
Master’s thesis

Master’s Programme in Computer Science

Optimizing WebGL application performance
by identifying and tackling bottlenecks

Kim Toivonen

December 19, 2022

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Kim Toivonen

Optimizing WebGL application performance by identifying and tackling bottlenecks

Dr. Gopika Premsankar and Dr. Ashwin Rao

Master’s thesis December 19, 2022 0 pages

WebGL, glTF, JSON, Three.js, 3D rendering performance

Helsinki University Library

Networking study track

Browser based 3D applications have become more popular since the introduction of the Web
Graphics Library (WebGL). However, they have some unique characteristics, such as the inabil-
ity to access the local file system and the requirement to be executed in the browser’s scripting
environment. These characteristics can introduce performance bottlenecks, and WebGL appli-
cations are also vulnerable to the same bottlenecks as traditional 3D applications.

In this thesis, we aim to provide guidelines for designing WebGL applications by conducting
a background survey and creating a benchmarking platform. Our experiments showed that
loading model data from the browser’s execution environment to the GPU has the biggest
impact on performance. Therefore, we recommend focusing on minimizing the amount of data
that needs to be added to the scene when designing 3D WebGL applications. Additionally, we
found that the amount of data rendered affects the severity of performance drops when loading
model data to the GPU, and suggest actively managing the scene by only including relevant
data in the rendering pipeline

ACM Computing Classification System (CCS)
General and reference → Document types → Surveys and overviews
Applied computing → Document management and text processing → Document management
→ Text editing

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background 6
2.1 Client-server communication in WebGL applications 6
2.2 Storage formats . 6
2.3 JavaScript performance . 7
2.4 WebGL performance . 8
2.5 Level of Detail and progressive loading . 9
2.6 Spatial querying . 10

3 System Architecture 12
3.1 Configurations . 12
3.2 System overview . 15

3.2.1 Converter . 15
3.2.2 Server . 16
3.2.3 Viewer . 17

4 Performance evaluation 19
4.1 Evaluation methodology . 19

4.1.1 Test dataset . 19
4.1.2 Metrics . 20
4.1.3 Benchmark setting . 21

4.2 Results . 21
4.2.1 JSON . 22
4.2.2 glTF . 23
4.2.3 glTF On-demand . 24
4.2.4 glTF On-demand Multiple files . 25
4.2.5 glTF - On-demand - Multiple files - Level-of-detail 25
4.2.6 glTF - On-demand - Multiple files - Level-of-detail - Active scene . 26

5 Discussion and future work 32
5.1 Data format - transmission and processing 32
5.2 Rendering performance . 33

6 Conclusion 34

Bibliography 34

A All checkpoints visualized 39

1 Introduction

Web browsers offer a convenient environment for software developers to create cross-
platform applications. Technologies that web browsers support are well standardized and
widely supported by different browsers. This has resulted in more and more applications
being implemented as completely browser based. As the popularity of browser as an ap-
plication environment has risen, so has the amount of functionalities that browsers are
capable of performing. One example of this is WebGL (Web Graphics Library) [42]. It
is an API that allows a web browser to render 2D and 3D graphics to HTML5’s canvas-
element, using GPU. It is supported by all modern browsers, and it has several libraries
built on top of it.

Creating a 3D rendering application in the browser does create some additional challenges.
Instead of having just a single codebase for a single application, one has to consider both
the client application running in the browser as well as the server side application that runs
on the server. These two applications need to communicate with each other constantly.
This situation is fundamentally different when comparing it to a desktop application where
the application reads and writes data to a local storage device. Transmitting data over the
network is much slower than reading the same data from the local device. Slow network
might make the application unresponsive from the users perspective if the data to be
rendered takes a long time to be transmitted from the server storage to the application.
3D data is usually large in nature, meaning that the amount of data that the browser
needs to load over the network is considerably larger than in standard web applications.
In this regard, they are similar to multimedia web applications like video streaming sites.

Unlike multimedia web applications, a 3D rendering web application has also an additional
challenge of having a cost for displaying the downloaded data after it has been received by
the client. A WebGL application sends several draw calls per second to the client machines
GPU which then draws the result to the browser window. This requires considerably more
computing resources than simply displaying stylized text on a web page. The rendering
process is executed several times each second meaning that a large amount of data is a
possible bottleneck in the applications performance during the loading and also for the
whole time it is visible to the user. Because of this additional cost, a WebGL application
needs to actively manage the content that is loaded to keep the performance of the ap-

2

plication at an acceptable level. As mentioned, downloading data through the network is
also an expensive operation so there are several reasons why all redundant loading of 3D
data should be kept to a minimum.

A browser application is usually run so that a piece of JavaScript code is fetched from the
server when the user enters a web page. JavaScript is tokenized and interpreted by the
browsers on runtime and it is not possible to compile the code beforehand [36]. Browser’s
JavaScript engines also force the JavaScript to be single threaded. These characteristics
of JavaScript when compared to 3D desktop applications which can be run on native code
introduce yet more performance penalties. JavaScript does allow multithreading with the
help of web workers but in a more limited manner than traditional threading [41]. For
example the only way to pass information between threads can be done by serializing
and deserializing data to either strings or numbers back and forth making it ill-suited for
handling processing of large number of 3D data.

When an application runs on a web browser it can not make many assumptions about
the hardware it is running on as opposed for video games and other desktop applications
where the systems compatibility can be verified during the installation phase. Virtually
every computer including mobile devices run a modern web browser which is the only
requirement for running WebGL applications.

In addition of the specific challenges just mentioned, a WebGL based 3D application shares
all the common challenges with traditional 3D applications. These are for example how to
remove unnecessary complexity and detail from the scene based on the users interactions,
how to make the graphics as good as possible while keeping the application performance on
a high enough level etc. This might need to be addressed by for example creating a system
that depending on the user’s actions we might want to only show a coarse representation
of a model instead of rendering it entirely. Or we might want to sacrifice precision for
performance in cases where the hardware in use can not handle rendering a more detailed
model. This is usually achieved by having multiple levels of detail (LOD) for each model.

To summarize there are at least the following possible performance bottlenecks for WebGL
applications:

• The computing capacity of the clients device on which the WebGL applications are
running varies.

• Transferring a large amount of content over the network.

• Distributed nature of the client-server architecture.

3

Figure 1.1: A graph describing the relation of WebGL, the browser and the operating system.
Source: https://developer.ibm.com/tutorials/wa-webgl1/

• Performing computationally heavier tasks than a standard web application.

• Having to be implemented by an interpreted language at the client side.

• All the inherited performance issues from traditional 3D rendering applications.

A WebGL application design needs to account for both client and server sides. Even
if the models have been stored optimally and the server provides a flexible interface for
extracting only the relevant data, it would got to waste if the client side implementation
can not take advantage of these various methods of optimization.

A server side implementation needs to offer some type of interface for the client side
application to communicate with. They need to be able to exchange information about
what is relevant data to the client by for example determining the subset of the scene
the client sees i.e. the clients viewport. Using this information the server side application
needs to be able to perform some type of spatial querying to the dataset. As 3D model
data is generally stored in disk storage, reading each file to determine its location in the
world and comparing it to the viewport is not a viable option. Instead some information
about the model should be stored in a high availability storage e.g. a database. This

4

Figure 1.2: An example of a client-server architecture in WebGL context

information could be for example some type of bounding volume. Bounding volumes can
be represented for example as a bounding sphere or a bounding box. Both are small and
simple structures with a bounding sphere consisting only of a center point in the form of
a three-dimensional vector and a radius which is a single numeric value. A bounding box
can be represented as a pair of three-dimensional vectors describing the coordinates of two
corners of the box. Having a simple enough representation allows the application to have
location and size data of each model even in larger scenes so that it can be queried and
filtered.

