
Master’s thesis

Master’s Programme in Computer Science

Comparison of Two Open Source Feature
Stores for Explainable Machine Learning

Tintti Rahikainen

February 12, 2023

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Tintti Rahikainen

Comparison of Two Open Source Feature Stores for Explainable Machine Learning

D.Sc. Mikko Raatikainen, D.Sc. Saku Suuriniemi

Master’s thesis February 12, 2023 34 pages

MLOps, feature stores

Helsinki University Library

Software study track

Machine learning operations (MLOps) tools and practices help us continuously develop and de-
ploy machine learning models as part of larger software systems. Explainable machine learning
can support MLOps, and vice versa. The results of machine learning models are dependent
on the data and features the models use, so understanding the features is important when we
want to explain the decisions of the model.

In this thesis, we aim to understand how feature stores can be used to help understand the
features used by machine learning models. We compared two existing open source feature
stores, Feast and Hopsworks, from an explainability point of view to explore how they can be
used for explainable machine learning.

We were able to use both Feast and Hopsworks to aid us in understanding the features we
extracted from two different datasets. The feature stores have significant differences, Hopsworks
being a part of a larger MLOps platform, and having more extensive functionalities.

Feature stores provide useful tools for discovering and understanding the features for machine
learning models. Hopsworks can help us understand the whole lineage of the data – where
it comes from and how it has been transformed – while Feast focuses on serving the features
consistently to models and needs complementing services to be as useful from an explainability
point of view.

ACM Computing Classification System (CCS)
Software and its engineering → Software notations and tools → Software maintenance tools
Software and its engineering → Software notations and tools → Software libraries and reposi-
tories

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background 4
2.1 Explainable AI (XAI) . 4
2.2 Feature store . 7

3 Research method 11

4 Overview of the selected feature stores 14
4.1 Feast . 14
4.2 Hopsworks . 16
4.3 Summary . 17

5 Results 19
5.1 Feast . 19
5.2 Hopsworks . 21
5.3 Comparison . 25

6 Discussion 29

7 Conclusions 31

Bibliography 32

1 Introduction

Machine learning systems are systems that include machine learning models as a part
of larger software systems. Those software systems often rely on DevOps practices for
continuous delivery. As with developing traditional software and using DevOps (ISO,
2022) to continuously deliver the software, machine learning operations (MLOps) has
been developed to answer the specific needs of machine learning systems in addition to
the practices used in DevOps (John et al., 2021). Machine learning systems accumulate
technical debt much like traditional software systems, but with additional machine learning
specific problems that exist at the system level rather than code. For example, when the
data inputted into a machine learning model has underutilised dependencies – input signals
that are of little or no importance to the model. They can make the model more vulnerable
to change and could be removed with no damage to the model performance (Sculley et al.,
2015). This system-level technical debt can be hard to detect and lead to machine learning
systems being expensive and difficult to maintain (Sculley et al., 2015). MLOps tools and
practices can help detect and pay off this machine learning specific technical debt.

Organisations can be divided into three categories based on their machine learning matu-
rity: data-centric, model-centric, and pipeline-centric (Mäkinen et al., 2021). Data-centric
organisations are focused on how to manage and utilise data, and model-centric organisa-
tions on building and deploying their first model. Pipeline-centric organisations already
have business-critical models in production, and they are focused on scaling and continu-
ous development and maintaining the quality of the existing models. With organisations
having increasing data and machine learning model maturity, continuously improving and
redeploying models becomes relevant. MLOps is the automation of the steps needed to
develop and deploy machine learning models, and with the continuous delivery of machine
learning systems, it becomes more and more important.

Explainable artificial intelligence (XAI) is a field that has been growing recently due
to the transparency and trust concerns about artificial intelligence (Adadi and Berrada,
2018). It is an interdisciplinary field striving to create methods to explain the decisions
of systems using artificial intelligence, and the data driving those decisions. Many of the
recent advances in artificial intelligence are in the field of machine learning, and machine
learning systems have become increasingly common in our society, but especially deep

2 CHAPTER 1. INTRODUCTION

learning algorithms can be opaque in their functioning. For example, the recent language
model GPT-3, which uses deep learning, uses 175 billion learning parameters (Floridi and
Chiriatti, 2020) – far more than a human can reasonably keep track of. Explainability
increases trust in machine learning systems by making them easier to control and improve,
and making the decisions the system makes justifiable. XAI also aims not to lose the
accuracy of the sophisticated machine learning systems while enabling trust and control
of them.

While explainability and increasing trust in a machine learning system can be a goal in
itself, it can also be a tool that helps us with continuous improvement and deployment of
models. Explainability can give us insight into how to maintain and improve our models.
Monitoring the data and decisions the model makes helps us discover bugs and broken
integrations.

A central concept in machine learning systems is features, which are the input data for a
machine learning model. Raw data is rarely inputted directly into the model, but features
for the model are extracted from the data by transforming it, for example by scaling the
values or combining different variables. The data used by machine learning models – both
for training and inference – is an important aspect of explainable machine learning. The
explanations of the machine learning systems’ reasoning depend on the features the system
relies on.

Feature stores can help us trace the features back to original data even after transforma-
tions – making the explanations easier to understand – and give us more insight into the
features and data the model uses. A feature store is a system for transforming, storing
and serving feature data for machine learning models. Feature stores were developed to
manage and standardise the workflow in an end-to-end machine learning pipeline (Orr
et al., 2021). A machine learning pipeline consists of ingesting the training data, training
and deploying the models, and maintaining and monitoring them. Feature stores also
store metadata of the features. Metadata can be any additional data about the data that
is not included in the dataset, such as the creator of the dataset, descriptions of features,
or the units that are used for different values.

In this thesis project, we studied how existing feature stores can help with explainable
machine learning – how feature stores can be used to explain the features used by machine
learning models and the data behind them. We chose two open source feature stores, Feast
and Hopsworks, and compared using them in practice to explain different aspects of the
features. We formulated the following research question:

3

How can feature stores help explain the features used for machine learning
models?

We found that feature stores can be used to help understand feature data in many ways.
Definitions and other metadata for features can be used to relay information to multiple
teams working on the same data. Features can be traced back to the raw data they were
extracted from and their use in different machine learning models can be tracked. Feature
stores can be used to validate and monitor the feature data.

Concerning the tools, Feast is a more minimal tool for creating a separate data layer for
the features, while Hopsworks provides more functionalities for understanding the features
and data behind them. Hopsworks feature store can be used to serve different versions
of the features, and run transformation functions on the features while automatically
keeping track of the transformations. Hopsworks automatically computes statistics on the
features, and an external library for validating features can be integrated into both Feast
and Hopsworks.

This thesis is organised as follows: Chapter 2 introduces the concepts of explainability and
feature stores in general. Chapter 3 goes into the methods used in this thesis. Chapter 4
introduces the tools used in the comparison, Feast and Hopsworks. The results of testing
and comparing the feature stores are presented in Chapter 5. Chapter 6 discusses the
results, and the conclusions are summarised in Chapter 7.

