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Risk stratification is central to disease prevention1,2. Over the 
past decade, increasingly complex information on an indi-
vidual’s phenotype has become available beyond conventional 

demographic and laboratory information. While blood metabolites 
such as cholesterols are established clinical predictors for cardio-
vascular disease risk3, many more have been linked to common 
disease phenotypes4–8. In recent years, studies have moved beyond 
associations of individual markers by linking metabolomic profiles 
to aging9, disease onset10 and mortality11, appreciating the human 
blood metabolome as a direct reflection of the physiological state.

Proton nuclear magnetic resonance (1H-NMR) spectroscopy 
enables a standardized assessment of a multitude of small circulat-
ing molecules in the blood simultaneously. NMR differs from other 
techniques in metabolomics, such as mass spectrometry, by its vir-
tual absence of batch effects, minimal requirements of expensive 
reagents and high throughput at comparatively low cost12. In the 
current assay >150 original markers are quantified, including amino 
and fatty acids and metabolites related to carbohydrate metabolism 
and fluid balance, partly overlapping with conventional clinical pre-
dictors including glucose, albumin and creatinine13–15. Further, the 

Metabolomic profiles predict individual 
multidisease outcomes
Thore Buergel   1,24, Jakob Steinfeldt2,24, Greg Ruyoga1, Maik Pietzner3,4, Daniele Bizzarri   5,6, 
Dina Vojinovic7,8, Julius Upmeier zu Belzen   1, Lukas Loock1, Paul Kittner1, Lara Christmann1, 
Noah Hollmann   1, Henrik Strangalies1, Jana M. Braunger1, Benjamin Wild   1, Scott T. Chiesa   9, 
Joachim Spranger   10,11, Fabian Klostermann12,13, Erik B. van den Akker   5,6,14, Stella Trompet   15,16, 
Simon P. Mooijaart15, Naveed Sattar   17, J. Wouter Jukema   16,18, Birgit Lavrijssen7,19, Maryam Kavousi7, 
Mohsen Ghanbari   7, Mohammad A. Ikram   7, Eline Slagboom5,20, Mika Kivimaki   21,22, 
Claudia Langenberg3,4, John Deanfield9,25, Roland Eils   1,23,25 ✉ and Ulf Landmesser   2,25

Risk stratification is critical for the early identification of high-risk individuals and disease prevention. Here we explored the 
potential of nuclear magnetic resonance (NMR) spectroscopy-derived metabolomic profiles to inform on multidisease risk 
beyond conventional clinical predictors for the onset of 24 common conditions, including metabolic, vascular, respiratory, mus-
culoskeletal and neurological diseases and cancers. Specifically, we trained a neural network to learn disease-specific metabo-
lomic states from 168 circulating metabolic markers measured in 117,981 participants with ~1.4 million person-years of follow-up 
from the UK Biobank and validated the model in four independent cohorts. We found metabolomic states to be associated with 
incident event rates in all the investigated conditions, except breast cancer. For 10-year outcome prediction for 15 endpoints, 
with and without established metabolic contribution, a combination of age and sex and the metabolomic state equaled or out-
performed established predictors. Moreover, metabolomic state added predictive information over comprehensive clinical vari-
ables for eight common diseases, including type 2 diabetes, dementia and heart failure. Decision curve analyses showed that 
predictive improvements translated into clinical utility for a wide range of potential decision thresholds. Taken together, our 
study demonstrates both the potential and limitations of NMR-derived metabolomic profiles as a multidisease assay to inform 
on the risk of many common diseases simultaneously.
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assay has a high resolution of lipoprotein particles, measuring their 
components, sizes and concentrations13,14. This high-throughput 
NMR metabolomics platform has been explored in multiple studies 
investigating all-cause mortality11,16, cardiovascular disease13,17, type 2 
diabetes (T2D)18,19, Alzheimer’s disease8 and COVID-19 (ref. 20).  
Importantly, recent work has indicated a broad metabolic basis 
across diseases, suggesting a shared etiology21. This systemic infor-
mation contained in metabolomic profiles has been insufficiently 
considered in the risk prediction of common diseases.

Here we exploited the potential of NMR-based blood profiling as 
a single-domain assay to simultaneously predict multidisease onset. 
We developed, trained and validated a deep residual multitask 
neural network to simultaneously learn disease-specific metabo-
lomic states for 24 conditions, including common metabolic, vas-
cular, respiratory, musculoskeletal and neurological disorders and 
cancers (Fig. 1). The scalar metabolomic states, contained in a 
24-dimensional vector, were derived from 168 circulating metabo-
lomic markers measured in ~120.000 individuals in the UK Biobank 
population cohort22. We extensively investigated the learned metab-
olomic states by integrating them in Cox proportional hazard (CPH) 
models23, modeling the risk for individual endpoints and demon-
strating that information gained through NMR metabolomic profil-
ing is additive to known clinical predictors. Moreover, we externally 
validated the metabolomic states in four independent cohorts, the 
Whitehall II cohort24, the Rotterdam Study25, the Leiden Longevity 
Study26 and the PROspective Study of Pravastatin in the Elderly at 
Risk27 (Fig. 1c), and investigated their clinical utility.

Results
Study population and the metabolomic state model. Based on the 
UK Biobank cohort22,28, we derived an integrated metabolomic state 
capturing information on incident disease risk in a general popula-
tion sample (Fig. 1a,b). We extracted clinical predictors and disease 
endpoints for 117,981 individuals with serum NMR profiling at the 
time of cohort recruitment (Methods and Supplementary Tables 
1–3). The study population had a median age of 58 years (interquar-
tile range (IQR) 50, 63), of whom 54.2% were female, 11% current 
smokers and 5.2% diagnosed with T2D (Table 1). Median body mass 
index (BMI) was 26.8 (IQR 24.2, 29.9), systolic blood pressure was 
136 mmHg (IQR 124, 149), total cholesterol was 5.65 mmol l–1 (IQR 
4.90, 6.42) and glucose was 4.93 mmol l–1 (IQR 4.60, 5.32). Median 
follow-up was 12.2 years with ~1,435,340 overall person-years. To 
maximize the generalizability and transferability of our results, we 
partitioned the data spatially by the 22 recruitment centers. For each 
center, all individuals from a single center were retained for testing of 
models that were trained on individuals pooled from the 21 remain-
ing recruitment centers and then randomly split into training and 
validation sets to develop the models. After model selection on the 
validation datasets and obtaining the selected models’ final predic-
tions on the individual test sets, test set predictions were aggregated 
for downstream analysis (Fig. 1b).

We externally validated disease-specific metabolomic states in 
four independent cohorts analyzed with the same 1H-NMR metab-
olomics assay, the Whitehall II cohort24, and three independent 
cohorts of the BBMRI-NL consortium (Fig. 1c). The Whitehall II 
cohort24 is an ongoing prospective cohort study, including metab-
olomics for 6,197 participants aged 44–69 years. The Rotterdam 
Study is a prospective, population-based cohort study among indi-
viduals living in the Ommoord district in the city of Rotterdam (the 
Netherlands)25, offering metabolomics for 2,949 participants with a 
median age of 74 years (IQR 70–79). The Leiden Longevity PAROFF 
Study (LLS)26 comprises offspring and spouses of long-lived indi-
viduals, with metabolomics available for 1,655 individuals with a 
mean age of 59 years (IQR 54–63). Finally, the PROspective Study 
of Pravastatin in the Elderly at Risk (PROSPER) is a clinical trial 
investigating pravastatin effects27, of which 960 samples with a 

median age of 76 years (IQR 73–78) are included in the BBMRI-NL 
platform. Detailed characteristics of the four replication cohorts are 
presented in Supplementary Data and Supplementary Table 4.

