Mirjam Bilker-Koivula Matti Ollikainen

SUOMEN GEOIDIMALLIT JA NIIDEN KÄYTTÄMINEN KORKEUDEN MUUNNOKSISSA

2009

ISBN-13: 978-951-711-259-8 ISSN: 0787-9172 pdf-ISBN: 978-951-711-260-4

Sisällysluettelo

Yhteenveto		veto		v				
Abstract		t						
1. Johdanto		danto		1				
2.	Per	uskäsitt	eitä	2				
	2.1.	Korkeu	ıs ellipsoidista	2				
	2.2.	Vaaittu	ı korkeus	2				
	2.3.	Geoidi	korkeus	2				
	2.4.	Suome	n kartastotöissä käytettävät koordinaatistot	3				
	2.5.	Suome	ssa käytettävät korkeusjärjestelmät	3				
		2.5.1.	Aiemmat korkeusjärjestelmät	3				
		2.5.2.	N60-järjestelmä	3				
		2.5.3.	N2000-järjestelmä	4				
		2.5.4.	Paikalliset korkeusjärjestelmät	4				
		2.5.5.	Korkeusjärjestelmien väliset erot	4				
3.	Geo	idimalli	t	5				
	3.1.	Globaa	lit geoidimallit	5				
		3.1.1.	OSU91A	5				
		3.1.2.	EGM96	5				
		3.1.3.	GGM02	6				
	3.2.	Euroop	palainen geoidimalli EGG97	7				
	3.3.	Pohjois	smaiset geoidimallit	7				
		3.3.1.	NKG89	/				
		3.3.2.	NKG96	/				
	2.4	<i>3.3.3</i> .	NKG2004	/				
	3.4.	Suome	h alueen vanhat geoldimallit	8				
		3.4.1.	Astrogeodeettinen Bomford 1970 geoldimaili	ð				
4	EIN	3.4.2.	rinyo	9				
4.		2000-ge	oloimaili	10				
	4.1.	Pisteet	mining esthesiss	10				
=	4.2.	POLYHO		12				
э.	F IIN 5 1	Lovoin	v-geolaimain	12				
	5.1.	Lockel	not	. 13				
6	5.2. Coo	Lasken	IIIdi	. 13				
U. 7	Suo	mon gov	idimallian käyttä	- 10 - 20				
/.	7 1	Pisteen	korkeuden muunnos	20				
	7.1.	Paikall	isen muunnospinnan määrittäminen	20				
	1.2.	7 2 1	Muunnospinta maantieteellisissä FURFE-FIN-koordinaateissa	21				
		722	Muunnospinta tasokoordinaateissa	21				
8.	Mis	tä geoid	imalleia saa					
Kin	riallis	ansviitt	eet					
Lii	te A:	Eritvy	nniset korkeudet					
		A.1.	Korkeus ellipsoidista	. 31				
		A.2.	Ortometrinen korkeus	. 31				
		A.3.	Normaalikorkeus	. 32				
		A.4.	Geoidikorkeus ja korkeusanomalia	. 32				
Liite B: L		Lasku	esimerkki: Bi-lineaarinen interpolointi FIN2005N00-geoidimallin hilassa	34				
Lii	te C:	Lasku	esimerkki: Paikallisen muunnospinnan johtaminen FIN2005N00-mallin					
	-	avulla	maantieteellisessä EUREF-FIN-koordinaateissa	. 35				
		C.1.	Lähtökoordinaatit	. 35				
		C.2.	Paikallisen muunnospinnan johtaminen	. 35				
		C.3.	Muunnospinnan tarkkuus	. 39				
		C.4.	Muunnospinnan käyttö: bi-lineaarinen interpolointi	. 39				

Liite D:	D: Laskuesimerkki: Paikallisen muunnospinnan johtaminen FIN2005N00-malli						
	avulla	ETRS-TM35FIN -tasokoordinaateissa	41				
	D.1.	Lähtökoordinaatit	41				
	D.2.	Paikallisen muunnospinnan johtaminen	41				
	D.3.	Muunnospinnan tarkkuus	45				
	D.4.	Muunnospinnan käyttö: bi-lineaarinen interpolointi	46				

Yhteenveto

Geoidimallien käyttö on viime vuosina lisääntynyt huomattavasti. Kansallisen geoidimallin, tai oikeammin muunnospinnan avulla voidaan GPS:llä mitatut ellipsoidiset korkeudet muuntaa vaaituiksi korkeuksiksi kansallisessa korkeusjärjestelmässä. Tiedotteessa esitellään Suomen alueen geoidimallit ja niiden käyttö.