2 Background

2.1 Explainable AI (XAI)

Many recent advances in artificial intelligence are due to machine learning and especially
deep learning models. These models are often very opaque and might make even important
decisions in our lives, therefore the field of explainable artificial intelligence (XAI) has
gained popularity (Adadi and Berrada, 2018).

There is no clear, all-encompassing definition for explainable AI. XAI refers to a range
of techniques with the goal of making artificial intelligence more transparent. There are
numerous terms related to and even used synonymously with explainability – such as
interpretability, understandability and comprehensibility (Adadi and Berrada, 2018). XAI
is used in various different domains, like transportation, military, healthcare, law, and
finance – anywhere where AI makes decisions or predictions of profound human impact
and it is important to know the grounds for them.

Adadi and Berrada (Adadi and Berrada, 2018) identify two organisations as the most
prominent in XAI research: Fairness, Accountability, and Transparency in Machine Learn-
ing (FAT), and the Defense Advanced Research Projects Agency (DARPA). FAT has de-
veloped the "Principles for Accountable Algorithms" that define explainability as ensuring
that "algorithmic decisions as well as any data driving those decisions can be explained
to end-users and other stakeholders in non-technical terms" (Diakopoulos et al., 2016).
DARPA’s XAI program was launched in May 2017, and was organised into three research
areas: developing new XAI machine learning and explanation techniques, understanding
the psychology of explanation, and evaluating the new XAI techniques (Gunning et al.,
2021). They define explainable AI as "AI systems that can explain their rationale to a
human user, characterize their strengths and weaknesses, and convey an understanding
of how they will behave in the future." (Gunning and Aha, 2019) In their XAI program
DARPA also found that even though there was a tension between learning performance
and explainability, explainability can also improve performance, as producing explanations
encouraged systems to learn more effective representations of the world (Gunning et al.,
2021).

2.1. EXPLAINABLE AI (XAI) 5

Based on the survey papers by Adadi and Berrada (Adadi and Berrada, 2018), and
Guidotti et al. (Guidotti et al., 2018) there are multiple motivations for explainable in AI
systems, and multiple ways to categorise and characterise different explainability methods.

The need for explainable AI can be divided into four reasons: justification, control, im-
provement, and discovery (Adadi and Berrada, 2018). When explaining to justify the goal
is to explain the reasoning or justification behind a certain decision an AI system has made,
rather than the decision-making process of the system in general. Other than for justifying
the decisions of AI models, explainability can also be used for finding vulnerabilities and
debugging (explaining for control). Explainability can also make continuously improving
models easier. Understanding how a model comes to a specific conclusion might also give
us new insight into the problem we are solving, or the data we are using. Explaining
models to justify their decisions, enabling control over them and continuously improving
them increases the trust in the systems using these models.

Adadi and Berrada classify different methods used to explain machine learning models by
three criteria: complexity, scope, and dependency on the model. These are described in the
following paragraphs.

The classic approach to explainability is making the machine learning models themselves
explainable on their own, that is, making them less complex. These kinds of models
include for example linear models, decision trees, and rules-based systems. A common
challenge in this approach is the tradeoff between model accuracy and interpretability.
For example, the listed models are only explainable when they are reasonably sized for
a human to understand (Guidotti et al., 2018). Another approach is to make a complex
black-box machine learning model and create a method for coming up with the explanation
afterwards. There are also methods that modify the internal structure of a complex
machine learning method to make it more interpretable (Adadi and Berrada, 2018).

The scope of the explanation can either be local or global. Local methods explain the
reasons for specific decisions or predictions made by the machine learning model, and
global methods aim to explain the underlying logic of the entire model, explaining the
reasoning behind every possible outcome.

Model specific methods are dependent on the machine learning model and are only used
to explain the model they were developed for. Model agnostic methods on the other hand
can explain the reasoning of different kinds of machine learning models. An example of
a model agnostic, local explanation method for a black-box machine learning model is
LIME (Ribeiro et al., 2016). It learns an approximate interpretable model locally around

6 CHAPTER 2. BACKGROUND

a prediction and discovers which features were important for that prediction.

Guidotti et al. identify three dimensions of interpretability: scope, time limitation, and
the nature of user experience (Guidotti et al., 2018). The scope can be global or local, as
explained above. Time limitation means how much time the user has to understand the
explanation – do they need a simple explanation that is easy to grasp or a more detailed
explanation that requires more time to understand. The nature of user experience is
also important when considering what kind of explanation a user needs. A data scientist
debugging their model needs a different kind of transparency to the model’s reasoning
than for example a domain expert using the model to make decisions.

Data is crucial for the predictions of machine learning models, as datasets fundamentally
influence the models’ behaviour. Even when a model works as intended, using bad data
to train a model can recreate and even amplify the problems in the data. An example of
biased data amplifying societal problems is predictive policing – using statistical predic-
tions to prevent and solve crime (Perry et al., 2013). Police records used to train machine
learning models for predictive policing are biased, since areas where there is more police
presence are over-represented in the data, and the predictive models end up increasing the
number of police officers in already over-policed areas (Lum and Isaac, 2016).

Explainability for data used in machine learning is important so that we can find and
recognise these biases. Many of the methods for data explainability centre around the
documentation of datasets. Datasheets for datasets contain questions for the creator of
the dataset grouped into motivation, composition, collection process, data processing,
uses, distribution, and maintenance (Gebru et al., 2021). The workflow for creating the
datasheet is intended to be manual and to encourage the creator of the dataset to reflect
on the data while creating, distributing and maintaining the dataset. Data statements are
a documentation practice developed for data used in natural language processing (Bender
and Friedman, 2018). Data cards were developed to complement long-form and domain-
specific documentation practices like datasheets and data statements (Pushkarna et al.,
2022).

In summary, XAI is a set of techniques and practices that aim to make AI systems more
transparent. Modern machine learning systems can have billions of learning parameters
and be very non-transparent. Explainability makes machine learning systems easier to
control and improve, and decisions based on their predictions justifiable. Different explain-
ability methods can be based on making the models less complex or creating a method
for making explanations for black-box models. They can be functional with only a certain

2.2. FEATURE STORE 7

type of model, or be model agnostic and able to explain any model’s predictions. When
making explanations, there are different dimensions to consider – the scope of the expla-
nation, the time that the user has for interpreting the explanation, and the nature of the
user’s experience. Data is a crucial part of machine learning systems, and explaining the
data used for the machine learning models is vital for both understanding the functioning
of the model and recognising problems in the data itself.

2.2 Feature store

Feature stores are tools used for transforming, storing, serving, and monitoring features
for machine learning models (Orr et al., 2021). They run transformations on raw data
ingested from batch or streaming sources to create features to serve models. The features
are stored in the feature store, which serves as a central repository of features that can be
reused across teams. Features can be published in the feature store with a description and
other metadata that helps find and use them in different teams across an organisation.
Feature stores also consistently serve features for model training and inference, and support
monitoring the data for, e.g., data skew.