The server side application needs to store the models in a way that makes it convenient
for the client side application to download them. The storage implementation might
need to support e.g. level-of-detailing and splitting the dataset into small subsets to make
extracting only relevant easier.

Client side application needs to be able to determine the area it wants to see models from.
It needs to be able to download the models efficiently to the scene in the format that is
used to store the models. Most of the traditional 3D rendering performance handling,
such as managing the amount of data rendered, is also a responsibility of the client side
application.

The goal of this thesis is to create a set of guidelines for creating WebGL applications.

5

This is done by building a benchmarking platform that can be used to assess the impact
of the possible performance bottlenecks mentioned, and by using that platform create
a some reference guidelines on what to focus on when designing a WebGL application.
The thesis is organized as follows. In chapter 2, we go through related work related to
the problem. Chapter 3 is an overview of the benchmarking system created. Chapter 4
explains the evaluation methodology used to conduct the benchmarking and visualizes and
presents the results. In chapter 5 we discuss the results and contemplate on possible future
improvements in regards of this thesis and possible limitations of the benchamrking. In
chapter 6 we summarize our conclusion and lay out our reference guidelines for creating
WebGL applications.

2 Background

There is some research regarding WebGL specifically as the platform and a lot of research
on some relevant subjects such as level-of-detail and spatial querying which have been
subjects of research in the realms of video games and general 3D rendering for several
decades.

2.1 Client-server communication in WebGL applica-
tions

Limper et al. [25] performed a case study on fast delivery of 3D web content. They showed
that for devices with subpar processing capabilities, such as mobile devices, the decoding
time could quickly grow larger than the actual download time. They recommended avoid-
ing additional compression and utilizing the browser’s and HTTP’s built-in compression
capabilities.

Li et al. researched an on-demand loading mechanism for animated 3D models in mobile
web 3D applications [22]. They separated the animation data from the model and applied
their on-demand tool to both separately. In addition, they proposed using an asynchronous
request-response mechanism. They noted that since modern browsers’ JavaScript engines
are single-threaded, loading a large amount of model data synchronously blocks the exe-
cution of the program which in turn affects the user experience negatively. They managed
to improve the user experience by reducing the amount of data that was loaded initially.
Even though their research focused on dynamic 3D models and animations, the same
on-demand asynchronous loading should apply to static 3D models.

2.2 Storage formats

Several file formats exist for storing 3D models. These include for example X3D [9],
STL [34], FBX [10], glTF [12], and Wavefront OBJ [39]. These different formats were de-
signed with different use cases in mind and thus have different capabilities and performance
attributes.

7

Lee et al. [21] conducted a study on the performance of OBJ, STL, FBX, and glTF file
formats. According to the comparison, glTF was the most efficient format in terms of
downloading and decoding time for fetching and rendering a 3D model. Therefore, we
decided to use glTF as the storage format for 3D models in this thesis.

glTF was developed by the Khronos group as a general-purpose 3D data storage format
that is compatible with WebGL. It stores the mesh data in binary format so that it
can be directly loaded into the GPU’s buffers on the client side without any decoding.
Additionally, glTF allows storing the scene structure and model metadata in JSON format
within the same file as the mesh data. Currently, it is supported by most WebGL libraries.
One limitation of glTF is that it does not have built-in support for progressive loading.

Cesium [6] has published a format known as 3D tiles, that has been built on top of glTF.
It supports progressive loading of the meshes with different level-of-detail representations.
A model based on 3D tiles is represented as a JSON file and a list of model files. The
JSON file stores metadata that the application can use to determine what models should
be loaded. Even though 3D tiles is an open specification, and other WebGL libraries
can theoretically use it, it does not have wide support outside CesiumJS. It is tightly
developed together with Cesiumjs which is shown by Kraemer et al. [19] to be well-suited
only for larger-scale geospatial applications. At the time of the writing of this thesis
several projects are adding 3D tiles support for Three.js such as NASA’s and New York
Times’ Three.js based 3D tiles library [27] [37]. They are both still under development
and neither of them has the support for everything defined in the 3D tiles specification.

Schilling et al. [29] investigated the optimal streaming of 3D city model data. They utilized
the B3DM (Batched 3D Model) format to bundle several models into a single file which
reduced the amount of HTTP calls the client has to make to the server. This format is
also supported by Cesium 3D Tiles [6].

2.3 JavaScript performance

Theisen et al. performed a benchmark study of JavaScript in 2019 [36]. They compared its
effectiveness in scientific computing to Java, and concluded that JavaScript can never be
faster than the native code that runs it. One interesting observation was that JavaScript
performance varies greatly depending on the browser it runs on. For example, in some
tasks, JavaScript on Chrome was 8-9 times faster than JavaScript on Safari. Nonetheless,
Java performed better than JavaScript on any browser in all of the tested tasks.

8

Web workers were introduced as a means to enable multithreading in browser applications
[41]. They can be used to offload computation from the main thread, but they have some
notable weaknesses. For instance, workers do not have access to the document object
model (DOM), which means that any work performed by a worker can only be made
visible to the user by transferring the result to the main thread. This also implies that the
only way to share data between the main thread and workers is to serialize it to JSON in
the source thread and deserialize it in the destination thread. This can be a challenge for
3D rendering applications, which handle large amounts of data several times per second
and may not benefit from using workers.

Web Assembly is a technology that tries to bring native speed code execution to browsers
[40]. It runs on a virtual stack that can be embedded into a browser. At the time of
writing this thesis Web Assembly does not support direct access to the DOM and needs
to communicate with the main JavaScript thread in a similar manner with workers.

2.4 WebGL performance

One can develop a browser-based 3D application by utilizing WebGL API directly which
is widely supported in virtually every modern browser. Kramer et al. [19] performed a
case study on three different open-source WebGL frameworks, CesiumJs, three.js, and
X3DOM. They concluded that each had its use case. Cesium is meant to be used with
strictly geospatial application, Three.js offers a direct access to WebGL and is very general
purpose and X3DOM allows the development of 3D applications in a declarative high-level
manner. In this thesis, we are going to focus on Three.js.

Three.js has a built-in loader for glTF. In addition Three.js’ built-in glTF-loader has
support for asynchronous loading which was recommended by Li et al., to keep the program
in a usable state during the time it is loading a large model [22].

Alatalo et al. [2] suggested using web workers to offload computation away from the main
program. Even though the JavaScript engine in the browser is by default a single-threaded
process, multi-threaded computation can be achieved with web workers. This helps the
system to avoid a situation where the renderer is blocked by the processing of the 3D mod-
els before they are added to the scene. The authors noticed that by implementing loading
and parsing of the models in a web worker, performance could be improved significantly
with high-end devices. They mentioned that they were not using an optimized file format
such as glTF in their system.