Suomen alueella merkittävimmät globaaliset geoidimallit ovat OSU91A, EGM96 ja GGM02. Alueelliset geoidimallit ovat eurooppalainen EGG97-malli ja Pohjoismaisen geodeettisen komission geoidityöryhmän laskemat mallit NKG89, NKG96 ja NKG2004. Suomen alueen vanhat geoidimallit ovat astrogeodeettinen Bomford 1970 ja painovoimahavaintoihin perustuva FIN95-malli.

Nykyisin Suomessa käytössä olevat geoidimallit ovat FIN2000 ja FIN2005N00. FIN2000malli on muunnospinta jolla EUREF-FIN-koordinaatistossa GPS:llä mitatut ellipsoidiset korkeudet voidaan muuntaa N60-korkeusjärjestelmän mukaisiksi vaaituskorkeuksiksi. FIN2000malli on laskettu sovittamalla korjauspinta NKG96-geoidimalliin 156 GPS/vaaituspisteiden avulla. Mallin tarkkuus on 3 cm ja suurimmat muunnosvirheet voivat olla 9 cm.

FIN2005N00 on uusin valtakunnallinen malli. Tällä muunnospinnalla EUREF-FINkoordinaatistossa GPS:llä mitatut ellipsoidiset korkeudet voidaan muuntaa N2000korkeusjärjestelmän mukaisiksi vaaituskorkeuksiksi. Mallin pohjana on NKG2004-geoidimalli, johon on laskettu korjauspinta 50 EUVN-DA (European Vertical Reference Network – Densification Act) GPS/vaaituspisteiden avulla. Mallin tarkkuus on 2 cm ja suurimmat muunnosvirheet voivat olla 6 cm.

FIN2000- ja FIN2005N00-mallit ovat saatavissa hila-muotoisina EUREF-FIN-koordinaateissa. Hilasta voidaan laskea halutulle pisteelle geoidikorkeus bi-lineaarisella interpolointimenetelmällä. Alueellisilla GPS/vaaituspisteillä voidaan määrittää kansallisesta mallista paikallinen muunnospinta maantieteellisissä EUREF-FIN koordinaateissa tai haluttaessa tasokoordinaateissa.

Abstract

Over the years the use of geoid models has increased considerably. Using a national geoid model, or better said a transformation surface, ellipsoidal heights, as measured by GPS, can be transformed into heights in the national height system, as measured by levelling. This publication gives an overview of the geoid models available for Finland and their use.

Global geoid models of importance for Finland are OSU91, EGM96, and GGM02. Important regional models are the European model EGG97 and the Nordic models NKG98, NKG96, and NKG2004 calculated by the working group on geoid determination of the Nordic Geodetic Commission. Old Finnish models are the astro-geodetic geoid model Bomford 1970 and the FIN95 model, which is based on gravity observations.

At present, two geoid models are used in Finland: FIN2000 and FIN2005N00. The FIN2000 model is a transformation surface with which ellipsoidal coordinates, measured with GPS in the EUREF-FIN reference frame, can be transformed into leveled coordinates in the N60 height system. The FIN200 model was calculated by fitting a correction surface to the NKG96 model using data of 156 GPS/levelling points. The accuracy of the model is 3 cm and the biggest transformation errors can be 9 cm.

The newest model for Finland is FIN2005N00. With this transformation surface ellipsoidal heights, measured with GPS in the EUREF-FIN reference frame, can be transformed into leveled heihts in the N2000 height system. The model is based on the NKG2004 geoid model to which a correction surface was fitted using the data of the 50 EUVN-DA (European Vertical Reference Network – Densification Act) GPS/levelling points. The accuracy of the model is 2 cm and largest transformation errors can be 6 cm.