The functions of a feature store are depicted in Figure 2.1. Data is ingested from either
a streaming or batch source, and transformed, stored and monitored in the feature store.
Data scientists can define features, and search and discover existing features from the
feature store. They can fetch training datasets from the feature store to train their models
with. For deployed models making real-time predictions, the feature store works as a
feature server from which the feature vectors used for predictions can be fetched.

The first industrial feature store was developed at Uber in 2017 (Hermann and Del Balso,
2017) as a part of Uber’s machine learning platform Michelangelo. Since then there has
been a number of different feature stores developed.

The industrial machine learning pipeline has three steps (Orr et al., 2021):

1. Cleaning, checking, and extracting features from training data acquired from possibly
multiple sources.

2. Training and deploying models using the features extracted from data

3. Monitoring and maintaining the deployed models

Each of the steps has challenges that feature stores can help with.

8 CHAPTER 2. BACKGROUND

Figure 2.1: A feature store can be used to transform, store, serve, and monitor feature data. It enables
the search and discovery of features across teams, and consistently serves features for model training and
inference. (Del Balso, 2020).

Concerning training data, data is often, if not always, transformed in some ways before
inputting it into the machine learning model to improve the model performance – this
is called feature engineering. A common transformation for example is standard scaling,
where the features are transformed to have zero mean and unit variance. Especially in a
large organisation with data scientists working on multiple problems using the same data
can lead to duplicated work when they need to do similar feature engineering tasks on the
data. This can also lead to a lack of consistency in feature definitions (Orr et al., 2021).
Feature stores provide a centralised repository of reusable features that are accessible to all
data scientists, which reduces duplicate work. Raw data can be messy and especially if the
features are combined from multiple sources it can be difficult to tell what certain columns
actually mean. Feature stores include a data catalogue, or a central registry, where all
data scientists can find features with standardised definitions and metadata (Del Balso,
2020).

Concerning training and deploying models, feature stores often consist of online and of-
fline data storage for storing data for model training and inference. The offline storage
is for training the model, and the online storage is for serving features for the deployed
model. The deployed machine learning models need to be served features for their predic-

2.2. FEATURE STORE 9

tions, and for the real-time serving of features the same transformations need to be done
to new data as were done to the training data. Differences in the transformations can
cause training-serving skew – a difference in the performance of the model in training and
production (Bogner et al., 2021).

Concerning monitoring and maintaining models, feature stores can calculate metrics on the
features they serve, and help detect issues in the data. Feature stores can also be used to
track and monitor operational metrics by logging for example feature availability, capacity,
staleness, throughput, latency, error rates, etc. (Del Balso, 2020) The data might come
from multiple different integrated systems, and the more integrations there are the more
probable is that some of the integrations break. Monitoring the ingested data and features
can help discover these broken integrations. If the data or features change, for example
when a bug in data ingestion or transformation is found and fixed, it might be challenging
to communicate the changes to all the data scientists using the data. As a feature store
provides a centralised data catalogue as a single source of truth for the features, it makes
communicating these changes easier. Training-serving skew can be easily monitored by
comparing the features in the feature store’s online storage to the training features in the
offline storage.

Often there might be a need to analyse historical data. In feature stores, data can be
timestamped and versioned, so it is possible to analyse the model’s behaviour as it was, e.g.,
30 days ago. Versioning allows the user to create and store different versions of the data
and retrieve the different versions as needed. Versioning of code, data and environments,
and provenance information makes reproducing the execution of specific machine learning
pipelines possible – and also makes it possible to tell whether the current setup will provide
similar results to the original (Ormenisan et al., 2020).

Data lineage connects the features to the original data and tells us how the data has been
transformed to result in the features we have. If we are trying to explain the reasoning or
results of the machine learning model, the features themselves might not give good insight
– for example, a standardised value can be nothing like the original value and can seem
like nonsense to a human.

Existing tools make feature stores more accessible to organisations. It takes an organi-
sation with quite advanced data maturity to recognise or even have the need for feature
stores or other more advanced data infrastructure. Existing tools make it easier and less
expensive to adopt new practices and infrastructure for data.

In summary, the essential functionalities of a feature store are the transformation, storage,

10 CHAPTER 2. BACKGROUND

serving and monitoring of feature data for machine learning models. Consistent transfor-
mations for training and serving data help prevent performance differences in training
models and inference in production, and keeping track of the transformations helps under-
stand the features. Feature stores work as a registry for finding different features. Feature
definitions and other metadata help understand the features’ meanings and give visibility
to why the features were created and by whom. Feature stores also store the information
on which data sources the features are from, and help trace the features to correct data
sources when multiple data sources are combined to create sets of features. Versioning
the feature data gives visibility to models using modified versions of the features. Fea-
ture stores enable the monitoring of stored features to discover problems such as broken
integrations or training-serving skew.

3 Research method

In this thesis we tested two feature stores to explore how they can be used to help explain
the features used for machine learning models, as explaining the features can help with
any of the objectives of explainability: controlling, improving and justification of machine
learning models and their predictions. Based on Chapter 2 we chose seven functionalities
of feature stores to explore how they can help with explainability:

1. Feature definitions. How can we have more visibility into what the features stored
actually mean? (→ Storage)

2. Standardised metadata. When multiple teams are working together on the same
data, how can we ensure the features have all the necessary metadata available with
them? (→ Storage)

3. Tracking transformations. How can we find the original values of transformed
features? (→ Transformation)

4. Combining multiple data sources. How can we tell which data source is a feature
from when using multiple data sources for features? (→ Serving)

5. Tracking feature use. In the case of, e.g., sensitive data, how can we track which
models are using certain data? (→ Serving)

6. Feature versioning. When features are used across teams, how can we ensure the
correct version of the features is used? (→ Serving)

7. Data validation and monitoring. How can we validate and monitor the data, so
possible problems with it are noticed? (→ Monitoring)

The feature stores compared in this thesis are Feast (Feast, 2022) and Hopsworks (Logical
Clocks, 2022). We chose these feature stores because they are open source tools that are
readily available for anyone to use. Both support a number of different cloud platforms
for storing data, as well as on-premise storage. They also represent different approaches
to feature stores. Feast is a very lightweight stand-alone feature store, and the Hopsworks

12 CHAPTER 3. RESEARCH METHOD

feature store is part of a larger MLOps platform. Feast and Hopsworks are introduced in
more detail in Chapter 4.

We carried out analysis as follows. We read the documentation of both tools to familiarise
ourselves with the tools, and to get an understanding of what the tools can be used for
and how. We installed Feast version 0.26.0 and Hopsworks version 3.0 on a laptop running
macOS 12.6 and tested them in practice.

