW branes present. Notably, we explicitly show that conical defects that orthogonally
run through the Cauchy slices Σ are not included in the computation of the Euclidean
on-shell action when the ADM mass has the expression (D.1).

We can rewrite the first term as

−1
κ

∫
B∩Σ

√
γ̂ uarb∇[aξb] = −1

κ

∫
Σ

√
ĝ ua∇b∇[aξb]

+ 1
κ

∫
Q∩Σ

√
ĥ uanb∇[aξb] + 1

κ

∫
H

√
σ̂H uan

H
b ∇[aξb],

(D.2)

because the boundary ∂Σ of the Cauchy slice consists of the branes Q∩Σ and the horizon
H.47 Here, nHa is the outward-pointing unit normal vector of the horizon. Now note that,
from the Killing vector identity ∇a∇b ξc = R d

cba ξd, it follows that48

∇b∇[aξb] = −∇b∇bξa = Rabξ
b, (D.3)

where the first equality is due to ∇(aξb) = 0, and then we use Rab = gcdRacbd. Furthermore,
the last term in (D.2) is

1
κ

∫
H

√
σ̂H uan

H
b ∇[aξb] = κs

2π SW, (D.4)

where SW is the Wald entropy (5.5) and κs > 0 is the surface gravity of H. This comes
from the fact that Killing vectors satisfy the general identity ∇[aξb]|H= ±2κsu[an

H
b]

∣∣∣
H
. In

other words, ∇[aξb] reduces to the binormal of the horizon times surface gravity. By
applying (D.3)–(D.4) to (D.2) and recalling that ξa = Nua, we get

− 1
κ

∫
B∩Σ

√
γ̂ uarb∇[aξb] = −1

κ

∫
Σ
N
√
ĝ Rab u

aub+ 1
κ

∫
Q∩Σ

√
ĥ uanb∇[aξb] + κs

2πSW. (D.5)

Substituting the above expression to (D.1), the Noether charge terms on the branes cancel
and we are left with

M ren
ADM−

κs
2πSW =−1

κ

∫
Σ
N
√
ĝRabu

aub− 1
κ

∫
Q∩Σ

N

√
ĥ(K−LQ)− 1

κ

∫
C∩Σ

N
√
σ̂ (Θ−LC)

− 1
κ

∫
B∩Σ

N
√
γ̂ (K−LB). (D.6)

47Stokes’ theorem does not involve contributions from corners in ∂Σ.
48In our conventions, the Riemann tensor is defined as [∇a,∇b]vc = R d

abc vd for any vector field va.
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Now, we consider the bulk term over Σ. The possible contribution to the Ricci tensor of a
codimension-2 conical defect D that non-trivially intersects with Σ is given by [58]∫

Σ
N
√
ĝ Rab =

∫
Σ\(D∩Σ)

N
√
ĝ Rab + 2π (1− α)

∫
D∩Σ

N
√
ĝ (nD1anD1b + nD2an

D
2b), (D.7)

where nDia are two mutually orthogonal unit vectors spanning the 2-dimensional subspace
of Σ transverse to D∩Σ. Since we only consider such conical defects tangent to the Killing
symmetry,49 we have that uanDia = 0 and thus get (on-shell)

1
κ

∫
Σ
N
√
gRabu

aub = 1
κ

∫
Σ\(D∩Σ)

√
gRabu

aub = 1
2κ

∫
Σ\(D∩Σ)

√
g(R− 2Λ), (D.8)

where we have used the identity50

Rabu
aub = (Gab + Λgab)uaub + 1

2(R− 2Λ) (D.9)

and the fact that Gab + Λgab = 0 on-shell and away from the defect.
Lastly, since ξa is a Killing vector for all u ∈ [0, u0] labeling the Cauchy slices (5.1),

we can use ∫
M

√
g =

∫ u0

0
duN

∫
Σ

√
ĝ = u0

∫
Σ
N
√
ĝ (D.10)

to replace integrals over Σ and its subspaces by full-space integrals divided by u0. Upon
doing so, (D.6) becomes

Irenon-shell = u0

(
M ren

ADM −
κs
2π SW

)
, (D.11)

where
Irenon-shell = − 1

2κ

∫
M\D

√
g(R− 2Λ)− 1

κ

∫
Q

√
h(K − LQ)

− 1
κ

∫
C

√
σ(Θ− LC)−

1
κ

∫
B

√
γ(K − LB)

(D.12)

is the (renormalized) Euclidean on-shell action which does not contain any contribution
from the conical defects but does contain Gibbons-Hawking-York and Hayward terms.

E On-shell action of non-intersecting disk branes

In this appendix, we compute the Euclidean on-shell action of two non-intersecting disk
branes embedded in the conical geometry (3.14) (figure 23). The calculation is also done
in section 5.2, but here we do it explicitly rather than by employing the ADM mass.