The metabolomic state model is a multitask residual neural net-
work trained on the entire set of 168 original metabolomic mark-
ers to model the integrative metabolomic state for all 24 endpoints 
simultaneously (Fig. 1b, Extended Data Fig. 1 and Metabolomic 
state model). This allowed us to leverage the shared metabolite 
profiles while retaining flexibility in fitting endpoint-specific varia-
tions, outperforming endpoint-specific linear models and linear 
models on principal components (Extended Data Fig. 2).

To test whether multidisease states could be equally informa-
tive from readily accessible information from study participants 
at baseline, we investigated three different scenarios with increas-
ingly comprehensive predictor sets. First, we considered age and 
sex only, both highly predictive for common diseases and avail-
able at no cost. Second, we investigated cardiovascular predictors 
from well-validated primary prevention scores, the American Heart 
Association (ASCVD)3, which are easily accessible at minimal cost 
and are predictive beyond cardiovascular disease, including neu-
rological and neoplastic conditions29–31. Third, we extended these 
predictors with a comprehensive set of clinical predictors beyond 
what is typically available in primary care. These included >30 pre-
dictors with information on lifestyle factors, physical measurements 
and laboratory values, as well as further validated disease-specific 
predictors from FINDRISC32 (T2D) and CAIDE33 (dementia) scores 
(Fig. 1d and Supplementary Table 2).

Metabolomic state stratifies the risk of disease onset. A critical 
component of prevention is identification of individuals at high risk 
of developing a disease, often at an early subclinical stage. To inves-
tigate whether the NMR-derived metabolomic state informs disease 
risk, we assessed the link with incident event rates in the observa-
tion period (Fig. 2a). To allow comparison between the endpoints 
despite the large differences in event rates (Supplementary Table 7;  
for example, Parkinson’s disease, 0.6%; major adverse cardiac event 
(MACE), 8.7%), we also calculated the observed event rate ratio 
between individuals in the top and bottom 10% of metabolomic 
states (Fig. 2 and Supplementary Table 7) with 95% confidence 
intervals (CIs).

We observed increasing event rates over metabolomic state per-
centiles for all 24 investigated diseases, except breast cancer. For 15 of 
the 24 diseases, the top 10% of the metabolomic state corresponded 
to a rate more than fivefold higher compared with the bottom 10%. 
For conditions such as T2D (top 10%, 21.87%; bottom 10%, 0.36%; 
odds ratio (OR) 61.45, 95% CI 47.00, 86.12), abdominal aortic aneu-
rysm (AAA) (top 10%, 2.46%; bottom 10%, 0.18%; OR 14.1, 95% 
CI 9.93, 24.45) and heart failure (top 10%, 10.80%; bottom 10%, 
0.96%; OR 11.27, 95% CI 9.43, 13.50) the ratio was >10. Ratios for 
most other diseases were lower—for example, cerebral stroke 9.66 
(95% CI 7.64, 12.14), MACE 9.25 (95% CI 8.12, 10.53), atrial fibril-
lation 8.13 (95% CI 6.95, 9.37), all-cause dementia 6.39 (95% CI 
5.40, 8.09) or chronic obstructive pulmonary disease (COPD) 4.98 
(95% CI 4.37, 5.62). In contrast, we observed much smaller ratios 
for some diseases—for example, glaucoma (top 10%, 3.47%; bottom 
10%, 1.57%; OR 2.19, 95% CI 1.91, 2.62) or asthma (top 10%, 5.52%; 
bottom 10%, 2.48%; OR 2.22, 95% CI 2.01, 2.57), thus suggesting 
less information contained in the respective metabolomic states. In 
summary, the disease-specific metabolomic state stratified risk tra-
jectories for all investigated endpoints except breast cancer (Fig. 2b),  
separating the rates of cumulative events most notably for T2D, 
renal disease and heart failure but also, to a much lesser extent, for 
glaucoma or asthma.

Information is shared with clinical predictors. Many clinical pre-
dictors are readily available in primary care and commonly used to 
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Fig. 1 | Study overview. a, To learn metabolomic states from circulating blood metabolites, the eligible UK Biobank population (with NMR blood 
metabolomics and valid consent) was split into training, validation and test sets with 22-fold nested cross-validation based on the assigned UK Biobank 
assessment center. b, For each of the 22 partitions, the metabolomic state model was trained on the 168 metabolomic markers to predict metabolomic risk 
against 24 common disease endpoints. Subsequently, for each endpoint, CPH models were developed on the metabolomic state in combination with sets 
of commonly available clinical predictors to model disease risk. Predictions of the CPH model on the test set were aggregated for downstream analysis. 
c, The metabolomic state model was externally validated in four independent cohorts—the Whitehall II cohort and three from the BBMRI-NL consortium: 
the Rotterdam Study, the Leiden Longevity Study and the PROSPER cohort. d, In this study we consider clinical predictors from scores commonly applied 
in primary prevention. We additionally integrate variables into a comprehensive predictor set (PANEL) to investigate overlapping information with the 
metabolomic state. FH, family history.
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stratify the risk of common diseases such as cardiovascular disease3, 
kidney disease34 or diabetes32. While more complex risk scores have 
been proposed35, the trade-off between the added predictive infor-
mation and resources in time and cost required to collect the new 
data has limited clinical adoption36. We therefore investigated the 
predictive information of the relatively affordable and standardized 
NMR metabolomics assay against common clinical variables in the 
UK Biobank and in four independent validation cohorts.

First, we modeled disease risk for each endpoint in the UK 
Biobank using CPH models for three clinical predictor sets with 
increasing complexity: Age+Sex, highly predictive and available 

ahead of any test; ASCVD, a set of readily available cardiovascular 
predictors; and PANEL, a comprehensive selection of clinical pre-
dictors including in-depth blood measurements (Fig. 1d) exceeding 
those typically available in primary care. For all sets, the perfor-
mance of CPH models was benchmarked against those based on 
the sets’ combinations with the metabolomic state. As quantified 
by Harrell’s C-index, the discriminative performances of all mod-
els at 10 years after baseline are shown in Fig. 3a. Subsequently, 
to validate metabolomic states, we applied the trained metabolo-
mic state model to the external validation cohorts and replicated 
the CPH models with and without metabolomic state addition for 

Table 1 | The study population

Characteristic Male, n = 54,078a Female, n = 63,903a Overall, n = 117,981a

Age at recruitment 58 (50, 64) 57 (50, 63) 58 (50, 63)

Education years 15.00 (11.00, 15.00) 13.00 (11.00, 15.00) 13.00 (11.00, 15.00)

Current smoker 6,724 (12%) 5,747 (9.0%) 12,471 (11%)

Daily alcohol intake 13,651 (25%) 10,191 (16%) 23,842 (20%)

Daily moderate to vigorous physical 
activity

50 (15, 105) 45 (10, 90) 45 (10, 90)

Daily healthy food 52,974 (98%) 63,290 (99%) 116,264 (99%)

Family history of diabetes 8,827 (16%) 11,266 (18%) 20,093 (17%)

T2D 3,882 (7.2%) 2,295 (3.6%) 6,177 (5.2%)

Weight (kg) 84 (76, 94) 69 (62, 79) 76 (66, 88)

Standing height (cm) 176 (171, 180) 162 (158, 167) 168 (162, 175)

BMI 27.3 (25.0, 30.1) 26.1 (23.5, 29.7) 26.8 (24.2, 29.9)

Waist/hip ratio 0.93 (0.89, 0.98) 0.81 (0.77, 0.86) 0.87 (0.80, 0.94)

Waist circumference (cm) 96 (89, 103) 83 (76, 92) 90 (80, 99)

Systolic blood pressure (mmHg) 139 (128, 152) 133 (121, 147) 136 (124, 149)