We used two different datasets to test the feature stores: a dataset of spectral data on
stars (Ku, 2020), hereafter "Star dataset", and a time series dataset on environmental
sensor telemetry data (Stafford, 2020), hereafter "Sensor dataset". For the purposes of
this thesis, the data was stored locally as csv and parquet files. We divided the Sensor
dataset into two separate datasets to test combining datasets in the feature stores. Each
dataset had different sensor readings, as well as the timestamp of the reading and the
sensor name to use for combining the data later. Figure 3.1 shows a sample of the split
Sensor dataset.

Figure 3.1: Sample of the Sensor dataset split into two dataframes.

Testing Feast. Feast requires the features ingested to have timestamps, so we generated
dummy timestamps for each row in the Star dataset. When using a file as offline storage
instead of a data warehouse or data lake, Feast only supports parquet files, so the original
csv file was also converted to a parquet file.

We defined the features and feature views for the Star dataset and different feature services
for testing feature retrieval. We retrieved the feature data for training sets using the feature
services and saved them as datasets. We tested the data validation for historical features
with the data validation tool Great Expectations (Great Expectations, 2023) with simple
validation rules.

The Sensor dataset already had timestamps so generating them was not necessary, but

13

we converted the original csv files to parquet. We defined feature views for both parts of
the Sensor dataset, and an entity based on the sensor name to be used for combining the
separate feature views into a single feature service.

Testing Hopsworks. We used the Hopsworks serverless platform for testing the feature
store, so we did not have to set up the infrastructure for the data. Hopsworks requires
feature groups to have a primary key, so those were added for the Star dataset since it had
no unique identifier for each star. We generated a sequence of integers for the primary
keys.

We created the feature group for the Star dataset and ingested the data from the csv file to
Hopsworks with the Hopsworks feature store Python API. We added a standard scaler as
a transformation for some of the features in the Star dataset and created training datasets
with the feature views and transformations in Hopsworks.

The Sensor dataset also needed a unique primary key for each of the samples, so we
generated a sequence of integers for the primary keys applied before the dataset was split
into two and ingested into Hopsworks. We ingested the Sensor dataset into two separate
feature groups and combined them into a single feature view.

4 Overview of the selected feature stores

For the comparison for this thesis, we chose two open source feature stores: Feast (Feast,
2022) and Hopsworks (Logical Clocks, 2022). The version and licence of the tools tested,
and platforms supported for hosting the tools and data are presented in Table 4.1.

Table 4.1: Feature stores included in the comparison.

Feature store Feast Hopsworks
Version 0.26.0 3.0
Licence Apache License 2.0 AGPL-3.0
Supported platforms On-Prem, AWS, GCP,

Azure (alpha)
On-Prem, AWS, GCP,
Azure

URL https://feast.dev/ https://www.hopsworks.ai/

4.1 Feast

Figure 4.1: Features are ingested into Feast from stream or batch sources. Features are managed in
Feast, and served as online features for real-time inference as well as offline features for model training
and batch scoring. (Feast, 2022).

Feast is a minimal open source feature store. It was originally developed by Gojek and
Google Cloud to help maintain and serve features across multiple teams. Feast was open
sourced in 2018, and is now governed by The Linux Foundation (Sell and Pienaar, 2019).

4.1. FEAST 15

A Feast project defines a namespace that is isolated from other projects so that the user
can not retrieve features from multiple projects with a single call. It is recommended that
a single project and feature store is used for each environment – such as the development,
staging, and production environment (Feast, 2022). In a project, the user can define
feature views that contain the features. For example, the features in the Star dataset form
a single feature view. The features can relate to entities, for example, a single sensor that
has given multiple readings over a period of time, as seen in Figure 4.2. Entities are used
for retrieving features, by providing an entity key to fetch the features related to that
entity. Features have data sources that can be for example a parquet file or a table in a
database. For retrieving the features, feature services can be used to represent a group of
features from one or more feature views.

Figure 4.2: Features in Feast can relate to entities, such as an individual sensor in the sensor
dataset. (Adapted from Feast, 2022).

Feast is developed primarily to support timestamped tabular data, and it expects all
data to be timestamped. For data that does not have timestamps, they need to be
generated. Data can be ingested from batch or stream sources. Batch sources include data
warehouses and data lakes. Feast does not have native integrations for streaming sources,
but streaming data can be ingested either by pushing data into Feast or directly from
Kafka or Kinesis, although direct ingestion is still an experimental functionality.

The flow of the feature data in Feast is depicted in Figure 4.1. Feature data is ingested
from stream or batch sources and transformed. Feast manages the features and stores the
feature definitions. Features are served using the feature services, either as offline features
for model training and batch scoring – making a larger batch of inference on the data –

16 CHAPTER 4. OVERVIEW OF THE SELECTED FEATURE STORES

or online features for real-time inference.

Feast configuration is written declaratively as code in a feature repository. The feature
repository consists of Python files containing the feature declarations, an infrastructural
configuration file for the project, and a .feastignore file if the feature repository needs to
ignore certain paths. The Feast CLI then uses the feature repository to configure, deploy,
and manage the feature store (Feast, 2022). Feast also has a web UI that allows users to
browse data sources, feature views, entities and feature services. The web UI is still an
experimental functionality of Feast.

4.2 Hopsworks

Figure 4.3: Features are ingested into Hopsworks as feature groups, stored in the Hopsworks feature
store, and served as feature views via either the offline or online API. (Logical Clocks, 2022).

The Hopsworks Feature Store was the first open source feature store developed, and it is
part of a larger MLOps platform. The feature store can be also used separately from the
more general MLOps platform. Hopsworks was first developed at KTH Royal Institute
of Technology as a part of a research platform and later by Logical Clocks, which was
founded by a group of researchers at KTH (Dowling, 2018).

The features in Hopsworks Feature Store are organised into feature groups that are tables
of features with a primary key and optionally a timestamp and partition key. The partition
key can be used to efficiently query features from the feature store and accessed via an
API (Logical Clocks, 2022).

The feature groups are stored either in an online or offline store. The online store only

4.3. SUMMARY 17

stores the latest values of the feature group, while the offline store stores the historical
data. Typically the online data is used for real-time serving for models, and offline data
for creating training data for models and making predictions in batches (Logical Clocks,
2022). Feature groups can be stored in Hopsworks or externally as external feature groups
that are accessed through a connector API.

Retrieving features in Hopsworks is done through feature views. A feature view consists
of features from one or more feature groups, and user-defined transformation functions
written in Python that are applied to individual features. Multiple feature groups can be
combined into a single feature view by querying the feature groups and joining the queries
on any join key specified. Hopsworks queries support inner, outer, left, and right joins.

Figure 4.3 presents an overview of the flow of the feature data in Hopsworks. Features are
ingested into feature groups and stored in the Hopsworks feature store. They are served
using the feature views as either offline features for model training and batch scoring or
online feature vectors for real-time inference.