9

2.5 Level of Detail and progressive loading

Progressive Mesh was introduced by Hoppe et al. [14] back in 1996. It focuses on the
effective compression of mesh data in a way that allows progressive decompression. When
Limper et al. carried out a case study in 2013, they noticed that the original algorithm
created by Hoppe could decompress more triangles per second than any other algorithm
in their testing set [25]. However, Progressive Meshes are less-suited for web-based ap-
plications. This is because it only supports progressive rendering of the mesh, but not
progressive transmission of the mesh.

Limper et al. [24] introduced a data structure of their own called POP buffer. POP
buffers can create several level-of-detail (LOD) representations for a general triangle mesh
to enable progressive loading. One of its main advantages is the ability to reuse lower
LOD representations when constructing a higher LOD representation. With POP buffers,
several LOD representations can be saved with zero memory overhead from having multiple
versions of the same 3D model. Since POP buffers are a generic representation of any
triangle mesh, they can also be represented as a set of glTF-models [25]. However, because
the glTF-specification lacks support for progressive loading, all the different levels of detail
representations need a separate glTF file. This creates memory overhead since one models
needs several representations instead of one..

Scully et al. [31] tackled glTF’s problem of not supporting progressive loading and imple-
mented an extension of glTF that allowed a 3D scene to be partitioned so that it could
be streamed progressively in the modified glTF format. Their work is part of a software
ecosystem known as 3D Repo [31]. 3D Repo is sold as a propriety product. Additionally,
since it uses a modified version of the glTF standard, the whole server and client side
of the application needs to be able to utilize it. This means that the server and client
implementations cannot be agnostic about how the other is implemented, as they could if
a well-specified and supported standard was used.

If we allow some overhead that comes from representing each level of detail as a separate
glTF-file we could use several different mesh simplification strategies. Going into detail
about mesh simplification is not in the scope of this thesis but some well-known triangle
mesh simplification strategies are mesh decimation [30] and quadratic error metrics-based
simplification [11]. Some mathematical polygon approximations such as convex hulls and
concave hulls can also be used as a lower level of detail model as shown by Selçuk et al.
[32].

10

This thesis does not focus on which level-of-detailing method is the best for which use
case. The idea behind level-of-detail and progressive loading is to have a way to download
and process some data fast so that the application seems responsive from the users point
of view as well as visualize as large areas as possible with the application staying usable.

2.6 Spatial querying

Filtering out irrelevant data is important when designing 3D applications. In WebGL
applications it could be done both to the data already loaded to client side to exclude
redundant data from the rendering pipeline or to determine from the scene graph what
data should be loaded from the server to the client. The former can be done with operations
based on the relation of the user’s interactions and the actual geometry while the latter
requires some secondary representation from the whole scene since it needs to evaluate
which models are relevant before the actual geometry has been loaded to the client.

A technique known as view frustum culling has been implemented and improved on various
occasions, for example by Zhang et al. [44] and Assarsson et al. [3]. In view frustum culling,
the user’s view is represented as a 3D object consisting of six planes and the 3D models that
need to be rendered can be filtered out if they intersect with the frustum. View frustum
culling however usually assumes that the geometry is already accessible when performing
the computation. This is not the case in a web application where the geometry needs to
be downloaded first for it to become available for further processing. Downloading every
model that can be rendered at once is not a feasible alternative. It can however, be utilized
for geometry that has been loaded to the scene

Cesium’s 3D tiles have built-in functionality for loading only the relevant data to the
scene [6]. Similar work has been also carried out by Chaturvedi et al. [7]. 3D Tiles’
metadata contains bounding volumes of each tile, which can be then used to extract the
relevant data from the tileset. Both, the work of Chaturvedi et al. and Schilling et al. [29],
which has been implemented in the Cesium library, are designed to work with the CityGML
standard, a standard specifically designed to describe virtual city models [18].

Alatalo et al. [2] describe a system for virtual city models that uses dynamic loading and
unloading of assets based on the user’s viewport. The models in the system are represented
as blocks with textures applied to them, and the system has rules in place stating that
all models should be blocks and that holes are not allowed. The system also makes the
assumption that the blocks do not have any internal details.

11

Their system handled the dynamic loading and unloading of models by prioritizing models
based on the view frustum and distance from the user. This was done by utilizing a k-d
tree [4] to organize and query nearby models efficiently. When the system detected that
a model was left behind in a scene, it disposed the model completely to save the client
machine’s memory resources. The authors noticed that with their dataset, during the
dynamic loading and unloading of assets, the frame rate dropped to below five even on
a gaming laptop. They identified the cause to be the synchronous loading and parsing
of models on the client side, which is in line with the findings of Limper et al. [25] and
Li et al. [23].

Slocum et al. [33] did work regarding performance optimization in a WebGL-based virtual
reality environment. They wanted to provide a more general solution in comparison to the
city model-based optimization presented by Schilling et al., which works best when there
are a large number of relatively simple 3D models to be rendered. Slocum et al. introduced
a library named VIA. VIA’s goal is to reduce the amount of data the VR environment
has to initially load to a scene and provide a prioritization mechanism for the application
to use when deciding what data to load next. It works by giving each object in a scene
two scores – a visibility score and an angle score. The visibility score is given based on
how much of the object is in the user’s field of view, and the angle score represents how
close the object is to the center of the user’s field of view. Based on these two scores the
system then prioritizes the models to be rendered for the user. Even though VIA was
designed with virtual reality applications in mind, the concept is fully compatible with
traditional 3D applications. Similar to 3D tiles, VIA needs to have some bounding volume
information for each 3D model that the application might render at some point. This
means that e.g. a database is needed to store the bounding volume information so that it
can be accessed separately from the geometry itself. As mentioned earlier, the overhead
of storing bounding volume information is low.

3 System Architecture

We present an overview of the system developed in this thesis. The goal of the system
is to evaluate the impact of different optimization techniques (reviewed in Chapter 2) on
the performance of rendering large 3D objects in a web-based application. Our system
allows to evaluate the performance gain of different configurations separately as well as
together. Our system performs the benchmarking by animating automatically around a
set of checkpoints. Each checkpoint consists of an identifier, a three dimensional vector
describing its position in the scene and has one or several models attached to it as well. The
animation sequence is the same regardless of the configuration. Each configuration affects
the behaviour of the system in its own way. Figure A describes how each checkpoints
appears in the benchmark platform.

3.1 Configurations

After performing a survey on the related work we selected the configurations to assess the
impact of the following optimizations in regards of performance and usability:

• Usage of optimized file format against unoptimized one

• Downloading and displaying only relevant data in detail i.e. filtering

• Downloading models progressively

Figure 3.1: The configuration menu presented before benchmarking.

13

• Managing the amount of data that is rendered i.e. reducing the amount of operations
the CPU and GPU has to do on each render call.

The configuration menu shown to the user can be seen in figure 3.1. Below is a more
detailed explanation on what each configuration option does.

File format The first configuration menu allows the user to switch between two file
formats. These are glTF and JSON. They were chosen since glTF is the recommended
format for 3D data and JSON can be seen as a standard way of transmitting data to a web
application [21]. As mentioned in the description of the viewer, the application will initially
load direct download links to both file formats. Depending on the selected option, the
application will load the models to the scene using the selected format’s download URLs.

GlTF is loaded by using Three.js’ GLTFLoader. It offers functionality to download and
parse glTF asynchronously from a URL. After the file has been loaded and parsed by the
loader, the resulting Three.js objects are added to the scene.