Total cholesterol (mmol l–1) 5.45 (4.70, 6.21) 5.80 (5.07, 6.58) 5.65 (4.90, 6.42)

LDL cholesterol (mmol l–1) 3.46 (2.87, 4.05) 3.56 (3.00, 4.17) 3.52 (2.94, 4.12)

HDL cholesterol (mmol l–1) 1.24 (1.06, 1.45) 1.55 (1.32, 1.82) 1.40 (1.17, 1.67)

Triglycerides (mmol l–1) 1.69 (1.18, 2.44) 1.33 (0.96, 1.89) 1.48 (1.04, 2.14)

Glucose (mmol l–1) 4.96 (4.61, 5.37) 4.91 (4.59, 5.28) 4.93 (4.60, 5.32)

Glycated hemoglobin (%) 35.3 (32.8, 38.1) 35.2 (32.7, 37.7) 35.2 (32.8, 37.9)

Creatinine (umol l–1) 80 (72, 88) 63 (57, 70) 70 (61, 81)

Cystatin C (mg l–1) 0.92 (0.84, 1.01) 0.86 (0.78, 0.95) 0.88 (0.80, 0.98)

Urea (mmol l–1) 5.45 (4.68, 6.33) 5.10 (4.33, 5.95) 5.26 (4.49, 6.13)

Urate (umol l–1) 350 (305, 399) 264 (225, 309) 303 (250, 361)

Aspartate aminotransferase (U l–1) 26 (23, 31) 23 (20, 27) 24 (21, 29)

Alanine aminotransferase (U l–1) 24 (18, 32) 18 (14, 23) 20 (15, 27)

Alkaline phosphatase (U l–1) 79 (67, 93) 82 (67, 98) 80 (67, 96)

Albumin (g l–1) 45.52 (43.80, 47.24) 44.91 (43.21, 46.63) 45.20 (43.47, 46.93)

C-reactive protein (mg l–1) 1.29 (0.67, 2.55) 1.38 (0.65, 2.95) 1.33 (0.66, 2.76)

Erythrocytes (1012 cells l–1) 4.74 (4.51, 4.98) 4.32 (4.10, 4.54) 4.50 (4.23, 4.79)

Leukocytes (109 cells l–1) 6.68 (5.66, 7.89) 6.61 (5.60, 7.81) 6.64 (5.62, 7.85)

Platelets (109 cells l–1) 234 (202, 269) 261 (226, 301) 248 (214, 287)

Hemoglobin (g dl–1) 15.00 (14.37, 15.64) 13.50 (12.90, 14.10) 14.15 (13.31, 15.02)

Hematocrit (%) 43.3 (41.4, 45.2) 39.2 (37.5, 41.0) 41.0 (38.7, 43.5)

Mean corpuscular volume (fl) 91.4 (88.8, 94.1) 91.1 (88.4, 93.7) 91.2 (88.6, 93.9)

Mean corpuscular hemoglobin (pg) 31.69 (30.70, 32.70) 31.37 (30.33, 32.37) 31.50 (30.50, 32.50)

Mean corpuscular hemoglobin (g dl–1) 34.60 (34.00, 35.22) 34.36 (33.80, 35.00) 34.48 (33.90, 35.10)

Antihypertensives 1,090 (2.0%) 680 (1.1%) 1,770 (1.5%)
aMedian (IQR); n (%)
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the Age+Sex predictor set for all endpoints available. The results 
of the external validation are shown in Extended Data Fig. 3. We 
noted the discriminative performance of the metabolomic state 
to be highly disease dependent: while the metabolomic state 
contained significantly less predictive information than clinical  

predictors for cataract, glaucoma and skin, colon, rectal and pros-
tate cancers, this was not the case for renal disease, liver disease and 
T2D. Here, the metabolomic state contained a greater predictive 
value than Age+Sex and even ASCVD. Generally, we observed an 
increase in discriminative performance with the addition of more 
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comprehensive clinical predictors across all endpoints, and perfor-
mances were stable over different age groups, biological sexes and 
ethnic backgrounds (Extended Data Fig. 4).

To better assess the predictive value of the metabolomic state 
(MET) in comparison with clinical variables, we calculated C-index 
deltas (Fig. 3b–d). We noted that CPH models fit solely on the 
metabolomic state performed competitively or better than Age+Sex 
for ten of the 24 endpoints, including T2D and COPD, but also for 
heart failure, liver disease and renal disease (Fig. 3b). The com-
petitive performance compared with Age+Sex was replicated in 
the validation cohorts for T2D, COPD, heart failure, coronary heart 
disease (CHD) and all-cause dementia (Extended Data Fig. 3 and 
Supplementary Table 10).

Interestingly, CPH models fit on the combination of the metab-
olomic state with Age+Sex (Age+Sex + MET) performed com-
parably to, or better than, the ASCVD predictors for 15 of the 
24 endpoints, including T2D, liver disease, renal disease, heart 
failure, venous thrombosis and dementia (Fig. 3c). While the com-
prehensive PANEL score generally contained the most predictive 
information, surprisingly we observed only modest gains over the 
combination of ASCVD and the metabolomic state, and Age+Sex 
and the metabolomic state (Fig. 3d). Applying the complex metabo-
lomic state model architecture to the predictors of the PANEL, we 
did not observe systematic performance improvements (Extended 
Data Fig. 5).

Discriminative improvements over clinical predictors. In addi-
tion to investigating the shared information, we were interested in 
quantifying the additive predictive value of metabolomic state over 
readily available clinical variables. To understand how the infor-
mation is distributed over the PANEL predictors, we first assessed 
the aggregated coefficients of the CPH model and found that basic 
demographic information, medical history and physical measure-
ments provided the most predictive information over all endpoints 
(Supplementary Table 5). In addition, apart from shared measures 
(for example, glucose, albumin or creatinine), lipids and creatinine/
cystatin c, we did not observe strong correlations (|r| > 0.5) between 
the PANEL predictors and NMR metabolites (Supplementary Table 
6). Therefore, we continued assessment of performance differ-
ences between the CPH models’ fit on clinical predictors and those 
with the added metabolomic state by calculating differences in the 
C-index (Supplementary Table 9).

In the UK Biobank, the metabolomic state significantly added 
predictive information over age and sex for 18 of the 24 endpoints; 
in contrast, endpoints with a comparably low predictive value of the 
metabolomic state, such as Parkinson’s disease, skin cancer, colon 
cancer, rectal cancer, glaucoma and cataract, did not benefit from 
the addition of the metabolomic state. Results from four exter-
nal cohorts independently confirmed significant discriminative 
improvements over Age+Sex for CHD, heart failure, atrial fibrilla-
tion, T2D and COPD (for detailed results and event counts for the 
independent cohorts, see Extended Data Fig. 3a and Supplementary 
Table 10).

Beyond basic demographic predictors, addition of the metabolo-
mic state to cardiovascular predictors further significantly improved 
discriminative performance for 15 of the 24 endpoints (Fig. 3c). 
Even when added to the comprehensive PANEL set, the metabo-
lomic state provided significant additional discriminatory value 
for eight of the 24 endpoints (Fig. 3d) as quantified by C-index, 
including T2D (0.009, 95% CI 0.007, 0.012), dementia (0.005, 95% 
CI 0, 0.009), heart failure (0.005, 95% CI 0.003, 0.007), COPD 
(0.005, 95% CI 0.003, 0.006), renal disease (0.004, 95% CI 0.002, 
0.005), CHD (0.003, 95% CI 0.001, 0.004) and MACE (0.002, 95%  
CI 0, 0.004).