The FIN2000 and FIN2005N00 models are available in grid-formats in EUREF-FIN coordinates. Geoid heights for points can be calculated from the grids using bi-linear interpolation. When local GPS/levelling data is available a local transformation surface can be determined from a national model. This can be done either in EUREF-FIN coordinates or optionally in projected coordinates.

1. Johdanto

Geoidimallien käyttö on viime vuosikymmenien aikana lisääntynyt huomattavasti ja samalla myös niiden tarkkuusvaatimukset ovat kasvaneet. Syynä on GPS-satelliittipaikannus, joka yhä enemmän korvaa perinteisiä maanmittausmenetelmiä kuten vaaitusta. Vaaituksesta saadaan korkeuksia keskimerenpinnan suhteen kansallisessa korkeusjärjestelmässä, mutta GPS mittaa korkeuksia ellipsoidipinnan suhteen. Näitä kahta eri korkeutta yhdistää geoidimalli, joka kuvaa geoidin ja ellipsoidin välistä etäisyyttä.

Geoidimalleja voidaan laskea globaalisina, alueellisina ja kansallisina. Gravimetriset geoidimallit lasketaan painovoimamittauksista, jotka voivat olla esimerkiksi satelliittihavaintoja, ilmagravimetriamittauksia, laivamittauksia ja maanpäällisiä havaintoja. Kun gravimetrinen geoidimalli sovitetaan GPS-vaaitusdatan avulla kansalliseen korkeusjärjestelmään, syntyy kansallinen malli, jota voidaan käyttää muunnettaessa ellipsoidikorkeuksia vaaituskorkeuksiksi ja toisinpäin. Suomessa on tähän tarkoitukseen käytössä tällä hetkellä kaksi geoidimallia: FIN2000 ja FIN2005N00.

Tässä tiedotteessa esitellään Suomen nykyiset mallit, niiden taustat, miten mallit on sovitettu Suomen korkeusjärjestelmiin, mikä on mallien tarkkuus ja miten niitä voidaan käyttää GPSvaaituksessa. Gravimetrisien geoidimallien laskentamenetelmiä ei käsitellä tässä tiedotteessa.

Tiedotteen alussa kappaleessa 2 käsitellään geoidimalleihin liittyvät peruskäsitteet, kuten korkeudet sekä Suomessa käytössä olevat koordinaatistot ja korkeusjärjestelmät. Kappaleessa 3 kuvataan lyhyesti Suomeen liittyviä globaaleita, alueellisia ja vanhoja Suomen alueen geoidimalleja. Kappaleissa 4 ja 5 käsitellään tarkemmin Suomen nykyisiä geoidimalleja, FIN2000 ja FIN2005N00, sekä kappaleessa 6 näiden mallien välisiä eroja. Kappaleessa 7 annetaan ohjeet geoidimallien käyttämisestä ja lopuksi kappaleessa 8 kerrotaan mistä ja missä muodossa malleja saa. Liitteistä löytyy tarkempia tietoja eri korkeuksista (Liite A) ja malleihin liittyviä laskuesimerkkejä (Liitteet B, C ja D).

2. Peruskäsitteitä

Geoidikorkeus yhdistää geoidimalleihin liittyvät korkeuskäsitteet ellipsoidikorkeus ja vaaituskorkeus. Näiden lisäksi on tärkeä tietää mistä koordinaatti- ja korkeusjärjestelmästä on kyse. Ellipsoidikorkeus, vaaituskorkeus ja geoidikorkeus on lyhyesti selitetty kappaleessa 2.1., 2.2., ja 2.3., ja tarkemmin liitteessä A. Kappaleessa 2.4. annetaan yleiskuva Suomessa käytössä olevista koordinaattijärjestelmistä ja korkeusjärjestelmät esitellään lyhyesti kappaleessa 2.5.