In case JSON is selected, the application simply downloads the JSON data from S3 and
then creates the Three.js objects during runtime. The data is a list of objects where each
object represents a single submesh of the model. Each object consists of two flat lists
and color information. The first list is structured so that six subsequent items represent
one vertex on the mesh. The first three represent the position of the vertex as a three-
dimensional vector and the remaining three represent the normal of the vertex as a three-
dimensional vector. The second list is a flat list of integers that represent the triangle faces
so that three subsequent values on the list form one single face. A Three.js BufferGeometry
is composed of this information. A material is created for each mesh according to the color
information and the resulting THREE.js object is then added to a common parent object.
After all the meshes have been created the parent object is added to the scene.

On-demand loading If this option is selected, the system will calculate the distance
between the camera and each checkpoint in 500 millisecond intervals. The system will
start to load the models for a checkpoint only if this check determines that a checkpoint is
close enough. If the option is not selected, the system will just start to load all the models
into the scene when the benchmarking sequence begins.

This is a much simpler version of spatial querying than those discussed in Chapter 2. In
our benchmarking system, the number of models is relatively low, the camera is constantly

14

moving and the checkpoints are placed far from each other. In a larger and more interactive
3D application some type of spatial indexing and a more refined function for determining
models that need to be loaded should be implemented.

Multiple files To overcome glTF’s limitation of not supporting progressive loading,
we split each model into multiple small parts and save each of those as its own glTF-
file. When this option is selected, the system will load all the models using the list of
download URLs. This allows the system to already render a part of the model before the
whole model has been downloaded from the server. Additionally it allows finer detail in
querying and filtering only relevant data, since only one subset of the each model could
be loaded if needed.

Level-of-detail In addition to the standard glTF representation, each model has a sim-
plified version of its geometry stored in a separate glTF file. The process for generating
this file is described in the system overview. When this option is selected, the system
will check the distance between the camera and each model in 500ms intervals. Based on
this distance, the models will be divided into two groups: "low" and "full". The system
will then load either the low-detail or the full-detail version of each model, depending on
the group it is in. If a model that was previously in the "low" group moves into the "full"
group, the system will first load the full-detail version of the model from S3 and then make
the low-detail version invisible and add the full-detail version to the scene. The low-detail
model is kept in memory but excluded from the rendering pipeline. If a fully loaded model
is marked as low by the check, the full model will then have its visibility flag set to false
and the low model’s visibility flag is set to true. This approach was chosen based on the
recommendation of Alatalo et al. [2] who noted that the loading and unloading of mod-
els from the scene was a big performance bottleneck. In a more large-scale system some
type of dynamic unloading is required to prevent the memory usage from growing as the
application is used.

Active scene When this option is active, a third periodic check is activated. This
check goes through all individual meshes in the scene and determines based on their size
and distance to the camera if they should be visible or not. Like the other checks, this
one is too performed in 500 millisecond intervals. Each mesh is either categorized as
visible or not visible. Each mesh’s visibility flag will then be changed accordingly. As
mentioned, Three.js does perform view frustum culling meaning that it will automatically

15

clip geometry outside the camera’s view frustum from the rendering pipeline but it will
not perform occlusion culling. This means that with highly detailed all the finest details
(for example, a single bolt with a diameter of one centimeter) contained within the view
frustum are rendered fully even if the camera is hundreds of meters away from it. Active
scene management is meant to reduce the load on the GPU by reducing the amount of
geometry it needs to render each frame. This of course adds load to the CPU because it
has to calculate the distance between the camera and each mesh in the scene. As Alatalo
et al. suggested we offload this computation to a web worker which allows us to perform the
additional computation without it hurting the performance of the main execution thread.

3.2 System overview

Our system comprises three distinct components. These are the converter, server, and
viewer. They are described in detail next. The source code for all components is available
at GitHub [20].

3.2.1 Converter

The converter is a JavaScript script that reads source files of 3D models and converts them
into files that can be visualized in the viewer. The converter takes in a file path, parses
the source file, and creates a set of JSON and glTF files from the geometry data. The
converter’s job is simply to generate files in all the desired formats, split the source file
into a set of result files, and create a simplified version of the source file in some format
that is used in the benchmarking. All of these goals could be achieved in multiple ways
and some choice of source file format or the nature of the model might require them to be
implemented differently than the system used in this thesis.

In this system, the converter reads an Industry Foundation Classes (IFC) file [15]. We
chose this as the format since IFC had a Three.js compatible library called IFC.js and IFC
files are usually used in the construction industry to contain high-detail models for different
structures [17]. This high-detail nature offered a good starting point for benchmarking
since the amount of geometry on each model is large. The converter could be implemented
on any source file format that could be read to a list of vertices and triangle faces.

The file is then parsed by IFC.js which offers an API to read all the triangle meshes
that are present in the file. IFC files might consist of hundreds or thousands of small

16

triangle meshes and these meshes together form the actual structure that is represented
in the file. After parsing the file and creating Three.js Geometries, two different lists are
initialized. One list stores all the meshes as Three.js’ Mesh-objects [26], and the other is
a two-dimensional list that stores groups of meshes so that each group can be exported as
its file.

The converter iterates over each triangle mesh that IFC.js parses from the source file.
Each mesh will be first converted to a Three.js Mesh object and stored in the mesh list.
Simultaneously the number of faces on each mesh is added to a cumulative value. After
each mesh is converted into a Three.js mesh, the converter will check if a preconfigured
threshold of 20 000 faces is reached. This is a threshold chosen simply to give us a set
of fairly small files. If it is, the models up to that point are collected into an array and
that array is added as an item to the multiple files array. The counter is then set to 0.
In addition, we also calculate the bounding box of every individual mesh in the model at
this point and keep track of the largest bounding box.

After the meshes have been converted and collected, the converter iterates through each
mesh again and compares the size of its bounding box to the size of the largest mesh found
in the previous iteration. If the size of the mesh’s bounding box is at least 20% of the size
of the largest bounding box, the mesh will be included in the simplified version. All the
meshes that have a large enough bounding box are included in a second model which is
then saved as the simplified version of the model.

At this point the converter creates three Three.js Group-objects [13] for the full model,
the simplified model, and for each list in the multiple file list. All the Groups are then
exported to either JSON by using JavaScript’s built-in method for JSON serialization, or
to glTF by using Three.js’ GLTFExporter. This process is visualized in Figure 3.2.

3.2.2 Server

The server simply serves JSON data to the viewer. It has an endpoint for each checkpoint.
The data that those endpoints return consists of a URL for the full JSON model, a URL
for the full glTF model, URLs for multiple glTF models, a URL for the simplified glTF
model, and the position of the checkpoint as a three-dimensional vector. The server-viewer
relationship is depicted in figure 3.3.

17

Figure 3.2: The converter

3.2.3 Viewer

The client side of the application is a standard JavaScript-based web application. It uses
Three.js to render 3D scenes to the HTML5 canvas. As described by Limper et al. [24],
Three.js is a general-purpose imperative framework built on top of WebGL. Initially, the
user is presented with a configuration menu and a button to start the benchmarking
(Figure 3.1). When start is pressed, the program first requests the data from all the
checkpoints. After receiving the locations and download-URLs for each checkpoint the
application will start the actual benchmarking. It will automatically move to each check-
point in order. The application will turn the camera so that it faces a checkpoint and
approach it in an animation that always takes 10 seconds. After reaching a checkpoint
the camera will start to rotate itself in one-second-long animations around the checkpoint.
After each animation, it checks if all of the data related to that checkpoint has been
loaded and when it determines that it is, it will perform 20 more animations around the
fully loaded model. This means that at minimum the application will rotate around a
checkpoint for at least 20 seconds. This procedure is performed at every checkpoint. The
program halts after each checkpoint has been handled.