We further sought to understand the potential of the metabolomic 
state in regard to individual risk under consideration of established  

clinical predictors. Therefore, we examined the partial effects and 
hazard ratios (HRs, per s.d. metabolomic state, with 95% CI) of 
the CPH models trained on the combinations of the metabolomic 
state and predictor sets Age+Sex, ASCVD and PANEL (Extended 
Data Fig. 6a) for those 18 endpoints with discrimination benefits 
over the Age+Sex set. We observed a notable separation between 
the top, median and bottom 10% of the metabolomic state in 14 
of the 18 endpoints when adjusted for more comprehensive clini-
cal predictors (for HRs, see Extended Data Fig. 6b). A change of 
1 s.d. in the metabolomic state for T2D resulted in substantially 
adjusted HRs (HRAge+Sex 3.83 (95% CI 3.71–4.01), HRPANEL 2.5 
(95% CI 2.34–2.67)), which were replicated with adjustment for 
Age+Sex in the independent cohorts (Extended Data Fig. 3b). 
Other investigated endpoints, such as all-cause dementia (HRAge+Sex 
1.56 (95% CI 1.54–1.72), HRPANEL 1.46 (95% CI 1.43–1.47)), heart 
failure (HRAge+Sex 1.8 (95% CI 1.74–1.86), HRPANEL 1.45 (95% CI 
1.38–1.52)), COPD (HRAge+Sex 1.56 (95% CI 1.53–1.6), HRPANEL 1.35 
(95% CI 1.31–1.39)) or MACE (HRAge+Sex 1.63 (95% CI 1.58–1.69), 
HRPANEL 1.4 (95% CI 1.33–1.46)), showed less pronounced, yet 
clear, separation of risk trajectories. In regard to T2D, the HRs of 
the metabolomic states were externally validated with adjustment 
for Age+Sex for all-cause dementia, heart failure, atrial fibrillation, 
CHD and COPD (Extended Data Fig. 3b). In contrast, the metabo-
lomic state only marginally modified the risk trajectories for asthma 
(HRAge+Sex 1.37 (95% CI 1.3–1.44), HRPANEL 1.09 (95% CI 1.03–1.16)) 
and cataract (HRAge+Sex 1.22 (95% CI 1.18–1.25), HRPANEL 1.08 (95% 
CI 1.05–1.11)).

Discriminative performance translates to clinical utility. While 
discrimination is critical, the clinical utility of any risk model 
depends on calibration and the choice of adequate thresholds 
for interventions. We found all models well calibrated in the UK 
Biobank Cohort (see Fig. 4a–c and Supplementary Fig. 1 for details 
on all endpoints). UK Biobank37, as one of the largest and most com-
prehensive population cohorts in the world, therefore, allowed us to 
estimate clinical utility with high precision over a wide range of clin-
ically reasonable intervention thresholds. However, adequate clini-
cal decision thresholds directly depend on the benefits and harms of 
interventions and disease prevalence. We therefore calculated deci-
sion curves38 to estimate the benefit of adding metabolomic infor-
mation to a prediction model (see Fig. 4d–i and Supplementary 
Fig. 1 for details on all endpoints). Further, we calculated clini-
cally relevant metrics such as sensitivity, positive predictive value 
and positive likelihood ratio over multiple false-positive rates 
(Supplementary Table 11)39.

Specifically, we investigated the application of the metabolomic 
state in two scenarios. First, as a potentially economical and practi-
cal option, we assessed the combination of the metabolomic state 
with Age+Sex and with the less resource-intensive, non-laboratory 
predictors of the PANEL set. Second, we combined the metabolomic 
state with the entire PANEL set (including all laboratory predictors) 
to assess whether there is a net benefit even beyond comprehensive 
predictors.

Generally we found that discriminative gains (Fig. 3) translated 
to utility gains (see Fig. 4d–i and Supplementary Fig. 1 for details on 
all endpoints). The metabolomic state substantially added to age and 
sex for most endpoints, and additional non-laboratory predictors 
either closed (12 of the 24 endpoints, including T2D, stroke, heart 
failure and lung cancer) or narrowed the gap (an additional four 
of the 24 endpoints, including dementia, atrial fibrillation and renal 
disease) with the comprehensive set of PANEL predictors. The addi-
tion of the metabolomic state to the comprehensive PANEL predic-
tors led to further improvements in the utility for reasonable ranges 
of decision thresholds for 11 of the 24 endpoints (most notably T2D, 
heart failure and, to a lesser extent, dementia; see Supplementary 
Fig. 1 for details on all endpoints and Extended Data Fig. 7 for 
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additional analyses investigating apolipoprotein 4 (APOE4) carrier 
status for dementia). Conversely, where there were no improve-
ments in the discriminatory value, no relevant improvements  

in clinical utility could be found. These observations were further 
reflected in the positive predictive values and positive likelihood 
ratios (Supplementary Table 9).
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Identification of disease-specific metabolite profiles. A require-
ment for the adoption of neural networks in medicine is explain-
ability. While neural networks are not inherently interpretable, 
methods have been developed to overcome this challenge40. To 
identify which metabolites most affect disease risk, we approxi-
mated Shapely additive explanation (SHAP) values41 for all inves-
tigated diseases. Generally, the larger the absolute SHAP value the 
more important a metabolite for an individual prediction. Based on 
the direction of the effect of a metabolite’s contribution, increasing 
or decreasing the predicted risk, SHAP can take a positive or nega-
tive value.

To understand individual metabolites in the context of the 
24 investigated diseases, we investigated global metabolite attribu-
tions, the sum of absolute SHAP values per metabolite and disease 
(Fig. 5a and Extended Data Fig. 8). We found that most high-impact 
metabolites were linked to multiple diseases: plasma levels of metab-
olites with consistently high contribution included the amino acids 
glutamine, glycine and tyrosine, metabolites related to carbohydrate 
metabolism, albumin, the kidney function marker creatinine, glyco-
protein acetylation (GlycA) and the ketone bodies acetone and ace-
toacetate. Further implicated were fatty acids (FA) such as linoleic 
acid (LA) and multiple lipoprotein components, including free cho-
lesterol in very large high-density lipoprotein (VHDL), triglycerides 
in large low-density lipoprotein (LDL), phospholipids in small LDL 
and sphingomyelins. In addition to shared metabolite profiles, we 
pinpointed marked associations of creatinine with AAA, glucose 
with T2D and GlycA with lung cancer and COPD. For diseases 
with a high discriminatory value for metabolomic state, predicted 
metabolite contributions were considerably higher than for diseases 
with little discriminatory metabolomic information (Fig. 5a).

Subsequently we focused on T2D (Fig. 5b) and all-cause dementia 
(Fig. 5c), two diseases with strong metabolomic contributions over 
the comprehensive clinical predictors and indications of clinical util-
ity (see above). Metabolites related to carbohydrate metabolism, such 
as glucose and lactate, dominated the predicted metabolomic state 
of T2D in our model (Fig. 5b). In line with earlier findings5,19,42, we 
observed contributions of amino acids, ketone bodies, lipids and FAs 
as well as creatinine and albumin. We confirmed that higher plasma 
levels of FAs, docosahexaenoic acid (DHA) and LA were associated 
with lower risk43,44. Further, we observed a distinct contribution 
of lipid content across the whole density gradient of lipoproteins, 
including a high triglyceride content in LDL and IDL or free cho-
lesterol content in very small very-low-density lipoprotein (VLDL) 
and HDL. For all-cause dementia, we identified creatinine, albumin 
and the amino acids glutamine, leucine and tyrosine as predominant 
contributors to predicted risk (Fig. 5c). In line with earlier findings8,45, 
we observed a notable role of FAs such as LA and monounsaturated 
and saturated FAs, as well as a protective effect of branched-chain 
amino acids (BCAAs). Our results further implicate associations 
of glucose, ketone bodies acetate, acetoacetate and acetone, and 
beta-hydroxybutyrate. Finally we found several lipoproteins to be 
associated, most notably free cholesterol in very large HDL and cho-
lesterylester in extremely large VLDL. Comprehensive data for all 
investigated endpoints, including the most important metabolites 
and disease-specific attribution profiles, can be found in Extended 
Data Fig. 8, Supplementary Table 12 and Supplementary Fig. 2).