2.1. Korkeus ellipsoidista

GPS-mittausten laskennan tuloksena saadaan pisteen kolmiulotteiset koordinaatit (X, Y, Z), jotka voidaan muuntaa maantieteellisiksi koordinaateiksi (φ , λ) ja ellipsoidikorkeudeksi (h) (Kuva 2-1), kun tunnetaan järjestelmään liittyvän ellipsoidin ominaisuudet.

Ellipsoidikorkeus antaa mittauspisteen etäisyyden ellipsoidipinnasta. Se on geometrinen suure, joka ei kerro vielä mihin suuntaan vesi virtaa. Siihen tarvitaan korkeus, joka on määritelty perinteisellä vaaitusmenetelmällä.

2.2. Vaaittu korkeus

Tarkkavaaituksessa mitataan pisteiden välisiä geopotentiaalieroja jotka muutetaan metrisiksi korkeuseroiksi. Vaaituslatat asetetaan vesivaa'an avulla luotiviivan suuntaan, ts. kohtisuoraan geoidipintaan nähden ja vaaituskoneen optinen akseli geoidipinnan suunnaiseksi, jolloin tähtäyssäteet kulkevat geoidin tangentin suuntaisesti. Korkeusjärjestelmän nollatasona käytetään usein keskimerenpintaa, jonka oletetaan vastaavan geoidipintaa. Näin pisteiden vaaitut korkeudet *H* saadaan automaattisesti geoidipintaan nähden (Kuva 2-2).

Riippuen siitä miten paikallinen painovoima otetaan huomioon tarkkavaaituslaskuissa, syntyy joko ortometrinen tai normaalikorkeusjärjestelmä. Suomen N60-korkeusjärjestelmä on ortometrinen ja uudessa N2000-korkeusjärjestelmässä korkeudet ovat normaalikorkeuksia. Ortometrisen ja normaalikorkeuden ero on kaikkialla Suomessa alle 8 cm (katso liite A)

2.3. Geoidikorkeus

Klassisen määritelmän mukaan geoidi on se muoto johon vapaa valtameren pinta asettuu lepotilassa. Geoidi on pinta joka yhdistää valtameret ja jatkuu myös mantereiden ali. Geoidin tarkkaa muotoa ja paikkaa kolmiulotteisessa avaruudessa on vaikea kuvata matemaattisesti koska geoidi on fysikaalinen maan massojen ja tiheysvaihteluiden määräämä pinta. Yleensä geoidi kuvataan korkeuksina vertausellipsoidiin nähden. Silloin puhutaan geoidimallista. Geoidimallissa annetaan siis geoidin korkeus ellipsoidista eli geoidikorkeus. Geoidikorkeuden (N), ellipsoidikorkeuden (h), ja vaaitun korkeuden (H) välinen yhteys on (kuva 2-2):

$$h = H + N \quad . \tag{2-1}$$

Edellä mainittua geoidimallia käytetään ortometristen korkeuksien yhteydessä. Normaali-

Kuva 2-1. *Kolmiulotteiset koodinaatit* (X,Y,Z) *ja maantieteelliset koodinaatit* (φ,λ,h) .

Kuva 2-2. Eri korkeuksia: korkeus ellipsoidista, h, vaaittu korkeus, H, ja geoidikorkeus, N.

korkeuksien yhteydessä tulisi käyttää hieman eri tavalla määritettyä kvasigeoidimallia (katso liite A). Suomessa erot ovat kuitenkin hyvin pieniä joten tässä tiedotteessa käytetään yksinkertaisuuden vuoksi ainoastaan termiä geoidimalli.

2.4. Suomen kartastotöissä käytettävät koordinaatistot

Suomessa on käytössä kaksi valtakunnallista koordinaatistoa. Ensimmäinen on ensimmäisen luokan kolmioverkkoon perustuva kkj-järjestelmä. Toinen on EUREF-FIN joka perustuu GPS-mittauksiin.

Kartastokoordinaattijärjestelmä, kkj, otettiin käyttöön v. 1970. Se perustuu Geodeettisen laitoksen ED50-järjestelmään, jonka Hayford-ellipsoidille lasketut koordinaatit on Gauss-Krügerprojektiolla projisoitu xy-tasokoordinaateiksi. kkj-koordinaatit esitetään joko kolmen asteen kaistoissa, joiden keskimeridiaanit ovat 18°, 21°, 24°, 27°, 30° ja 33° tai yhdessä kaistassa (*Yhte-näiskoordinaatisto, ykj*), jonka keskimeridiaani on 27°.