4.3 Summary

Table 4.2 summarises the main differences between Feast and Hopsworks. Feast is a min-
imal, standalone feature store, and Hopsworks is a larger MLOps platform that includes
a feature store that can also be used separately. With Feast, all the feature data is stored
externally, and Feast provides a separate data layer for managing and serving feature data.
Hopsworks provides the infrastructure to store the feature data, although features can also
be stored externally.

Feast and Hopsworks have some differing requirements for the data – Feast requires the
data to be timestamped, whereas Hopsworks requires a unique primary key for each row of
the data. Combining the data is also approached differently in both of the feature stores.
In Feast, the features can relate to an entity that is then used to combine the features in
different feature views. In Hopsworks the feature data is fetched with queries that can be
combined with joins using any existing key.

18 CHAPTER 4. OVERVIEW OF THE SELECTED FEATURE STORES

Table 4.2: A summary of the differences between Feast and Hopsworks.

Feast Hopsworks
Minimal standalone feature store MLOps platform with a feature store that

can also be used separately
Feature data stored externally Feature data stored internally or

externally
Requires feature data to be timestamped Requires feature data to have unique

primary keys
Features organised into feature views Features organised into feature groups
Feature services used for combining
multiple data sources and fetching
features

Feature views used for combining multiple
data sources and fetching features

Entities used for combining multiple
feature views into a single feature service

Joined queries used for combining
multiple feature groups into a single
feature view

5 Results

In this chapter, we present the results of testing Feast and Hopsworks, as described in
Chapter 3.

5.1 Feast

Feature definitions. Features are defined in Feast with a feature name, data type, and
optionally tags. The tags can be any key-value pairs of strings, so a description of the
feature can be included in them.

Example. Features extracted from the Star dataset includes the absolute magnitude of
a star. The feature is named Amag and a tag named description is added to it that
contains the feature description in the feature view, as shown in Figure 5.1.

Standardised metadata. Any metadata can be included in the tags, but their use is
not required in Feast, so in order to have standardised metadata across multiple teams
creating the features, they need to be agreed on or enforced some other way. Figure 5.1
shows the properties and tags of a feature shown in the Feast Web UI. The web UI is still
an experimental functionality of Feast.

Example. In the Sensor dataset, the metadata of the features includes the unit of the
sensor reading. For example, the temperature is recorded in Fahrenheit, and a custom tag
with the name unit can be added to the feature to indicate this.

Tracking transformations. Data transformation is done outside of Feast itself, so Feast
does not keep track of the transformations done to data automatically. The exception to
this is the still experimental on-demand feature views in Feast. On-demand feature views
include transformations that are computed locally on online and offline data.

Example. In the Star dataset, the absolute magnitude of a star is calculated using the
visual apparent magnitude and stellar parallax of the star, which are included in the
dataset. Since the transformations happen outside of Feast, the feature has been created
beforehand and the transformation needs to be tracked manually, for example in the
feature tags.

Combining multiple data sources. Feature services can be combined from multiple

20 CHAPTER 5. RESULTS

Figure 5.1: Feature properties and tags displayed in the Feast Web UI.

feature views and data sources, and for each feature in the feature service it is shown from
which feature view it originates. The feature views have information on what data source
the features are from. Figure 5.2 shows the view for a feature service in Feast Web UI,
including features from two different feature views.

Example. The split Sensor dataset was ingested into separate feature views sensor_data1

and sensor_data2, and grouped into a singe feature service sensor_data_service. The
Feast Web UI shows which features come from which feature views, as shown in Figure
5.2.

Tracking feature use. Feast’s feature services allow for tracking where features are
being used and by whom. They can also limit the features that can be retrieved from a
dataset. If a feature in a feature view is not defined in the feature service used to retrieve
data, it won’t be returned from the feature store. This can help track which features are
used in models, for example in a case where the data includes sensitive information.

Example. The feature service sensor_data_service for the sensor data pictured in Figure
5.2 has a tag named owner to indicate who created the feature service. Only the features
listed in the feature service can be retrieved, if the dataset had other features they cannot
be accessed through this feature service.

Feature versioning. Feast has no versioning. Separate versioning tools can be used with
Feast, but their use is not covered in this thesis.

5.2. HOPSWORKS 21

Figure 5.2: A feature service in Feast can be used to combine different data sources, track the usage of
features, and control which features can be retrieved from the feature store. Features from two different
feature views are combined in the pictured feature service.

Data validation and monitoring. Feast has experimental support for data validation
and quality monitoring using Great Expectations (Great Expectations, 2023). The support
is only for historical features, support for validating features when writing to and reading
from online storage is planned. Validating offline features needs an existing saved dataset
in Feast to use for reference for the Great Expectations expectation suite. Features are
validated when retrieving historical features. If the validation fails, an exception is raised
that contains details for the expectations that did not pass.

Example. In the Sensor dataset where we combined the split dataset into a single feature
service, we used Great Expectations to validate that the feature service had all the required
features from each part of the dataset. We created simple rules for the validation, and
a saved training set to use as a reference for Great Expectations to validate feature data
retrieved in the future.

5.2 Hopsworks

Feature definitions. Each feature has a name and a data type that can be declared in
code or inferred from the ingested data. Features are grouped into feature groups, and

22 CHAPTER 5. RESULTS

features and feature groups have optional descriptions.

Example. The Star dataset was ingested into Hopsworks and a name, data type, and
description were added to each feature. Figure 5.3 shows some of the features in a feature
group and their descriptions.

Standardised metadata. Feature groups can have custom tags and keywords, but
individual features do not. Tags need to have a tag schema defined, which tells what keys
and values are included in the tags.

Example. The Sensor dataset has metadata about the unit of each feature. Since the
individual features do not have custom tags, the information about the unit was added to
the feature description.

Figure 5.3: Feature definitions in Hopsworks include the name, data type and description of the feature.

Tracking transformations. Transformations can be applied to the data inside the
Hopsworks platform, and are tracked automatically. These transformations are only ap-
plied after fetching the features, so some heavier computations might be good to apply to
the features beforehand to save time. Hopsworks has some built-in transformation func-
tions, like the standard scaler, and custom transformation functions can also be written
in Python and applied to features.

Example. The feature values in the Star dataset were scaled with a built-in standard scaler
in Hopsworks. Figure 5.4 shows a list of features in a feature view, with the transformations
applied to them listed next to the feature name. The code for the transformations can be

5.2. HOPSWORKS 23

previewed and downloaded from Hopsworks, as shown in Figure 5.5. The transformations
cannot be used to combine multiple features into one, so the absolute magnitude of the
star is computed beforehand also in Hopsworks.

Figure 5.4: Transformations made in Hopsworks can be seen in the feature view list of features.

Figure 5.5: The transformation function used in Hopsworks can be previewed, copied, and downloaded.
Hopsworks has some built-in transformation functions like the standard scaler pictured, and you can also
add custom transformation functions written in Python.