Computation of SHAP values also allowed us to derive individ-
ual risk attribution profiles for individual participants and diseases, 
informing on the impact of single metabolites on a given prediction. 
We visualize the attribution profiles for T2D in two-dimensional 
uniform manifold approximation and projection (UMAP)46 space 
(Extended Data Fig. 9), which is resolved by the estimated impor-
tance of glucose (that is, SHAP values assigned to glucose regard-
ing the predicted risk for T2D; Extended Data Fig. 9a). While most 
high-risk individuals (top 1% metabolomic state) are located at 
coordinates with strong glucose attribution, we found high-risk 

individuals scattered over the entire attribution space (Extended 
Data Fig. 9b). Interestingly, the attribution profiles of high-risk 
individuals were not consistently dominated by glucose but rather 
by, for instance, low levels of albumin, LA, DHA, histidine and gly-
cine (Extended Data Fig. 9c). This observation is further reflected in 
NMR metabolite concentrations, because we found substantial dif-
ferences in the concentrations of glucose, LA, FAs and triglycerides 
when comparing the metabolite distributions of individuals in the 
area with the strongest glucose attribution with those of individu-
als in two spatially distinct, high-risk UMAP areas (Extended Data 
Fig. 10).

Discussion
The assessment of risk is a critical component of disease prevention. 
However, comprehensive risk assessment often requires the care-
ful acquisition of predictors, one disease at a time. Thus, for each 
disease-specific risk score, the resources (time and cost) required for 
the collection can severely limit adoption and utility47. Interestingly, 
many common diseases involve metabolic alterations and human 
blood metabolomic patterns contain rich systemic information on 
the underlying physiology9–11,20,21. While individual metabolites have 
long been linked to disease risk, systemic information from blood 
metabolomics could inform on multiple diseases simultaneously. 
Importantly, in recent years, assays such as 1H-NMR spectroscopy 
have matured and allowed the assessment of serum metabolite 
information robustly at comparatively low cost13,14. However, the 
potential of metabolomic profile as a single-domain, multidisease 
assay in primary care has not been investigated thus far.

We have assessed the potential of NMR-derived metabolo-
mic profiles as a tool for individualized prediction of onset across 
24 common diseases. With >1.4 million person-years of follow-up, 
we leveraged the systemic information in metabolomic profiles to 
derive integrative metabolomic states for many diseases simultane-
ously. We found the metabolomic states to be predictive for all but 
one of the investigated diseases and externally validated these find-
ings in four independent cohorts for available endpoints. Further, 
we investigated the predictive value beyond clinical variables and 
identified a subset of endpoints with potential clinical utility. 
Finally, we examined metabolite attributions confirming a multi-
tude of disease-associated metabolites and a shared metabolomic 
background of common diseases.

Importantly, we found that the predictive information of the 
metabolomic state matched established clinical variables for many of 
the investigated endpoints. In line with previous reports on NMR–
metabolite associations, we confirm that metabolomic profiles are 
highly predictive for, for example, T2D19, dementia8 and cardiovas-
cular diseases6,11,17 such as CHD and heart failure48. Generally, the 
additional predictive information decreased over comprehensive 
clinical predictors, indicating that substantial parts of the metabo-
lomic state’s discriminatory information are shared with established 
clinical predictors. However, for multiple endpoints, including 
T2D, all-cause dementia and heart failure, the metabolomic state 
contained complementary information that added predictive value 
even over comprehensive laboratory measurements. These findings 
largely translate into potential clinical utility for NMR-based metab-
olomic profiling, both as a replacement for comprehensive labora-
tory examinations and as an additional source of discriminatory 
information to refine comprehensive risk assessments for multiple 
diseases simultaneously.

Calculation of attributions for each individual allowed us to 
assess how differences in the metabolomic profile affect disease 
risk. We confirmed the role of metabolites such as albumin and 
creatinine, which have previously been associated with all-cause 
and disease-specific mortality11,16 and are already part of routine 
care49,50. Further, we confirmed the role of LA, tyrosine, glycine 
and cholesterylesters in extremely large VLDL in multiple diseases, 
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further supporting metabolomic multidisease-spanning informa-
tion21. Dissecting disease-specific attribution profiles, we found 
that metabolite attributions reflect metabolite–disease associa-
tions previously reported in the literature. In the case of T2D, we 
confirmed the associations between disease risk and metabolites 
beyond glucose. Specifically, our model captured the positive asso-
ciation between high levels of glycoprotein acetyls, BCAAs, lactate 
and FAs (both monounsaturated and saturated) and the protective 
role of metabolites such as LA or glycine5,19. In the attribution pro-
file of dementia we replicated associations with BCAAs, including 
leucine and valine, and with FAs, most notably LA8,45. In addition, 
the associations of GlycAs with cardiovascular disease, T2D, COPD 
and lung cancer51,52 are reflected in the attributions. Consequently, 
our metabolomic state model learns systemic information in 
NMR-derived metabolomic profiles based on established shared 
and highly specific metabolite–disease associations.

In our perspective, 1H-NMR metabolomics profiling is an attrac-
tive candidate for a single-domain, multidisease assay. Because many 
countries already recommend regular check-ups entailing blood 
tests in the prevention of selected common diseases53, our results 
indicate the potential of NMR metabolomic profiling in combina-
tion with simple demographic, but also with comprehensive labora-
tory predictors to estimate disease risk. In addition, metabolomic 
risk profiles could be of potential value in the guidance of pharma-
cological and lifestyle interventions. This is especially relevant for 
diseases such as T2D, where interventions on modifiable risk factors 
have been shown to delay disease onset54 and prevent subsequent 
comorbidities55,56. Similarly, the Lancet 2020 commission suggested 
that up to 40% of worldwide dementia may be preventable by inter-
ventions on modifiable risk factors57. This is particularly compelling 
because today’s pharmacological treatment options for dementia are 
scarce. However, the efficacy of various lifestyle interventions58,59 is 
disputed, calling for further experimental investigation.

Before application in routine care, substantial challenges 
remain. While the 1H-NMR assay is robust and cheaper than 
mass-spectrometry-based alternatives, sensitivity is lower. Also, cur-
rent metabolite coverage is relatively narrow and lipid focused13,14,60. 
Although a future expansion of metabolite coverage is expected, it 
presents a limitation for clinical utility to date. Further, downstream 
quantification from raw NMR spectra needs to be harmonized for 
the reliable application of multivariable prediction models. While 
our study population is more healthy and less deprived than the 
general UK population37, the results of external validation in four 
independent cohorts indicate general transferability of metabolo-
mic states. However, the scope of validation was limited by the avail-
able endpoint information, constraining the replication to a subset 
of seven endpoints. In light of these limitations, we recommend 
careful scrutinization before application of the metabolomic state 
model beyond the validated conditions or in specific populations 
outside the research context. Ultimately, a broad rollout of NMR 
metabolomics for clinical care requires multiple logistical questions 
to be addressed, including both sample processing and transport.

Taken together, our work demonstrates the potential and limita-
tions of NMR-derived metabolomic profiles as a multidisease assay 
to inform on the risk of many common diseases simultaneously.
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Methods
Data source and endpoint definition. We use data from the UK Biobank cohort, 
a sample of the UK’s general population. Participants were enrolled from 2006 
to 2010 in 22 recruitment centers across the United Kingdom; the follow-up is 
ongoing. The UK Biobank provides NMR metabolomics measured at recruitment 
for a subset of individuals: 63,903 women and 54,078 men aged 37–73 years at the 
time of baseline assessment.