Euroopan mantereelle on luotu koordinaattijärjestelmä ETRS89 (European Terrestrial Reference System 1989) ja sen realisaatio ETRF89 (European Terrestrial Reference Frame 1989). ETRS89-järjestelmässä käytetään GRS80-ellipsoidia (Geodetic Reference System 1980).

Geodeettinen laitoksen luomaa Suomen ETRS89-järjestelmän kansallista realisaatiota kutsutaan nimellä EUREF-FIN. EUREF-FIN-koordinaatiston kanssa suositellaan käytettäväksi ETRS-TM35FIN -karttaprojektiota ja tasokoordinaattijärjestelmää. Rinnakkaisena projektiona on mahdollista käyttää paikallisesti Gauss-Krüger -projektiota, ETRS-GK. Yksityiskohdat löytyvät Julkisen hallinnon suosituksista (JHS 153 ja JHS 154, 2002).

2.5. Suomessa käytettävät korkeusjärjestelmät

Suomen valtakunnalliset korkeusjärjestelmät perustuvat tarkkavaaitusverkon tasoitukseen. Tarkkavaaitusverkko on vaaittu kolme kertaa. Uusin kansallinen järjestelmä N2000 perustuu Kolmannen tarkkavaaitukseen tuloksiin. Sen vaaituslinjastoon sisältyvät liitokset sekä mareografeille että Ruotsin, Norjan ja Venäjän vaaitusverkkoon. Tämän luvun tiedot perustuvat prof. E. KÄÄRIÄISEN (1975) kirjoittamaan artikkeliin, Kansallisen korkeustyöryhmän lausuntoon (ANON, 2004) ja Geodeettisen laitoksen julkaisuun 139 (LEHMUSKOSKI *et al.*, 2008).

2.5.1. Aiemmat korkeusjärjestelmät

Ensimmäinen valtakunnallinen korkeusjärjestelmä, NN-järjestelmä, syntyi Suomen ensimmäisen tarkkavaaituksen yhteydessä, jonka suoritti Tie- ja Vesirakennusten Ylihallitus vuosina 1892-1910 (BLOMQVIST ja RENQVIST, 1910). Vaaitusverkko ulottui vain Oulu-Kajaani -linjalle saakka. Mittaustuloksiin liitettiin normaalipainovoiman mukainen ortometrinen korjaus, mutta ei maannousun vaikutusta. Lähtökorkeudeksi valittiin Helsingissä, Katajanokan sillassa sijainneen vesiasteikon nollapiste, joka oli 30.4652 m Tähtitorninmäelle rakennetun peruskiintopisteen alapuolella.

Geodeettinen laitos aloitti vuonna 1935 Suomen Toisen tarkkavaaituksen. Vaaitustyön kuluessa syntyi väliaikainen järjestelmä, N43. Vaaittuihin korkeuseroihin liitettiin ortometrinen korjaus, mutta maankohoamisen vaikutusta ei otettu huomioon. N43-järjestelmän lähtötaso on sama kuin NN-järjestelmässäkin, 30.4652 m peruskiintopisteen alapuolella. Vaikka lähtötaso on sama NN- ja N43-järjestelmissä, korkeusluvut eroavat kaikkialla, missä maannousun nopeus poikkeaa Helsingin maannousun nopeudesta. Sekä NN- että N43-järjestelmän mukaisia korkeuksia on edelleen käytössä.