Three.js has built-in view frustum culling [35] which can be taken advantage of for all the
models that are in the scene. The models excluded from the rendering pipeline will still

18

Figure 3.3: The relationship between the server and the viewer

reside in the memory but will not consume GPU’s processing power.

4 Performance evaluation

This section describes the performance evaluation carried out with our benchmarking sys-
tem described in Chapter 3. This section first describes the experimental setup, including
the datasets and performance metrics. It then presents the results from the experiments,
and discusses the impact of different configurations on rendering large 3D objects in a web
application.

4.1 Evaluation methodology

4.1.1 Test dataset

Our benchmarking is carried out with five different checkpoints. Each checkpoint consists
of one or several IFC files. All the source files used are listed in Table 4.1. In our
experimental evaluation, we simply extract the geometry out of the source models. Since
IFC is a standard used mainly in construction industry, IFC files generally have a lot of
metadata and custom properties used by the designers and architects. Additionally a single
geometry described in an IFC file can be represented multiple times in the visualization of
a model. For example, a single bolt might appear in the visual representation hundreds of
times even though it is only described once in the source file. Because of this the resulting
geometry can be smaller or larger than the source depending on the amount of metadata
and reused geometry.

Checkpoint File name File size (MB) Source
1 0912102010-03-01 Project.ifc 49.5 IFC Repository [38]
2 ifcbridge-model01.ifc 14.8 ifcinfra.de [16]
3 IFC Schependomlaan 48.1 buildingSmart [5]

4
Duplex_A_20110907.ifc 2.3

buildingSmart
[5]

Duplex_M_20111024_ROOMS_AND_SPACES.ifc 8.4
Duplex_Plumbing_20121113.ifc 30.1

5
Clinic_Architectural.ifc 12.4

buildingSmart
[5]

Clinic_HVAC.ifc 25.7
Clinic_Structural.ifc 18.2

Table 4.1: List of the IFC models that were used in the benchmarking

20

4.1.2 Metrics

CPU usage We monitor the percentage of CPU resources that the process that runs
the application uses. This is done by running a separate Python script simultaneously
with the benchmarking. The script uses the psutil library [28] to monitor the number of
CPU resources that the benchmarking application is using. It will collect this information
every second until the script is terminated.

Memory usage. The memory usage statistics are collected by the same script used
to collect CPU usage statistics, with values reported every second. However, instead of
collecting the percentage of memory utilized, it collects the absolute amount of memory
that the benchmarking process uses.

Frames-per-second (FPS). When the benchmarking is ongoing, we collect the FPS
information in the browser. When the application is rendering the 3D scene, it calls the
browser’s built-in requestAnimationFrame function [43] and gives its render call as a
callback to the function call. The browser then renders the scene when it determines that
it has sufficient resources to do so. The FPS values are collected as follows. Each time
the requestAnimationFrame is called, we increment a counter. Simultaneously we have
an interval running once every second that saves the value of the counter and resets it
to zero. FPS is good metric for evaluating the user experience. Generally, if FPS drops
below 10 the application becomes noticeably unresponsive and harder to use. We consider
an FPS of over 30 to be a good value where the user experience is still smooth.

Time to process. From the user experience perspective, it is important to get visual
feedback when using an application. In the case of 3D applications, the feedback comprises
visible changes in the scene after loading a model or moving around it. If the user tries to
perform any action on the scene without seeing any changes, the user experience suffers.
Loading new models to the scene either because the user explicitly requested it or by
reacting to something that the user did such as moved in the scene, needs to be as fast as
possible. As mentioned in Chapter 1, WebGL applications have to generally transmit a
lot of data and use a lot of computing resources. These may lead to an extended period
of inactivity in the scene from the user’s perspective since a model has to be downloaded
and processed on the client side before it can be added to the scene. The amount of
time it takes to show a change in the scene is an important metric regarding the user

21

experience. Accordingly, we capture this metric as follows. When the application starts
to download data for that particular checkpoint a start time for that checkpoint is logged.
After the data is received from the server the application then processes the data to create
the geometry. That geometry is then loaded to the scene and at this point the application
logs the time it took to download and process the model. If a checkpoint consists of
several models the time is calculated from the point in time when the application starts
to download the first model for that checkpoint to the point in time where every model of
that checkpoint has been loaded to the scene.

4.1.3 Benchmark setting

For the benchmarking, the server was configured to return the positions of the checkpoints
so that they form a pentagon. The placement of the checkpoints is depicted in Figure A.2.
The benchmarking was run on a computer with an AMD Ryzen 5 3600 6-Core CPU run-
ning on a frequency of 3.59 GHz, an NVIDIA GeForce GTX 1660 Super GPU, 16GB RAM
and running on a 64-bit Windows 10 Pro operating system. According to Speedtest.net,
the network download bandwidth was 39.38Mbps during the time of benchmarking. Each
configuration is run ten times and results are gathered from each iteration.

4.2 Results

We run experiments to evaluate the impact of the different configurations listed in Sec-
tion 3.1. In total, there are six tested configurations with different combinations of the
on-demand, multiple files, level-of-detail and active scene management optimizations. Ini-
tially we benchmarked only the difference between the file formats. The difference in
the processing speed became apparent immediately, as can be seen in figure 4.6, so we
performed the benchmarking by adding optimization techniques sequentially to form each
configuration.

Table 4.2 describes the abbreviations for the different configuration settings.

Table 4.3 shows the size of the geometry files produced by the converter. A lower value
is desirable for this metric, as it represents a smaller amount of data transferred over the
network. For the remaining metrics, the experiments are carried out 10 times. Figure
4.1 shows the average FPS as the function of time over all the iterations. Minimum and
maximum values are visualized as the shaded area behind each line. For FPS higher

22

OD On-Demand
MF Multiple files
LOD Level-of-detail
AS Active scene management

Table 4.2: Abbreviations used in the plots

Checkpoint JSON size (MB) glTF size (MB) Multiple glTF size (MB) Low LOD glTF Size (MB)
1 74.5 21.9 19.5 0.2
2 40.6 12.4 12.1 6.8
3 43.9 22.3 21.4 1.3
4 210.5 52.0 52.9 3.9
5 292.1 100.9 96.4 1.4

Table 4.3: List of the geometry file sizes that the converter produces

result is better. Figure 4.2 plots the average CPU usage as the function of time and the
minimum and maximum values similar to the FPS results. In this case the lower result
is better. Average memory usage is visualized in figure 4.3. Figure 4.6 shows the average
time taken for each configuration to both download and process the model before it was
added to the scene for each checkpoint. The bar represents the average over all iterations
and minimum and maximum values are represented as the error bar. We describe each
configuration separately and evaluate their performance for the considered metrics next.

4.2.1 JSON

As we can already see from Table 4.3, the JSON files have a substantially larger size than
their glTF counterparts even though they describe the same geometries and materials. In
JSON everything is represented as normal text, as opposed to glTF where geometry data
is encoded in binary format. This effect alone causes the JSON files to be over three times
as large as the glTF files on average. This directly affects the amount of data that needs
to be transmitted over the network.