Details on the characteristics of the external validation cohorts are provided in 
Whitehall II Cohort, Rotterdam Study, Leiden Longevity Study and PROspective 
Study of Pravastatin in the Elderly at Risk. We investigated a set of 24 endpoints, 
each defined by the earliest occurrence in primary care, hospital episode statistics 
or death records. Endpoints were adapted from an earlier study21 and defined 
by ICD10 codes (Supplementary Table 1), and patients with previous disease 
were excluded for each endpoint. In the case of cardiovascular endpoints we also 
excluded patients with lipid-lowering therapy records. In addition, we analyzed 
only men or only women for predominantly sex-specific diseases such as prostate 
and breast cancer.

The study adhered to the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) statement for reporting61. 
The complete checklist can be found in Supplementary Note 1.

Predictor selection and extraction. We investigated three sets of clinical predictor 
sets—Age+Sex, ASCVD and PANEL. An overview of the predictors and their 
use in the respective covariate sets is presented in Fig. 1d. The NMR assay covers 
168 metabolites, from multiple amino acids to lipids, lipoproteins, cholesterol 
subtypes and inflammation markers. While the NMR assay further includes 
81 percentage ratios derived from combinations of the 168 original measures, 
these were not included in the analysis. Basic demographic information was 
extracted from primary care records and matched with data collected at the study’s 
recruitment interview. Lifestyle information was extracted from the questionnaire 
completed at recruitment. Physical measurements and laboratory measures 
were taken at recruitment. Pre-existing medical conditions were extracted from 
the questionnaire, interview at recruitment, primary care records and hospital 
episode statistics. Medications were extracted from the recruitment interview. 
Cardiovascular predictors were selected based on ESC- and AHA-recommended 
cardiovascular risk scores for primary prevention, the AHA–ASCVD score3 and 
the ESC–SCORE2 (ref. 62). For the PANEL predictor set we included additional 
predictors from CAIDE33 and FINDRISC32 scores and comprehensive information 
on lifestyle, demographics, physical measurements and laboratory values available 
in the primary care setting. Because genotyping is currently not commonly 
available in primary care, we decided to omit the APOE4 status in the primary 
analysis. A dedicated analysis, including APOE4 carrier status for all-cause 
dementia, can be found in Extended Data Fig. 6. A list of all clinical predictors 
applied in this study is presented in Supplementary Table 2 and a list of all 
metabolomic predictors in Supplementary Table 3.

Dataset partitions and imputation. For model development and testing, we 
split the dataset into 22 spatially separated partitions based on the location of 
the assessment center at recruitment as previously established63. We analyzed 
the data in 22-fold nested cross-validation, setting aside one of the spatially 
separated partitions as a test set, aggregating the remaining partitions and 
randomly selecting 10% of the aggregated data for the validation set. Within 
each of the 22 cross-validation loops, the individual test set (that is, the spatially 
separated partition) remained untouched throughout model development and the 
validation set was used to validate the fitting progress and checkpoint selection. All 
22 obtained models were then evaluated on their respective test sets. We assumed 
that missing data occurred at random and performed multiple imputations using 
chained equations with random forests64. Continuous variables were standardized; 
Categorical variables were one-hot encoded. Imputation models were fitted on the 
training sets and applied to the respective validation and test sets.

Metabolomic state model. The metabolomic state model is a residual 
neural network simultaneously predicting the metabolomic state for each 
of the 24 endpoints. The model consists of a shared network and smaller 
endpoint-specific head networks. The shared neural network comprises three 
fully connected linear layers, each with batch normalization, dropout65 of 0.3 and 
sigmoid-weighted linear units (SiLU)66 activations with 256, 256 and 512 nodes. It 
outputs a representation of size 512, which is passed on to the endpoint-specific 
residual head networks. Thereby, each of the 24 residual head networks takes 
two inputs: the shared representation learned by the shared network and the 
original 168 metabolomic markers. Each residual head network consists of a small 
256-, 128- or 32-node multilayer perceptron (MLP) with a dropout of 0.6, batch 
normalization and SiLU activations that transform the shared representation, 
and a skip-connection67 network of 128, 128 and 32 nodes transforming the 
168 metabolomic markers. The outputs of both networks are subsequently 
added in a skip-connection and fed through another two-layer, fully connected 
network of 128 and 128 nodes with a dropout of 0.6, batch normalization and 
SiLU activations before the scalar metabolomic state is computed through a final 
single-output linear layer with identity activation. For each endpoint, and thus for 

each metabolomic state, we individually calculate an adapted proportional hazards 
loss68, excluding prevalent events endpoint specifically. The individual losses are 
averaged and then summed to derive the final loss of the metabolomic state model. 
After architecture development, a hyperparameter search is run on training and 
validation splits of partition zero as random search over a constrained parameter 
space tuning batch size, initial learning rate, number of nodes in the layers of the 
endpoint heads and size of the output vector of the shared network. The final 
models are trained with batch size 1,024 for a maximum of 100 epochs using the 
Adam optimizer69 with default parameters, stochastic weight averaging, a learning 
rate of 0.001 and early stopping tracking of the performance on each partition’s 
validation set. We further apply a multistep learning rate schedule with gamma 
0.1 and steps at 20, 30 and 40 epochs. We implement the metabolomic state model 
model in Python v.3.7 using PyTorch v.1.7 (ref. 70) and PyTorch-lightning v.1.4.

Survival analysis and metabolomic state integration. We fitted CPH models23 
to derive risk predictions for the individual endpoints. Specifically, for each 
endpoint we developed models on seven distinct covariate sets: first, only the 
learned metabolomic state; second, the three clinical predictor sets age and sex, 
cardiovascular predictors and the comprehensive PANEL (Table 1, Fig. 1d and 
Predictor selection and extraction); and third, clinical predictors with the added 
metabolomic states for the respective endpoint. Model development was repeated 
independently for each assessment center and thus, for each cross-validation 
split, models were trained on the respective training set and checkpoints for the 
metabolomic state model were selected on the respective validation set. For the final 
evaluation, predictions made on the respective test sets were aggregated. Harrell’s 
C-index was calculated with the Python package lifelines71 by bootstrapping both 
the aggregated test set and individual assessment centers. Statistical inferences about 
model differences were based on the distribution of bootstrapped differences in 
the C-index; performances were considered significantly different when the 95% 
CIs of the performance deltas did not overlap with 0. CPH models were fitted with 
CoxPHFitter from the Python package lifelines71, with default parameters and 
step size of 0.5 and 0.1 to facilitate model convergence. To estimate risk trajectory 
based on the metabolomic state, partial metabolomics effects were calculated using 
a custom adaptation of lifelines CoxPHFitter’s plot_partial_effects_on_outcome 
method, fixing all other predictors to their central values. CIs for all statistical 
analyses were calculated with >1,000 bootstrapping iterations. All statistical analyses 
were performed in R v.4.0.2 (ref. 72).

Feature attribution estimates. SHAP values41,73 were calculated to estimate 
feature attribution for each endpoint and model individually. SHAP values are a 
combination of game-theoretically optimal Shapley values, which determine the 
estimated average marginal contribution of each feature for a prediction with local 
additivity41,73. Because computation time of exact SHAP values grows exponentially 
with an increasing number of features, we resort to an approximation of SHAP 
values: DeepSHAP, an adaptation of the DeepLIFT74 method. Importantly, the sum 
of the approximated SHAP values amounts to the difference between the expected 
model prediction on a given set of background samples and the prediction for an 
observed sample. Calculations were performed using the DeepExplainer method 
implemented in v.0.39 of the SHAP package75. After calculation of per-sample 
attributions for each metabolite and endpoint, attributions were aggregated per 
endpoint to derive a global metabolite-specific set of attributions. We identified 
important attributes based on the top and bottom 1% percentile borders of the 
SHAP value distribution over all attributions.