2.5.2. N60-järjestelmä

Täsmällinen maannousun ja painovoiman vaikutuksen huomioon ottava korkeusjärjestelmä voitiin luoda vasta Toisen tarkkavaaituksen verkon tultua pääosiltaan mitatuksi. Maannousu määritettiin Ensimmäisen ja Toisen tarkkavaaituksen korkeuseroista noin tuhannelle yhteiselle kiintopisteelle. Saadut maannousuluvut kiinnitettiin Suomen kahdentoista silloin käytössä olleen mareografin havainnoista saatuihin maannousuarvoihin. Korkeusjärjestelmän lähtötasoksi valittiin Helsingin mareografin vuosien 1935-1954 havaintojen perusteella määritetty teoreettinen

keskivedenpinta vuoden 1960 alussa. Korkeusjärjestelmän nimeksi tuli N60. N60-järjestelmän korkeudet ovat ortometrisia korkeuksia.

Koska Ensimmäisen tarkkavaaituksen verkko ei ylittänyt Lappiin, otettiin Lapissa käyttöön ensin väliaikainen LN-korkeusjärjestelmä. Vasta vuosina 1973-1975 suoritetun Lapin uusintavaaituksen jälkeen voitiin määrittää maannousu myös Lapissa ja N60-järjestelmä tuli koko maan kattavaksi.

2.5.3. N2000-järjestelmä

N2000-korkeusjärjestelmä esitellään julkisen hallinnon suosituksessa nro 163 (JHS 163, 2007). N2000-järjestelmä perustuu Kolmanteen valtakunnalliseen tarkkavaaitukseen, joka suoritettiin vuonna 1978-2006 (LEHMUSKOSKI *et al.*, 2008). N2000:n korkeuserot vastaavat maannousun suhteen tilannetta vuoden 2000 alussa. Maannousun vaikutus korkeuseroihin korjattiin yhteispohjoismaisella maannousumallilla. N2000-korkeusjärjestelmän korkeudet ovat normaalikorkeuksia ja lähtötasoksi valittiin eurooppalaisen korkeusjärjestelmän lähtötaso NAP (Normaal Amsterdams Peil). Järjestelmä on yhteensopiva eurooppalaisen EVRS2000-järjestelmän määritelmän kanssa. Kansallisen verkon lähtötaso johdettiin Itämeren ympärysvaltioiden vaaitusverkkojen yhteistasoituksella NAP:sta. N2000:n pääkiintopiste PP2000 sijaitsee Kirkkonummella Geodeettisen laitoksen Metsähovin observatoriossa.

2.5.4. Paikalliset korkeusjärjestelmät

Useat kunnat ja kaupungit ovat perustaneet omia korkeusjärjestelmiään, jotka eivät ole välttämättä liitetty viralliseen valtakunnalliseen korkeusjärjestelmään. Kunnan korkeusjärjestelmä voi perustua esimerkiksi N43-järjestelmään tai olla valtakunnallisista järjestelmistä riippumaton. Tämä voi aiheuttaa ongelmia, mikäli järjestelmäeroja ei oteta huomioon.

2.5.5. Korkeusjärjestelmien väliset erot

Valtakunnallisten korkeusjärjestelmien (NN, N43, ja N60) siirtokorjaukset järjestelmästä toiseen on julkaistu Geodeettisen laitoksen julkaisussa (KÄÄRIÄINEN, 1963). Maanmittauslaitos on laskenut kolmioittaisen muunnoksen N60- ja N2000-korkeusjärjestelmien välisille siirtokorjauksille. Suomen yli on muodostunut kolmioverkko, jossa jokaiselle solmulle on annettu korkeudet kummassakin korkeusjärjestelmässä. Niiden avulla siirtokorjaukset ovat laskettavissa. Muunnoksen parametrit ovat ladattavissa Geodeettisen laitoksen muunnospalvelusta [http://coordtrans.fgi.fi/] (KOVANEN, 2008).

Useimmat kunnat, joilla on omat järjestelmänsä, ovat liittäneet sen johonkin valtakunnalliseen korkeusjärjestelmään. Paikallisen järjestelmään suppeasta alueesta johtuen siirtyminen valtakunnalliseen järjestelmään voidaan useimmiten hoitaa lisäämällä vakiokorjaus paikallisen järjestelmän korkeuksiin.