First, note that the regulated region bounded by the branes is −F1(r) < τ < F2(r)
with 0 < r < Λ and Fi(r) = F (r;Ti, τi) (see (3.17)). The outward-pointing unit normal
vectors of the branes are

n1a = −Ω−1 ∂a(τ + F1(r)), n2a = Ω−1 ∂a(τ − F2(r)), (E.1)
49Specifically, this covers the conical defect for the case of strip branes. In the case of disk branes, the

defect does not intersect each slice (D ∩ Σ = ∅) and is actually described by the horizon H.
50Recall that the Einstein tensor is Gab = Rab − 1

2Rgab.
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τ = τ0 ττ = τ0τ = τ0
τ

φ

na2

na1 T1

T2

Figure 23. Two non-intersecting disk branes with tensions T1 and T2 embedded in conical
AdS3 (3.14). They respectively have outward-pointing unit normal vectors na

1 and na
2 .

where Ω is a normalization factor. Explicitly,

n1a =
(
−
√
fα(r)− T 2

1 r
2,

T1r

fα(r) , 0
)
, n2a =

(√
fα(r)− T 2

2 r
2,

T2r

fα(r) , 0
)
. (E.2)

The regularized Einstein-Hilbert part of the total action is

IM = 4π
κ

∫ Λ

0
r [F1(r) + F2(r)]

= 2π
κ

Λ2 [F1(Λ) + F2(Λ)]− 2π
κ

∫ Λ

0
dr r2 [F ′1(r) + F ′2(r)], (E.3)

where we have integrated by parts. The brane term in the action is

IQ1 + IQ2 = 2π
κ

∫ Λ

0
dr (r2 + α2) [F ′1(r) + F ′2(r)], (E.4)

where we have used
√
hi = −fα(r)F ′i (r)/Ti and Ki = 2Ti. Summing (E.3) and (E.4), we

get

IM + IQ1 + IQ2

= 2π
κ

Λ2 [F1(Λ) + F2(Λ)] + 2πα2

κ

∫ Λ

0
dr [F ′1(r) + F ′2(r)]

= 2π
κ

(Λ2 + α2) [F1(Λ) + F2(Λ)]− 2πα2

κ

[
τ1 + τ2 + 1

α
(Tanh−1 T1 + Tanh−1 T2)

]
, (E.5)

where we have evaluated the integral explicitly. The last step is to add the Gibbons-
Hawking-York and Hayward terms associated with the cutoff surface BΛ defined as r = Λ.
To do so, note that the outward-pointing unit normal vector field of the cutoff surface is

ra = 1√
fα(Λ)

(0, 1, 0), (E.6)

and the trace of the extrinsic curvature is

K = 2fα(Λ) + Λf ′α(Λ)
2Λ
√
fα(Λ)

. (E.7)
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Noting that √γ = Λ
√
fα(Λ), the Gibbons-Hawking-York term at the conformal boundary

becomes
IBΛ = −2π

κ
(2Λ2 + α2) [F1(Λ) + F2(Λ)] (E.8)

By computing the inner products of (E.2) and (E.6), we compute the intersection angles
appearing in the Hayward terms as:

ΘΛ
1 = Cos−1

(
T1Λ√
fα(Λ)

)
, ΘΛ

2 = Cos−1
(

T2Λ√
fα(Λ)

)
. (E.9)

The corner terms are thus

IBΛ∩Q1 + IBΛ∩Q2 = −2π
κ

Λ
[
Cos−1

(
T1Λ√

Λ2 + α2

)
+ Cos−1

(
T2Λ√

Λ2 + α2

)]
. (E.10)

So, summing everything together and expanding around large Λ, the total regularized
action is

IM + IQ1 + IQ2 + IBΛ∩Q1 + IBΛ∩Q2 + IBΛ

= −2π
κ

[
(τ1 + τ2) Λ2 +

(
Cos−1T1 + Cos−1T2 + T1√

1− T 2
1

+ T2√
1− T 2

2

)
Λ

+α2 (τ1 + τ2) + α (Tanh−1 T1 + Tanh−1 T2) +O
( 1

Λ

)] (E.11)

To cancel the divergences, we add the following counterterms at the cutoff boundary and
corners:

Ict = a1
κ

∫
BΛ

√
γ+ b1

κ

∫
BΛ∩Q1

√
σ1 + b2

κ

∫
BΛ∩Q2

√
σ2 (E.12)

= 2π
κ

[
a1 (τ1 +τ2)Λ2 +

(
b1 +b2 + a1T1√

1−T 2
1

+ a1T2√
1−T 2

2

)
Λ+ 1

2 a1α
2 (τ1 +τ2)+O

( 1
Λ

)]
,

The divergences are cancelled by setting

a1 = 1, b1 = Cos−1T1, b2 = Cos−1T2, (E.13)

and the renormalized on-shell action is

Irenon-shell = −2π
κ

[1
2 α

2 (τ1 + τ2) + α (Tanh−1 T1 + Tanh−1 T2)
]
, (E.14)

which agrees with the result (5.20) of the computation in the main text.
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