Individual metabolite attribution profiles. Computation of SHAP values 
(Feature attribution estimates) enabled the derivation of attribution profiles for 
each individual and disease, informing on the specific contribution of metabolites 
to individual risk. Individual high-impact metabolites were defined by the 
top and bottom 1% percentiles of the metabolite SHAP distribution (that is, 
SHAP ∉ (−0.2,0.2)). To assess the space of individual attribution profiles, UMAP46 
for dimension reduction was fitted on the entire set of SHAP values for each 
endpoint individually. The UMAP projection allows assessment of the complex, 
high-dimensional manifold of attribution values in two-dimensional space. 
UMAPs were fitted using the UMAP Python package76 and default parameters. For 
visualization of UMAP space, 41 unconnected outliers of 117,981 total observations 
were excluded.

Replication in independent cohorts. The models fitted in the UK Biobank were 
exported via ONNX77, and calculation of metabolomic states was replicated in 
the Whitehall II Cohort24, the Rotterdam Study25, the Leiden Longevity Study26 
and the PROspective Study of Pravastatin in the Elderly at Risk27,78 (Fig. 1c and 
Supplementary Table 4). In consideration of available predictors and endpoints, 
CPH models were fitted and evaluated as described in Survival analysis and 
metabolomic state integration. The ONNX weights of the model, as well as the 
normalization pipeline for the NMR data as fitted on the UK Biobank, are available 
through our GitHub repository (Code availability).

Whitehall II Cohort. The Whitehall II Cohort (WHII) is an ongoing prospective 
cohort study of adults, consisting of 10,308 individuals (3,413 women and 
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6,895 men) recruited at age 35–55 years24. At the time of recruitment (1985–1988), 
all study participants were working in the London offices of 20 Whitehall 
departments. Participants have been followed up regularly over the years, with 
questionnaires and self-examination conducted every 5 years. NMR profiling was 
performed from serum samples between 1997 and 1999.

Rotterdam Study. The Rotterdam Study (RS) is a prospective, population-based 
cohort study25 with the aim of determining the occurrence of common diseases 
in elderly people. Baseline examination took place in 1990, with approximately 
7,983 persons aged 55 years and older undergoing a home interview and extensive 
physical examination. Follow-up visits took place every 3–4 years (RS-I)25. The 
study was later extended to two stages and contained 14,926 subjects as of 2008. 
Written informed consent was obtained from all participants, and the Medical 
Ethics Committee of the Erasmus Medical Center, Rotterdam, approved the 
study25. Metabolomics measurements were quantified in fasted EDTA plasma 
samples using the Nightingale Health platform. We included all 2,949 samples with 
complete baseline covariates and NMR metabolomics that were available in the 
BBMRI-NL platform.

Leiden Longevity Study. The Leiden Longevity Study (LLS) consists of 
421 long-lived families of European descent. Families were included if at least 
two long-lived siblings were alive and fulfilled the age criterion of 89 years or 
older for males and 91 years or older for females, representing <0.5% of the 
Dutch population in 2001 (ref. 26). In total, 944 long-lived proband siblings 
(mean age 94 years, range 89–104), 1,671 offspring (mean age 61 years, range 
39–81) and 744 spouses thereof (mean age 60 years, range 36–79) were included. 
Registry-based follow-up until 27 October 2016 was available for all participants. 
Metabolites were successfully quantified in 843 nonagenarians, 1,157 of their 
offspring and 684 controls using nonfasted EDTA plasma samples. We included 
all 1,655 samples of the offspring and spouse population with complete baseline 
covariates and NMR metabolomics available in the BBMRI-NL platform.

PROspective Study of Pravastatin in the Elderly at Risk. The PROspective 
Study of Pravastatin in the Elderly at Risk (PROSPER) trial is a double-blind, 
randomized, placebo-controlled trial investigating the benefit of pravastatin 
(40 mg d–1) in elderly individuals at risk of CVD27,78. In total, 5,804 participants 
(70–82 years) were identified in the primary care setting between December 1997 
and May 1999 from three centers: Glasgow (UK) Cork (Ireland) and Leiden (the 
Netherlands). The mean follow-up period was 3.2 years. All included patients 
either had evidence of vascular disease (physician-diagnosed stable angina, stroke, 
transient ischemic attack or myocardial infarction) or high risk of vascular disease 
as determined by hypertension, diabetes or smoking status. Fasting venous blood 
samples were collected at baseline and at 3-month intervals and stored at −80 °C. 
For the present study, all individuals recruited at the Leiden recruitment center 
and with NMR metabolomics data available through the BBMRI-NL consortium 
(in total, 960 individuals) were included, employing the study as a cohort 
study. NMR metabolomics was quantified from previously unthawed 6-month 
postrandomization samples.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
UK Biobank data, including NMR metabolomics, are publicly available to bona fide 
researchers upon application at http://www.ukbiobank.ac.uk/using-the-resource/. 
Detailed information on predictors and endpoints used in this study is presented 
in Supplementary Tables 1–3. WHII data are available for the scientific 
community, and researchers are invited to apply for data access at https://www.
dementiasplatform.uk/. Data from the BBMRI-NL consortium are available upon 
application at https://www.bbmri.nl/Omics-metabolomics.