3. Geoidimallit

Klassillisen määritelmän mukaan geoidi on se maan painovoiman potentiaalin tasa-arvopinta, joka yhtyy valtamerten keskivedenpintaan. Määritelmä ei pidä tarkalleen paikkaansa, sillä useat geofysikaaliset ilmiöt aiheuttavat valtamerten keskivedenpinnan korkeuteen poikkeamia, joita kutsumme merenpinnan topografiaksi (ks. esim. POUTANEN, 2000).

Geoidipinnan määrittämiseen käytetään monenlaisia havaintoja. Aiemmin käytettiin yleisesti astro-geodeettista menetelmää, missä havaintopaikkojen astronomisten ja geodeettisten koordinaattien eroista laskettiin kolmiopisteiden luotiviivanpoikkeamat, joita käytettiin geoidin-korkeuksien laskemiseen. Koska astro-geodeettisen menetelmän avulla voidaan määrittää vain pisteiden välisiä geoidinkorkeuseroja ja havaintotyö on lisäksi erittäin työlästä, on astro-geodeettinen menetelmä jäänyt geodesian historian hämärään. Nykyiset geoidinmääritys-menetelmät perustuvat Maan painovoiman potentiaalin määrittämiseen. Maan painovoimakentän kartoitusta tehdään Maata kiertävien satelliittien avulla, minkä lisäksi satelliiteista saatavaa painovoima-aineistoa tarkennetaan Maan pinnalla tehtävillä painovoimahavainnoilla.

Tietomme Maan painovoimakentästä paranevat jatkuvasti, mikä puolestaan parantaa geoidin määrityksen tarkkuutta. Satelliiteista saatavan painovoima-aineiston avulla saadaan määritetyksi Maan potentiaalimalli, josta edelleen voidaan laskea geoidimalli. Globaalia geoidimallia voidaan parantaa jollakin alueella Maan pinnalla tehtyjen painovoimahavaintojen avulla. Tällöin puhumme alueellisesta geoidimallista.

Seuraavissa kappaleissa kerrotaan globaaleista, eurooppalaisista ja pohjoismaisista geoidimalleista. Sen lisäksi käsitellään käytöstä poistuneita Suomen alueen geoidimalleja. Nykyisin käytössä olevat Suomen alueen geoidimallit käsitellään omissa luvuissaan (luvut 4 ja 5).

3.1. Globaalit geoidimallit

Satelliittien myötä Maan painovoimakentän mittauksissa alkoi uusi aikakausi. Satelliittien avulla voitiin saada tietoa painovoimakentän globaalista vaihtelusta ja globaalien geoidimallien määrittäminen tuli mahdolliseksi. Myös paikalliset geoidimallit saatettiin kiinnittää globaaliin referenssijärjestelmään. Viime vuosisadan lopulla määritettiin lukuisia globaaleja geoidimallien ratkaisuja. Mainitsemme tässä näistä vain muutaman, joilla on ollut merkitystä oman alueemme geoidimallien määrittämisessä.

3.1.1. OSU91A

OSU91A-malli perustuu GEM-T2 satelliitin painovoimamalliin, johon lisättiin yhden vuoden pituinen jakso GEOSAT-satelliitin altimetrihavaintoja sekä maanpinnalla tehtyjä painovoimahavaintoja. Malli sisältää 360 asteen harmoniset pallofunktiot, joiden esittämiseen tarvitaan 130 682 kerrointa (RAPP *et al.*, 1991). Suomessa tarkkuus on noin 70 cm ja noin 25 cm tason sovituksen jälkeen (Kuva 3-2 ja BILKER *et al.*, 2003).

3.1.2. EGM96

EGM96-mallin kehittämiseen osallistuivat U.S. Defense Mapping Agency (DMA), nykyisin National Geospatial-Intelligence Agency (NGA), NASAn Goddard Space Flight Center (GSFC) sekä Ohion valtion yliopisto (OSU) (LEMOINE *et al.*, 1998). Malli esitetään 360 asteen harmonisten pallofunktioiden avulla. Tavoitteena oli malli, jonka avulla saadaan lasketuksi absoluuttiset geoidin korkeudet kaikkialla maailmassa paremmin kuin 1 m:n tarkkuudella. Malli julkaistiin vuonna 1996 (RAPP, 1996). EGM96-mallin mukaiset geoidin korkeudet esitetään kuvassa 3-1. Suomessa tarkkuus on noin 15 cm (Kuva 3-2 ja BILKER *et al.*, 2003).