Combining multiple data sources. Feature views are used to fetch data from Hopsworks.
Feature views can consist of features from multiple feature groups, including external fea-
ture groups. The feature group of origin is listed with the feature in the feature view.

Example. The Sensor dataset split into sensor_data_1 and sensor_data_2 was combined
into a single feature view sensor_data_fv in Hopsworks. The feature groups are listed
along with the features in the feature view in the Hopsworks UI, as seen in Figure 5.6.

Tracking feature use. Feature groups automatically keep track of which feature views
they are used in, as well as who created the feature view. In Hopsworks this information

24 CHAPTER 5. RESULTS

Figure 5.6: When combining multiple feature groups into a single feature view in Hopsworks, the feature
group is displayed along with the feature.

is called provenance and can be found in the UI under each feature group.

Example. We created multiple feature views for the Star dataset, and they can be seen
in Figure 5.7, which displays the provenance of the feature group star_data. Hopsworks
also displays the owner of a selected feature view and information on when the feature
view was last updated.

Feature versioning. Feature groups are versioned, and the user can specify which version
of the feature group is used in the feature view they create. Feature views and the
transformation functions for features are also versioned.

Example. We created additional versions of the feature groups from the Sensor dataset.
When retrieving the data via a feature view, the version of the feature group used is
defined so the correct version is used and the version used is not changed unexpectedly.

Data validation and monitoring. Hopsworks can automatically compute different
statistics of the features stored in the feature store. Some basic statistics are enabled
by default, and others can be enabled. By default, Hopsworks computes an approximate
count of the distinctive values and the completeness, as well as the minimum, maximum,

5.3. COMPARISON 25

Figure 5.7: Hopsworks shows the data provenance of feature groups – which feature views use features
from the feature group, and the creator of the feature view.

mean, standard deviation and the sum of each feature for numerical values. In addition,
exact statistics that are more expensive to compute can also be enabled: exact count
of distinctive values, entropy, uniqueness and distinctiveness of the value of a feature.
Hopsworks can also display a histogram of the distribution of the feature values, as well
as the correlation of the features.

Example. We enabled all the additional statistics for the star data in Hopsworks. Figure
5.8 shows the statistics and histogram of the absolute magnitude amag of the stars as
displayed in the Hopsworks dashboard, and Figure 5.9 shows the correlation matrix. The
correlation matrix also shows the precise correlation values of the absolute magnitude amag

and standard error of the parallax e_plx of the stars, and the absolute magnitude amag

and visual apparent magnitude vmag of the stars.

Data can also be validated using an external library. Hopsworks can be integrated with
the data validation tool Great Expectations as part of the feature pipeline. The validation
reports generated by Great Expectations can be stored in Hopsworks to have a validation
history for a feature group. Alerts to email or slack can also be configured for when data
ingestion succeeds, fails, or has warnings.

5.3 Comparison

Feast and Hopsworks have multiple similarities, but also differences. Table 5.1 summarises
the functionalities of Feast and Hopsworks with regard to the explainability-related con-
cerns listed in Chapter 3. Both Feast and Hopsworks have a similar concept of grouping

26 CHAPTER 5. RESULTS

Figure 5.8: Feature statistics in Hopsworks for a numerical feature, with all the statistics enabled. A
histogram of the distribution of feature values and the first rows of feature values are also shown.

related features. In Feast, they are called feature views, and in Hopsworks feature groups.
Hopsworks has a database of its own for storing the features and also supports external
feature groups where the data is stored outside of Hopsworks. Feast does not include a
database, instead, all the features are stored in external databases or files.

Feast’s feature services and Hopsworks’ feature views are also similar concepts, allowing for
combining features from different data sources and keeping track of where those features
are used and by whom.

In addition to Hopsworks being a part of a more general MLOps platform, the Hopsworks
feature store has more functionalities than the lightweight Feast. Feature transformations,
statistics and versioning are functionalities that the Hopsworks feature store offers, but
Feast does not. Feast’s free-form tags could be leveraged to store all kinds of metadata,
but they are not automatic nor is their use required. Feast is not designed to cater to
those needs, but other services could be used to complement Feast if needed.

Hopsworks offers more functionalities for improving the explainability of the data than
Feast on its own. Complementing services would need to be used with Feast to get similar
benefits for feature explainability.

5.3. COMPARISON 27

Figure 5.9: Enabling correlations for a feature group results in a correlation matrix for selected features.
Precise correlation values are shown for hand-picked correlations or by selecting list view for the feature
correlations.

28 CHAPTER 5. RESULTS

Table 5.1: Summary of the comparison of Feast and Hopsworks in relation to the questions presented
at the beginning of Chapter 3.

XAI concerns Feast Hopsworks
Feature definitions Features have a name, data

type, and tags defined.
Features have a name,
description, and data type
defined.

Standardised metadata Any pairs of key-value
strings as metadata for
features, feature views, and
feature services.

Feature groups have
custom tags and keywords,
individual features do not.

Tracking transformations Transformations not
tracked automatically.
Tags can be used to
manually store information
on them.

Transformations done
inside Hopsworks are
tracked automatically.

Combining multiple
sources

Feature services can
combine multiple feature
views.

Feature views can consist
of multiple feature groups.

Tracking feature use Feature services can be
used to track where
features are used.

Feature views are used to
fetch data, and they are
tracked in the feature
group, as well as who
created the feature view.

Feature versioning No versioning in Feast
itself.

Feature groups and
transformations are
versioned.

Data validation and
monitoring

Experimental support for
Great Expectations for
data validation and quality
monitoring. Only for
offline features.

Basic statistics by default.
Feature distribution,
feature correlations, and
more exact statistics can
be enabled. Supports
Great Expectations for
data validation.

6 Discussion

In this thesis, we aimed to find out how feature stores can be used in explaining the features
used by machine learning models, and how we can use existing tools to achieve this. We
formulated the research question: how can feature stores help explain the features used
for machine learning models?

In order to synthesise the characteristics that make a feature store, and how they help
with understanding the data, we reviewed literature on feature stores and documentation
of different existing feature stores. The feature store is used to transform the data into
features, store and manage the features, and serve the features for model training and
inference. It is noteworthy, that feature stores are still a relatively new subject: Google
Scholar gives about 900 hits for the query "feature store", ACM Digital Library 53, IEEE
Xplore 5, Scopus 37, and Web of Science 11.

Feature stores can support different explainability methods by connecting the features used
by machine learning models to the original data. For example, methods like LIME (Ribeiro
et al., 2016) discover the features that were important for a particular prediction, and fea-
ture stores can be used to give insight into those features. When explaining for discovery,
machine learning models might find new patterns in the features they use for inference,
and feature stores can then connect the transformed features to the original data. When
explaining for control, feature stores can help by enabling the monitoring of features and
data. When using XAI to improve machine learning models, feature stores can help with
feature selection by making it easier to find relevant features and by showing statistics on,
e.g., the correlation of different feature values.