From the FPS results (Figure 4.1a), we can see that the FPS drops close to 10, several
times during the experiments. In the worst cases, it goes all the way down to 0. The
difference between the average and the minimum and the maximum is the largest with
JSON as compared to the other configurations. This is expected since it is the only
configuration where the application needs to process the data on the client side. Because
every checkpoint is loaded to the scene at once in this configuration, each individual

23

checkpoint processing is competing with one another. Depending on the CPU time each
processing gets from the JavaScript engine the average process times might differ a lot
between iterations.

Since this configuration simply starts loading every checkpoint to the scene, the memory
usage (Figure 4.3) rises as long as models are being loaded to the scene. After all the
models have been loaded, the memory usage lowers as the application can free some
buffers that are in use when loading and parsing the JSON data to a Three.js Mesh. The
peak memory usage is higher than in any other configuration.

The CPU usage (Figure 4.2a) follows the same pattern as the FPS statistics, with the
difference being that instead of having dropped, it has spikes. The spikes behave similarly
to the drops in the FPS statistics so that they appear when models are being loaded and
are more significant when more checkpoints have been loaded. The variance in CPU usage
is much higher with JSON than it is with the other configurations.

Even though this configuration did not result in an increased amount of computational
resources to be used, the largest weakness this configuration has is the amount of time
that it takes to show a model after starting to download it. In addition to the larger
amount of data that needs to be downloaded, the parsing phase, where a Three.js Mesh
is constructed from the JSON data, takes considerably longer than in any other config-
uration. This causes the user to see an extended period of inactivity where nothing is
loaded on the scene. Figure 4.6 shows that the difference in processing times compared
to glTF was considerable, with JSON taking several times as long as glTF to be loaded.
Since JSON was only benchmarked in a configuration without on-demand loading, multi-
ple files, active scene, or level of detail, each checkpoint was competing against each other
for computing resources making the minimum and maximum result significantly different
from the average.

4.2.2 glTF

In addition to having significantly lower file size when compared to JSON (Table 4.3),
we can see from Figure 4.6 that glTF is significantly faster to load the scene then JSON.
Interestingly even though the processing times were significantly shorter with glTF, the
CPU usage spikes are similar when loading glTF even though it can be loaded to the GPU
without any additional processing in between.

After the model is loaded there does not seem to be much difference in the computing

24

resource utilization (Figure 4.2b) when compared to JSON. Sometimes the performance
drops were even more significant with glTF than with JSON. This is possibly due to the
fact that since geometry stored in glTF does not need any preprocessing the application
was loading much more data to the GPU’s buffers at a single points of time which seems
to be the heaviest part of the processing as can be seen from figures 4.4 and 4.5.

When loading all of the files simultaneously without any scene management, Figure 4.1b
shows that the FPS drops at the beginning when all of the checkpoints are loaded. Simi-
larly to the JSON configuration the checkpoints are loaded simultaneously and therefore
are competing for computing resources. The variance is still quite large with a lot of points
in time where in the worst scenario the FPS dropped below 10.

4.2.3 glTF On-demand

This configuration requires periodically checking each checkpoint’s distance to the camera;
however, this overhead is not noticeable in the CPU usage. As we can see from Figure 4.4
most of the spikes seem to be from the loading of the model to the GPU buffers. We can
also see that the CPU utilization (Figure 4.2c) is generally lower than what it was with
plain glTF and the spikes are not as high. The spikes are naturally spread out more evenly
throughout the runtime of the benchmarking since each checkpoint is loaded separately.

When comparing this configuration to the plain glTF solution, we can see that the memory
usage (Figure 4.3) is rising in a much more gradual manner. This is expected since now
checkpoints are loaded to the application one at a time, when necessary. The FPS drops
(Figure 4.1c) do not happen in the same extent as with plain glTF or JSON until much
later when the larger checkpoints are being loaded.

To visualize the correlation between events, such as checkpoints being loaded to the scene,
and performance metrics we chose one individual iteration to serve as a test run. The
configuration we used to plot this was glTF On-Demand since it is the most basic configu-
ration where each checkpoint is loaded individually. The annotated test run’s CPU usage
can be seen in figure 4.4 and its FPS statistics are presented in figure 4.5.

We can see clearly in both figures, that the largest drops in performance happens exactly
when the application loads the models to the scene. After downloading the glTF model
from the server, the application has the geometry in memory. From there it will transfer
the data to the GPU so that it can be rendered on the canvas, and this seems to be the
heaviest part of the application process.

25

4.2.4 glTF On-demand Multiple files

Splitting the 3D data to multiple small files seemed to also bring some improvements
when compared to the previous configurations where each model was represented as one
large file. The reduction in the amount of time it took to download and process the
models is small but noticeable in Figure 4.6. The FPS metrics are pretty much the same
when compared to the previous configuration with on-demand loading and a single file
representations. We do see in figure 4.2d that the average CPU usage peak is lower when
using multiple files to represent single models.

One not easily quantifiable benefit from this configuration is that some parts of the model
can be made visible to the user before the whole model has been loaded. This makes the
application feel more responsive since the user can see the scene changing faster.

4.2.5 glTF - On-demand - Multiple files - Level-of-detail

In this configuration, full models are only shown when the camera is close enough to the
models. This reduces the amount of data that goes through the rendering pipeline each
frame with the goal of improving FPS. This is the first configuration where we can clearly
see (Figure 4.1e) that the FPS stays at a high level consistently. We do still see some
drops presumably when the larger models are loaded but on average the FPS remained
higher than 20 at all times during the benchmarking. The drawback of this configuration
are that each model representation gets an additional file that is the lower level-of-detail
version of the model and that the application has to continuously check which models
need to be shown fully and which can be represented by the lower level-of-detail version.
However these drawbacks are not noticeable in the CPU (Figure 4.2e) or memory usage
(Figure 4.3e). The improvements of this configuration are clear in the FPS statistics,
meaning that unsurprisingly having a level-of-detail mechanism is encouraged in a browser
environment.

We could also see that on average, the drops in the FPS charts were not as significant
with the configurations that managed the amount of models rendered to the scene.

26

4.2.6 glTF - On-demand - Multiple files - Level-of-detail - Active
scene

This configuration aims to reduce the number of triangles in the scene, similar to the
previous configuration. It also uses level-of-detailing, but in addition, it removes small
objects from the rendering pipeline on the client side after the model has been loaded. Since
this is done on the client side, it does not affect download and processing performance,
as can be seen from (Figure 4.6). The FPS charts show improvements when using the
active scene management option, and there is virtually no difference in CPU utilization
and memory usage compared to the previous configuration without this option. This
configuration introduces additional calculations for determining which models are visible
and which are not, but these do not significantly impact performance. There is a drop in
FPS when loading the last checkpoint, but on average, the FPS remains higher than with
any other configuration. However the additional improvement this configuration brings
when compared to the previous one can only be seen on average during the loading of the
last checkpoint and there the difference is on average around five frames per second. This
configuration might impact the quality of the scene by hiding smaller objects. It is the
decision of the application developer if this small performance improvement is worth the
price of having an impact on the scene quality in terms of having objects hidden.