Code availability
All code developed and used throughout this study has been made open source and 
is available on GitHub. The code used to train the metabolomic state model can 
be found at github.com/thbuerg/MetabolomicsCommonDiseases, while the code 
used to run analysis on trained models can be found at github.com/JakobSteinfeldt/
MetabolomicsCommonDiseases.
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Extended Data Fig. 1 | Details of the metabolomic state model. a) Overview of the residual architecture of the metabolomic state model. 168 circulating 
metabolomic markers are fed to the shared trunk network to learn a common shared representation. Endpoint-specific head networks then predict the 
metabolomic state for each endpoint from the shared representation and the input using a residual connection. b) Details of the residual head network. 
The model architecture is described in detail in (Methods Section ‘Metabolomic state model’).
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Extended Data Fig. 2 | The metabolomic state model outperforms linear baselines on NMR-derived metabolite profiles, and NMR-derived metabolite 
profiles are more predictive than PANEL metabolites. a) Displayed are C-indices for the Cox Proportional Hazards models trained on the metabolomic 
state (MET), the 168 metabolites (CPH) as well as on the first ten components of a PCA-reduction of the 168 metabolites (PCA) for each of the 24 
investigated endpoints. The metabolomic state performs comparably or better than both the CPH and PCA models for all endpoints, except prostate 
cancer. b) Displayed are C-indices for Cox Proportional Hazards models trained on Age+Sex (Age+Sex), the metabolomic states derived from NMR 
metabolomics (MET(NMR)), the metabolomic states derived from the PANEL metabolites (MET(PANEL)) and combinations of Age+Sex and the 
metabolomic states respectively. NMR profiles provide predictive information comparable or superior to the PANEL metabolites for all investigated 
endpoints, also reflected in the predictive performance over the Age+Sex covariates. The MET(PANEL) set included albumin, cholesterol, HDL and 
LDL cholesterol, triglycerides, glucose, and creatinine. Statistical measures were derived from n = 117.981 individuals. Individuals with prior events were 
excluded (Supplementary Table 1). Data are presented as median (center of error bar) and 95% CI (line of error bar) determined by bootstrapping over 
1000 iterations. PAD - Peripheral Artery Disease, AAA - Abdominal Aortic Aneurysm, COPD - Chronic Obstructive Pulmonary Disease.
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Extended Data Fig. 3 | External validation in four independent cohorts. a) Displayed are discriminative performances described by the C-index for 
UK Biobank and the four external validation cohorts, Whitehall II (WHII), Rotterdam Study (RS), Leiden Longevity Study (LLS), and the PROSPER trial 
(PROSPER). CPH models were trained on the metabolomic state model (MET) as fitted on UK Biobank and applied to each cohort, as well as on Age+Sex 
and Age+Sex+MET. The metabolomic state is predictive in the replication cohorts for all assessed endpoints. Dots indicate the median performance, while 
whiskers indicate the 95% confidence interval (CI) determined by bootstrapping over 1000 iterations. b) Age+Sex adjusted hazard ratios (HRs) for the 
metabolomic state in all five cohorts. A unit standard deviation increase in the metabolomic state corresponds to an HR increase in predicted risk. Statistical 
measures were derived from n = 6.117 (Whitehall II), n = 2949 (Rotterdam Study), n = 1655 (Leiden Longevity Study), and n = 960 (PROSPER) individuals as 
indicated. Data are presented as median (center of error bar) and 95% CI (line of error bar) determined by bootstrapping over 1000 iterations.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | The discriminative performance is largely comparable over multiple subgroups. Discriminative performance is stratified by 
endpoint, age at recruitment, biological sex, and self-reported ethnic background. As the concordance index is only reliable if a sufficient number of events 
are recorded, subgroups with < 100 events were excluded. The number of events and eligible individuals is indicated at the top of each panel. Data are 
presented as median (center of error bar) and 95% CI (line of error bar) determined by bootstrapping with 1000 iterations.
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Extended Data Fig. 5 | Comparison of the predictive performance of the PANEL predictors in a Cox proportional hazard model and the neural 
network. Comparison of discriminative performances of the CPH models and Metabolomic State Model (MSM) trained on the PANEL covariates. 
The discriminative performance of the PANEL predictors is either similar or can be further improved by modeling with the same architecture as the 
metabolomic state model for most (non-cancer) endpoints. Statistical measures were derived from n = 117.981 individuals. Individuals with prior events 
were excluded (Supplementary Table 1). Data are presented as median (center of error bar) and 95% CI (line of error bar) determined by bootstrapping 
with 1000 iterations.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Adjusted effect of the metabolomic state is endpoint dependent. a) Adjusted trajectories representing the partial cumulative risk 
dependent on the metabolomic state over time for the endpoints where the metabolomic state added information to the Age+Sex baseline (see Fig. 3b) 
for the bottom (light blue), median (blue), and top (dark blue) 10% metabolomic state quantiles. The shaded area indicates the 95% confidence interval 
as estimated by bootstrapping over 1000 iterations. b) Adjusted hazard ratios (HRs) for the metabolomic state in combination with the three clinical 
predictor sets. A unit standard deviation increase in the metabolomic state corresponds to an HR increase in predicted risk. Statistical measures were 
derived from n = 117.981 individuals. Individuals with prior events were excluded (Supplementary Table 1). Data are presented as median (center of error 
bar) and 95% CI (line of error bar) determined by bootstrapping with 1000 iterations.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles Nature Medicine

-0.02 0.00 0.02
∆ C-Index

PANEL PANEL+APOE4

5 10 5 10

0.5

1

1.5

2

Time [Years]

A
dj

us
te

d 
P

ar
tia

l T
ra

je
ct

or
ie

s 
[%

]

0.5 1.0 1.5 2.0
Adjusted Hazard Ratio / SD(Metabolomic State)

0

25

50

75

100

0 2.5 5 7.5 10
Threshold Probability [%]

S
ta

nd
ar

di
ze

d 
N

et
 B

en
ef

it 
[%

]

b

a

c

d

PANEL+APOE4

PANEL+APOE4+MET

Net Benefit of MET
addition to PANEL

Net Benefit of MET
addition to PANEL+APOE4

Median 10% Bottom 10%

Metabolomic State Quantile

Top 10%

PANEL

PANEL+MET

PANEL+APOE4

PANEL+APOE4+MET

HRPANEL+MET:        1.46 (1.43, 1.58)

HRPANEL+APOE4+MET: 1.43 (1.41, 1.54)

PANEL

PANEL+MET

Extended Data Fig. 7 | The metabolomic state contains independent predictive information over the APOE4 carrier status for all-cause 
dementia. a) Displayed are C-index deltas between the CPH model trained on the PANEL + APOE4 predictor set, its metabolomic state addition 
(PANEL + APOE4 + MET), and CPH models trained on the PANEL set and its respective metabolomic state addition (PANEL + MET). The metabolomic 
state adds predictive information over the PANEL + APOE4. b) Partial trajectory for MET deciles (Top, Median, Bottom 10%) adjusted for PANEL and 
PANEL + APOE4, respectively. c) Hazard Ratio for the Metabolomic State adjusted for the predictors of the PANEL and PANEL + APOE4. d) Decision 
curve analysis for PANEL/PANEL + MET and PANEL + APOE4/PANEL + APOE4 + MET. The areas in between the solid and dotted lines indicate added net 
benefits resulting from metabolomic state addition to PANEL (gray lines, red area) and PANEL + APOE4 (black lines, violet area), respectively. Adding 
MET to PANEL improves net population benefit between the 2–8% decision threshold. In the case of PANEL + APOE4, MET addition improves utility at 
thresholds between 5–10%. Statistical measures were derived from n = 117.245 individuals without dementia at recruitment. Data are presented as median 
(center of error bar) and 95% CI (line of error bar) determined by bootstrapping with 1000 iterations.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Global metabolite importances for each metabolite and endpoint. Heatmap of the metabolite importances, represented by 
absolute global SHAP value estimates per endpoint for the 168 circulating metabolites. The endpoints are sorted by the discriminative performance of the 
metabolomic state (left to right, see Fig. 3a). MACE - Major Adverse Cardiac Events, CHD - Coronary Heart Disease, PAD - Peripheral Artery Disease, 
AAA - Abdominal Aortic Aneurysm, COPD - Chronic Obstructive Pulmonary Disease.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Individual attribution profiles diverge for high-risk individuals in T2D. The UMAP projection allows an assessment of the 
complex, high-dimensional manifold of attribution values in 2-dimensional space. For visualization, 41 unconnected outliers of 117981 total observations 
were excluded. a) UMAP of the SHAP value metabolite attributions for T2D for the entire study population colored by each individual’s metabolomic 
state. b) The same UMAP colored by the Glucose SHAP value. c) Displays individual attribution profiles for three high-risk (metabolomic state > 10, top 
1% metabolomic state percentile) individuals, indicated by the letters A, B, C in the central UMAP. The three individual attribution profiles are dominated 
by different metabolites. The scale bar represents a unit in the UMAP space. The individual attribution profiles are set up equivalently to Figure 6: Each 
point in an individual attribution profile indicates one metabolite; the position, size, and color of the point indicate the magnitude and direction of the 
attributed contribution to predicted risk. The green and red circles represent the bounds of the top and bottom percentile of the global SHAP distribution, 
respectively, indicating outliers in the SHAP global distribution.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Metabolites differ throughout the attribution space. Displayed are distributions for all measured metabolites (n = 168) stratified 
by the region (A, B, and C) in the attribution space, defined by the UMAP of the attributions for T2D (see Extended Data Figure 9c). Regions were defined 
by including all samples with an euclidean distance < 1 to the centroid A, B, and C, respectively; a Euclidean distance of 1 is indicated by the scale bar 
(see Extended Data Figure 9c). The distributions differ notably for metabolites, including glucose, fatty acids (that is LA and Omega-6), and multiple 
lipoprotein components (that is VLDL cholesterol and very large HDL triglycerides).
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