We compared two different feature stores from an explainability point of view and found
that they have significant differences. Despite their differences, the compared feature
stores also had much in common, and both were useful for explaining the features.

We limited the comparison of existing feature stores to two open source platforms. How-
ever, there are a number of existing tools that were excluded from the comparison to limit
the scope of this thesis project and to keep the focus on open source tools. Some notable
feature stores excluded from this comparison are Google’s Vertex AI Feature Store (Google,
2023), Amazon SageMaker Feature Store (AWS, 2023), and Tecton Feature Platform (Tec-
ton, 2023). The other feature stores might have different approaches and functionalities

30 CHAPTER 6. DISCUSSION

than the ones included in the comparison, so they cannot be generalised directly to other
feature stores. However, there are some common characteristics that make up a feature
store, detailed in Section 2.2, that most of these tools should share.

Feature stores can be especially helpful for organisations with a higher machine learning
maturity. Pipeline-centric organisations that have multiple machine learning models using
the same data can benefit greatly from using a feature store to share and document
features. Organisations focusing on collecting data or developing their first model might
not benefit as much, but using a lightweight feature store might be a good choice when
creating the data architecture. With sensitive data or applications that have a considerable
societal impact – cases when it is important to really understand the data and features used
by the machine learning models – feature stores give important insight into the features
used.

Feast is meant to be a very minimal feature store, and it primarily supports timestamped
structured data. Some of the functionalities of Feast tested in this thesis project were
still experimental and might change as Feast is further developed. The experimental func-
tionalities of Feast included in this thesis are the web UI, saved datasets, data validation,
on-demand transformations, and direct data ingestion from streaming sources. If the user
mainly needs a simple solution for storing and serving timestamped structured data and
is willing to use complementing tools for, e.g., versioning, Feast might be a good choice.
Hopsworks is not as lightweight a tool but offers more functionalities for example ver-
sioning the feature data, keeping track of transformations, and automatically computing
statistics of the features. Hopsworks is also a part of the bigger MLOps platform, where the
machine learning models can be managed as well as the feature data they use. Altogether
Hopsworks seems a more complete and stable tool.

Further research on feature stores could include comparing other existing feature stores
as well as combining Feast with other tools for transforming, monitoring, and versioning
data could be tested and compared to tools like Hopsworks. There could also be further
research into how to efficiently utilise Feast’s highly customisable tags for standardised
feature metadata across different teams using the same data. In this thesis project, we
only tested the feature stores as stand-alone tools. Feature stores are only one part of an
MLOps pipeline, and integrating them into a more extensive MLOps pipeline to develop
machine learning systems would give us a better understanding of the feature stores’
benefits.

7 Conclusions

Feature stores provide tools to help discover and explain features for machine learning
models. They provide definitions for features and can be used to attach standardised
metadata for understanding the features better. Explanation of the features can help us
understand the decisions made by the models, and as a part of an MLOps pipeline give
us insight into maintaining and further developing them. Using feature stores can be
especially beneficial for organisations with high machine learning maturity, sensitive data,
or machine learning models with applications that have a societal impact.

We compared two open source feature stores, Feast and Hopsworks, to explore how they
can be used to help explain features used by machine learning models. The feature stores
can help understand where the features come from and how they have been transformed
– although there were differences in the compared feature stores Hopsworks and Feast.
Hopsworks offers more tools for explaining and governing the data and features than
Feast, which is more focused on being a lightweight tool for managing and serving features
consistently to machine learning models. On the other hand, Feast’s custom tags for
features can be used to save any kind of metadata to features, whereas Hopsworks’ feature
definitions are more rigid – only the name, description, and data type are defined in
addition to automatically keeping track of transformations done inside of Hopsworks. Feast
was recommended if the user needs a simple solution for managing and serving features,
and is willing to use complementing services and conventions for things like versioning and
tracking transformations. If the user needs a full solution for a feature store, and possibly
also a platform for managing machine learning models, Hopsworks is a better choice.

Bibliography

Adadi, A. and Berrada, M. (2018). “Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAI)”. In: IEEE Access 6, pp. 52138–52160. doi: 10.1109/

ACCESS.2018.2870052.
AWS (2023). Amazon SageMaker Feature Store. https : / / docs . aws . amazon . com /

sagemaker/latest/dg/feature-store.html. Accessed: 2023-02-10.
Bender, E. M. and Friedman, B. (2018). “Data Statements for Natural Language Process-

ing: Toward Mitigating System Bias and Enabling Better Science”. In: Transactions of
the Association for Computational Linguistics 6, pp. 587–604. doi: 10.1162/tacl_a_

00041.
Bogner, J., Verdecchia, R., and Gerostathopoulos, I. (2021). “Characterizing Technical

Debt and Antipatterns in AI-Based Systems: A Systematic Mapping Study”. In: 2021
IEEE/ACM International Conference on Technical Debt (TechDebt), pp. 64–73. doi:
10.1109/TechDebt52882.2021.00016.

Del Balso, M. (2020). What is a Feature Store? https://www.tecton.ai/blog/what-

is-a-feature-store/. Accessed: 2022-10-19.
Diakopoulos, N., Friedler, S., Arenas, M., Barocas, S., Hay, M., Howe, B., Jagadish, H. V.,

Unsworth, K., Sahuguet, A., Venkatasubramanian, S., Wilson, C., Yu, C., and Zeven-
bergen, B. (2016). Principles for Accountable Algorithms and a Social Impact Statement
for Algorithms. fatml.org/resources/principles-for-accountable-algorithms.
Accessed: 2022-10-19.

Dowling, J. (2018). Logical Clocks raises Seed Funding. https://www.logicalclocks.

com/blog/logical-clocks-raises-seed-funding. Accessed: 2022-11-23.
Feast (2022). Feast Documentation v0.26. https://docs.feast.dev/. Accessed: 2022-

11-26.
Floridi, L. and Chiriatti, M. (Dec. 2020). “GPT-3: Its Nature, Scope, Limits, and Conse-

quences”. In: Minds and Machines 30.4, pp. 681–694. issn: 1572-8641. doi: 10.1007/

s11023-020-09548-1.
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., III, H. D., and

Crawford, K. (Nov. 2021). “Datasheets for Datasets”. In: Commun. ACM 64.12, pp. 86–
92. issn: 0001-0782. doi: 10.1145/3458723.

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://docs.aws.amazon.com/sagemaker/latest/dg/feature-store.html
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1109/TechDebt52882.2021.00016
https://www.tecton.ai/blog/what-is-a-feature-store/
https://www.tecton.ai/blog/what-is-a-feature-store/
fatml.org/resources/principles-for-accountable-algorithms
https://www.logicalclocks.com/blog/logical-clocks-raises-seed-funding
https://www.logicalclocks.com/blog/logical-clocks-raises-seed-funding
https://docs.feast.dev/
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1145/3458723

33

Google (2023). Vertex AI Feature Store. https://cloud.google.com/vertex-ai/docs/

featurestore. Accessed: 2023-02-10.
Great Expectations (2023). Great Expectations Documentation. https://docs.greatexpectations.

io/docs/. Accessed: 2023-01-11.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (Aug.