27

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Average FPS statistics for each configuration

28

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Average CPU usage for each configuration

29

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Average memory usage for each configuration

30

Figure 4.4: Individual test run’s CPU usage. Red vertical lines represent the points when a model was
added to the scene

Figure 4.5: Individual test run’s FPS statistics. Red vertical lines represent the points when a model
was added to the scene

31

(a) (b)

(c) (d)

(e)

Figure 4.6: Average processing times for each checkpoint. Error bars represent the minimum and
maximum time it took to process each checkpoint with each configuration.

5 Discussion and future work

5.1 Data format - transmission and processing

In terms of storing the data that is used by a WebGL application, our results show that
an optimized format that allows as little processing on the client side, such as glTF brings
significant reductions in the time that a user has to wait for a model to load. This was
also observed by Limper et al. in their case study [25]. After the data has been loaded
to the scene there seems to be no difference in performance between different file formats,
which was to be expected since the data already resides in the GPU’s buffers at this point.

We observed significant drops in performance just when models were loaded onto the
scene. This effect was also reported by Alatalo et al. [2]. One thing to note is that the
performance drop occurred with both file formats. Even though glTF was much faster
to process, the number of computing resources it took to load the processed data to the
GPU and the resulting drop in performance was as significant with it as when loading
plain JSON. Because of this, we recommend designing WebGL applications in a way that
minimizes the number of times it has to download new models to the scene. Especially
we recommend that situations, where a model is removed from the scene and then loaded
again soon after, are avoided.

Google has released a library called Draco, which is purely meant for compressing 3D
data [8]. It can be wrapped around glTF to produce even smaller files to reduce the
storage size and the amount of data that needs to be sent over the network. Draco
requires an additional decoding process on the client side when compared to glTF. This
goes against the suggestion of Limper et al. [25] of preferring data formats that require
as little processing in the client application as possible, and letting the browser take care
of compressing and caching data. However, the study was published before Draco was
published. Since Draco is directly targeted to be used with both storage and transmission
of 3D data, it would be beneficial to test how it impacts the download and process times.

33

5.2 Rendering performance

Even though the largest performance drops were detected when the application was loading
the models to the scene, the number of triangles that needed to be drawn had a noticeable
impact on the FPS in our experiments. This was expected since less data is going through
the rendering pipeline. This creates a bit of a dilemma since it would be beneficial to
reduce the number of triangles on the scene with e.g. level-of-detailing, switching between
different versions of models dynamically every time the user’s viewport changes. However,
these mechanisms result in a large number of loading and unloading of models which were
the cause of the largest drops in performance. In the benchmarking application used in
this thesis, a scene’s size was fixed and the number of separate models was low. This
allowed the level of detailing to work in a way where everything was loaded to the scene
upfront and the visibility flags of different versions were manipulated by the application.
However, this approach would lead to higher memory usage if used in an application with
a large number of models in the scene. We also noticed that the performance drops that
were experienced during the loading of models, were not as significant when there was
some scene management in place to limit the amount of data that is rendered.

There is a need for a scene management system that could dynamically manage the re-
sources that are loaded to the GPU, in a manner that minimizes the amount of times data
needs to be downloaded from the server and processed. 3D tiles specification, which was
mentioned in Chapter 2, is the only WebGL-specific specification to our knowledge that
tackles these issues. As of now, the 3D tiles specification is tightly coupled with the Ce-
sium platform even though it is an open specification. However, there are several ongoing
projects to create Three.js support for 3D tiles such as 3DTilesRendererJS by NASA [27].
Cesium has also published a new version of the specification, labeled 3D Tiles Next, where
they plan to simplify the architecture by utilizing glTF directly without the need to wrap
it in their B3DM format [1].

6 Conclusion

We found that using an optimized file format such as glTF can reduce the time it takes to
display a 3D model to the user. However, it did not significantly decrease the computation
resources used or improve FPS levels compared to using JSON. The greatest performance
decline occurred during model loading. The impact of the performance drop was less
significant when the amount of rendered data was managed using a level-of-detailing sys-
tem. We observed that the performance decline was directly correlated with the size of
the model being loaded, with larger models having a greater impact on performance than
smaller ones

Here are our reference guidelines for tackling performance issues with WebGL applications:

• Utilize an optimized file format such as glTF.

• Load as little 3D data as possible at any given time. The more data is loaded, the
more significant is the drop in the FPS and spike in the CPU usage. All excess
loading should be avoided such as loading a detailed model that is far away from the
user.

• Avoid situations where the same model is first unloaded and then loaded back to the
scene.

• Manage the amount of data that is visible to the user. Hide unnecessary details
when possible. This reduces the negative effect that loading models to the scene has
to the performance.

Bibliography

[1] 3D Tiles Next. https://cesium.com/blog/2021/11/10/introducing-3d-tiles-

next/. Accessed: 2022-11-23.

[2] T. Alatalo, T. Koskela, M. Pouke, P. Alavesa, and T. Ojala. “VirtualOulu: collabo-
rative, immersive and extensible 3D city model on the web”. In: Proceedings of the
21st International Conference on Web3D Technology. 2016, pp. 95–103.

[3] U. Assarsson and T. Moller. “Optimized view frustum culling algorithms for bound-
ing boxes”. In: Journal of graphics tools 5.1 (2000), pp. 9–22.

[4] J. L. Bentley. “Multidimensional binary search trees used for associative searching”.
In: Communications of the ACM 18.9 (1975), pp. 509–517.

[5] buildingSmart sample files. https://github.com/buildingSMART/Sample-Test-

Files/tree/master/IFC2x3. Accessed: 2022-10-26.

[6] Cesium 3D Tiles specification. https://github.com/CesiumGS/3d-tiles/tree/

main/specification. Accessed: 2022-01-20.

[7] K. Chaturvedi, Z. Yao, and T. H. Kolbe. “Web-based Exploration of and interaction
with large and deeply structured semantic 3D city models using HTML5 and We-
bGL”. In: Bridging Scales-Skalenübergreifende Nah-und Fernerkundungsmethoden,
35. Wissenschaftlich-Technische Jahrestagung der DGPF. 2015.

[8] DRACO: 3D Data Compression. https://github.com/google/draco. Accessed:
2022-11-22.

[9] Extensible 3D (X3D) Graphics. https://www.web3d.org/x3d/what-x3d. Accessed:
2022-01-16.

[10] FBX - Adaptable file format for 3D animation software. https://www.autodesk.

com/products/fbx/overview. Accessed: 2022-05-12.

[11] M. Garland and P. S. Heckbert. “Surface simplification using quadric error metrics”.
In: Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. 1997, pp. 209–216.

[12] glTF RUNTIME 3D ASSET DELIVERY. https : / / www . khronos . org / gltf/.
Accessed: 2022-01-16.

https://cesium.com/blog/2021/11/10/introducing-3d-tiles-next/
https://cesium.com/blog/2021/11/10/introducing-3d-tiles-next/
https://github.com/buildingSMART/Sample-Test-Files/tree/master/IFC 2x3
https://github.com/buildingSMART/Sample-Test-Files/tree/master/IFC 2x3
https://github.com/CesiumGS/3d-tiles/tree/main/specification
https://github.com/CesiumGS/3d-tiles/tree/main/specification
https://github.com/google/draco
https://www.web3d.org/x3d/what-x3d
https://www.autodesk.com/products/fbx/overview
https://www.autodesk.com/products/fbx/overview
https://www.khronos.org/gltf/

36 BIBLIOGRAPHY

[13] Group. https://threejs.org/docs/?q=group#api/en/objects/Group. Accessed:
2022-06-12.