2018). “A Survey of Methods for Explaining Black Box Models”. In: ACM Comput.
Surv. 51.5. issn: 0360-0300. doi: 10.1145/3236009.

Gunning, D. and Aha, D. (July 2019). “DARPA’s Explainable Artificial Intelligence (XAI)
Program”. In: AI Magazine 40.2, pp. 44–58. doi: 10.1609/aimag.v40i2.2850.

Gunning, D., Vorm, E., Wang, J. Y., and Turek, M. (2021). “DARPA’s explainable AI
(XAI) program: A retrospective”. In: Applied AI Letters 2.4, e61. doi: https://doi.

org/10.1002/ail2.61.
Hermann, J. and Del Balso, M. (2017). Meet Michelangelo: Uber’s Machine Learning Plat-

form. https://www.uber.com/en- FI/blog/michelangelo- machine- learning-

platform/. Accessed: 2022-09-05.
ISO (Aug. 2022). Information technology — DevOps — Building reliable and secure sys-

tems including application build, package and deployment. Standard. International Or-
ganization for Standardization.

John, M. M., Olsson, H. H., and Bosch, J. (2021). “Towards MLOps: A Framework and
Maturity Model”. In: 2021 47th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 1–8. doi: 10.1109/SEAA53835.2021.00050.

Ku, W.-F. (July 2020). Star Categorization Giants And Dwarfs Dataset, vinesmsuic.
https://www.kaggle.com/datasets/vinesmsuic/star-categorization-giants-

and-dwarfs.
Logical Clocks (2022). Hopsworks Documentation v3.0. https://docs.hopsworks.ai/3.

0/. Accessed: 2022-11-28.
Lum, K. and Isaac, W. (Oct. 2016). “To predict and serve?” In: Significance 13, pp. 14–19.

doi: 10.1111/j.1740-9713.2016.00960.x.
Mäkinen, S., Skogström, H., Laaksonen, E., and Mikkonen, T. (2021). “Who Needs MLOps:

What Data Scientists Seek to Accomplish and How Can MLOps Help?” In: 2021 IEEE/ACM
1st Workshop on AI Engineering - Software Engineering for AI (WAIN), pp. 109–112.
doi: 10.1109/WAIN52551.2021.00024.

Ormenisan, A. A., Meister, M., Buso, F., Andersson, R., Haridi, S., and Dowling, J. (July
2020). “Time Travel and Provenance for Machine Learning Pipelines”. In: 2020 USENIX

https://cloud.google.com/vertex-ai/docs/featurestore
https://cloud.google.com/vertex-ai/docs/featurestore
https://docs.greatexpectations.io/docs/
https://docs.greatexpectations.io/docs/
https://doi.org/10.1145/3236009
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/https://doi.org/10.1002/ail2.61
https://doi.org/https://doi.org/10.1002/ail2.61
https://www.uber.com/en-FI/blog/michelangelo-machine-learning-platform/
https://www.uber.com/en-FI/blog/michelangelo-machine-learning-platform/
https://doi.org/10.1109/SEAA53835.2021.00050
https://www.kaggle.com/datasets/vinesmsuic/star-categorization-giants-and-dwarfs
https://www.kaggle.com/datasets/vinesmsuic/star-categorization-giants-and-dwarfs
https://docs.hopsworks.ai/3.0/
https://docs.hopsworks.ai/3.0/
https://doi.org/10.1111/j.1740-9713.2016.00960.x
https://doi.org/10.1109/WAIN52551.2021.00024

34 CHAPTER 7. CONCLUSIONS

Conference on Operational Machine Learning (OpML 20). USENIX Association. url:
https://www.usenix.org/conference/opml20/presentation/ormenisan.

Orr, L., Sanyal, A., Ling, X., Goel, K., and Leszczynski, M. (July 2021). “Managing
ML Pipelines: Feature Stores and the Coming Wave of Embedding Ecosystems”. In:
Proc. VLDB Endow. 14.12, pp. 3178–3181. issn: 2150-8097. doi: 10.14778/3476311.

3476402.
Perry, W. L., McInnis, B., Price, C. C., Smith, S., and Hollywood, J. S. (2013). Predictive

Policing: The Role of Crime Forecasting in Law Enforcement Operations. Santa Monica,
CA: RAND Corporation. doi: 10.7249/RR233.

Pushkarna, M., Zaldivar, A., and Kjartansson, O. (2022). “Data Cards: Purposeful and
Transparent Dataset Documentation for Responsible AI”. In: 2022 ACM Conference
on Fairness, Accountability, and Transparency. FAccT ’22. Seoul, Republic of Korea:
Association for Computing Machinery, pp. 1776–1826. isbn: 9781450393522. doi: 10.

1145/3531146.3533231.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “"Why Should I Trust You?": Ex-

plaining the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16. San
Francisco, California, USA: Association for Computing Machinery, pp. 1135–1144. isbn:
9781450342322. doi: 10.1145/2939672.2939778.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,
V., Young, M., Crespo, J.-F., and Dennison, D. (2015). “Hidden Technical Debt in
Machine Learning Systems”. In: Advances in Neural Information Processing Systems.
Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Cur-
ran Associates, Inc. url: https://proceedings.neurips.cc/paper/2015/file/

86df7dcfd896fcaf2674f757a2463eba-Paper.pdf.
Sell, T. and Pienaar, W. (2019). Introducing Feast: an open source feature store for machine

learning. https://cloud.google.com/blog/products/ai- machine- learning/

introducing- feast- an- open- source- feature- store- for- machine- learning.
Accessed: 2022-11-23.

Stafford, G. (2020). Environmental Sensor Telemetry Data. https://www.kaggle.com/

datasets/garystafford/environmental-sensor-data-132k.
Tecton (2023). Tecton documentation. https://docs.tecton.ai/. Accessed: 2023-02-10.

https://www.usenix.org/conference/opml20/presentation/ormenisan
https://doi.org/10.14778/3476311.3476402
https://doi.org/10.14778/3476311.3476402
https://doi.org/10.7249/RR233
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/2939672.2939778
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://cloud.google.com/blog/products/ai-machine-learning/introducing-feast-an-open-source-feature-store-for-machine-learning
https://cloud.google.com/blog/products/ai-machine-learning/introducing-feast-an-open-source-feature-store-for-machine-learning
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
https://docs.tecton.ai/

	Introduction
	Background
	Explainable AI (XAI)
	Feature store

	Research method
	Overview of the selected feature stores
	Feast
	Hopsworks
	Summary

	Results
	Feast
	Hopsworks
	Comparison

	Discussion
	Conclusions
	Bibliography