[14] H. Hoppe. “Progressive meshes”. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques. 1996, pp. 99–108.

[15] IFC. https://www.buildingsmart.org/standards/bsi-standards/industry-

foundation-classes. Accessed: 2022-06-12.

[16] IFC Infra. https://ifcinfra.de/ifc-bridge. Accessed: 2022-10-26.

[17] Ifc.js. https://ifcjs.github.io/info/docs/introduction. Accessed: 2022-06-
12.

[18] T. H. Kolbe, G. Gröger, and L. Plümer. “CityGML: Interoperable access to 3D city
models”. In: Geo-information for disaster management. Springer, 2005, pp. 883–899.

[19] M. Krämer and R. Gutbell. “A case study on 3D geospatial applications in the web
using state-of-the-art WebGL frameworks”. In: Proceedings of the 20th international
conference on 3d web technology. 2015, pp. 189–197.

[20] ktoiv/webgl-benchmarking. https://github.com/ktoiv/webgl- benchmarking.
Accessed: 2022-12-06.

[21] G.-h. Lee, P.-h. Choi, J.-h. Nam, H.-s. Han, S.-h. Lee, and S.-c. Kwon. “A Study
on the Performance Comparison of 3D File Formats on the Web”. In: International
journal of advanced smart convergence 8.1 (2019), pp. 65–74.

[22] L. Li, X. Qiao, Q. Lu, P. Ren, and R. Lin. “Rendering optimization for mobile web
3D based on animation data separation and on-demand loading”. In: IEEE Access
8 (2020), pp. 88474–88486.

[23] P. Li, X. Yu, and J. Wang. “Progressive compression and transmission of 3D model
with WebGL”. In: 2016 International Conference on Audio, Language and Image
Processing (ICALIP). IEEE. 2016, pp. 170–173.

[24] M. Limper, Y. Jung, J. Behr, and M. Alexa. “The pop buffer: Rapid progressive
clustering by geometry quantization”. In: Computer Graphics Forum. Vol. 32. 7.
Wiley Online Library. 2013, pp. 197–206.

[25] M. Limper, S. Wagner, C. Stein, Y. Jung, and A. Stork. “Fast delivery of 3d web
content: A case study”. In: Proceedings of the 18th International Conference on 3D
Web Technology. 2013, pp. 11–17.

https://threejs.org/docs/?q=group#api/en/objects/Group
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes
https://ifcinfra.de/ifc-bridge
https://ifcjs.github.io/info/docs/introduction
https://github.com/ktoiv/webgl-benchmarking

BIBLIOGRAPHY 37

[26] Mesh - Three.js docs. https : / / threejs . org / docs / #api / en / objects / Mesh.
Accessed: 2022-06-12.

[27] NASA 3D Tiles Renderer JS. https://github.com/NASA-AMMOS/3DTilesRendererJS.
Accessed: 2022-11-23.

[28] psutil documentation. https://psutil.readthedocs.io/en/latest/. Accessed:
2022-12-06.

[29] A. Schilling, J. Bolling, and C. Nagel. “Using glTF for streaming CityGML 3D city
models”. In: Proceedings of the 21st International Conference on Web3D Technology.
2016, pp. 109–116.

[30] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. “Decimation of triangle meshes”.
In: Proceedings of the 19th annual conference on Computer graphics and interactive
techniques. 1992, pp. 65–70.

[31] T. Scully, S. Friston, C. Fan, J. Doboš, and A. Steed. “glTF Streaming from 3D
Repo to X3DOM”. In: Proceedings of the 21st International Conference on Web3D
Technology. 2016, pp. 7–15.

[32] A. Selçuk, U. Güdükbay, and B. Özgüç. “Walkthrough in Complex Environments at
Interactive Rates using Level-of-Detail”. In: Turkish Journal of Electrical Engineer-
ing and Computer Sciences 10.1 (2002), pp. 57–72.

[33] C. Slocum, J. Huang, and J. Chen. “VIA: Visibility-aware Web-based Virtual Re-
ality”. In: The 26th International Conference on 3D Web Technology. 2021, pp. 1–
9.

[34] STL (STereoLithography) File Format Family. https://www.loc.gov/preservation/

digital/formats/fdd/fdd000504.shtml. Accessed: 2022-05-12.

[35] I. Sukin. Game development with Three. js. Packt Publishing Ltd, 2013.

[36] K. J. Theisen. “Programming languages in chemistry: a review of HTML5/JavaScript”.
In: Journal of Cheminformatics 11.1 (2019), pp. 1–19.

[37] three-loader-3dtiles. https : / / github . com / nytimes / three - loader - 3dtiles.
Accessed: 2022-11-23.

[38] University of Auckland Open IFC Repository. http://smartlab1.elis.ugent.be:

8889/IFC-repo/http.openifcmodel.cs.auckland.ac.nz/. Accessed: 2022-10-26.

[39] Wavefront OBJ. https://www.fileformat.info/format/wavefrontobj/egff.

htm. Accessed: 2022-01-16.

https://threejs.org/docs/#api/en/objects/Mesh
https://github.com/NASA-AMMOS/3DTilesRendererJS
https://psutil.readthedocs.io/en/latest/
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://github.com/nytimes/three-loader-3dtiles
http://smartlab1.elis.ugent.be:8889/IFC-repo/http.openifcmodel.cs.auckland.ac.nz/
http://smartlab1.elis.ugent.be:8889/IFC-repo/http.openifcmodel.cs.auckland.ac.nz/
https://www.fileformat.info/format/wavefrontobj/egff.htm
https://www.fileformat.info/format/wavefrontobj/egff.htm

38 BIBLIOGRAPHY

[40] Web Assembly. https://developer.mozilla.org/en- US/docs/WebAssembly.
Accessed: 2022-09-12.

[41] Web Worker. https://developer.mozilla.org/en- US/docs/Web/API/Web_

Workers_API/Using_web_workers. Accessed: 2022-06-12.

[42] WebGL. https://www.khronos.org/webgl/. Accessed: 2022-02-11.

[43] window.requestAnimationFrame: Mozilla MDN Docs. https://developer.mozilla.

org/en-US/docs/Web/API/window/requestAnimationFrame. Accessed: 2022-10-
26.

[44] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. “Visibility culling using hier-
archical occlusion maps”. In: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. 1997, pp. 77–88.

https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://www.khronos.org/webgl/
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

A All checkpoints visualized

(a) (b)

(c) (d)

(e)

Figure A.1: Every checkpoint in order

40 BIBLIOGRAPHY

Figure A.2: Placement of the checkpoints in the benchmarking application. Checkpoint 1 is the one on
bottom left. Checkpoints are placed in an anti-clockwise order

	Introduction
	Background
	Client-server communication in WebGL applications
	Storage formats
	JavaScript performance
	WebGL performance
	Level of Detail and progressive loading
	Spatial querying

	System Architecture
	Configurations
	System overview
	Converter
	Server
	Viewer

	Performance evaluation
	Evaluation methodology
	Test dataset
	Metrics
	Benchmark setting

	Results
	JSON
	glTF
	glTF On-demand
	glTF On-demand Multiple files
	glTF - On-demand - Multiple files - Level-of-detail
	glTF - On-demand - Multiple files - Level-of-detail - Active scene

	Discussion and future work
	Data format - transmission and processing
	Rendering performance

	Conclusion
	Bibliography
	All checkpoints visualized