Kuva 3-1. Globaali geoidimalli EGM-96 (LEMOINE et al., 1998).

3.1.3. GGM02

GGM02-mallit on kehitetty Texasin yliopiston Center for Space Researchissa (UT-CSR). Mallien tekemiseen käytettiin GRACE-painovoimasatelliittien dataa 363 päivän ajalta. GGM02S-malli on luotu yksinomaan GRACE-datasta ja se esitetään 160 asteen palloharmonisten funktioiden kertoimien avulla. GGM02C-mallissa GGM02S-malli yhdistettiin Maan pinnalla tehtyihin painovoimahavaintoihin. Malli sisältää 200 asteen palloharmonisten funktioiden kertoimet (TAPLEY *et al.*, 2005). Koska malleista puuttuvat korkeamman asteen kertoimet, on niiden kokonaistarkkuus Suomessa huonompi kuin esimerkiksi EGM96-mallin tarkkuus (Kuva 3-2 ja BILKER, 2005). Jos ainoastaan matalamman asteen kertoimet otetaan huomioon, GGM02-mallit toimivat Suomessa paremmin kuin EGM96-malli (BILKER, 2005).

Kuva 3-2. Globaalien ja alueellisien geoidimallien tarkkuus Pohjoismaissa. Arvot on saatu vertaamalla Suomen ja Ruotsin GPS/vaaitusdatasta laskettuja geoidikorkeuksia malleihin. Mustat palkit kuvaavat tarkkuutta tason sovituksen jälkeen (BILKER et al., 2003, ja BILKER, 2005).

3.2. Eurooppalainen geoidimalli EGG97

EGG97 on Euroopan alueelle laskettu geoidimalli. Malli laskettiin Hannoverin yliopistossa IAG:n geoidi- ja painovoimakomission aloitteesta (DENKER *et al.*, 1996). Globaalimalli EGM96 yhdistettiin maalla mitattuun painovoimadataan, jonka resoluutio oli parempi kuin 10 km, sekä merellä laivadataan ja altimetria-dataan. Malli on annettu hilana jonka resoluutio on 1.0 x 1.5 kaariminuuttia. EGG97:n tarkkuus Suomessa on 11 cm ja 7 cm kallistuksen poistamisen jälkeen (Kuva 3-2 ja BILKER *et al.*, 2003).

3.3. Pohjoismaiset geoidimallit

Pohjoismaisen geodeettisen komission geoidityöryhmä on laskenut useita geoidimalleja, jotka kattavat koko Pohjoismaiden alueen ja päämääränä on ollut luoda yhteinen painovoimatietokanta koko alueelle. Tietokannan päivitys ja tarkastus on jatkuva prosessi. Kun iso päivitys tapahtuu tai uusi huomattavasti parempi globaali geoidimalli on ilmestynyt, lasketaan uusi pohjoismainen NKG-geoidimalli. Ennen kuin mallia voidaan käyttää kansallisissa GPS-vaaituksissa, on tehtävä sovitus maan omaan korkeusjärjestelmään.

3.3.1. NKG89

NKG89 geoidimalli laskettiin Pohjoismaiden alueelle käyttämällä pohjoismaista painovoimadataa ja OSU89B globaalia painovoimamallia (FORSBERG, 1989 ja 1990). Malli on laskettu 5 km x 5 km hilalla UTM-karttaprojektiossa. Mallin testaamiseen käytetyllä 2000 km pitkällä GPS-vaaituslinjalla virheiden keskihajonta on 10 cm ja paikallisilla GPS-vaaitusverkoilla vain muutama cm. (FORSBERG, 1990).

3.3.2. NKG96

Vuonna 1996 julkaistiin NKG96 geoidimalli, joka perustuu EGM96 globaaliin painovoimamalliin. Sen avulla johdetun alueellisen geoidimallin ratkaisemiseen on käytetty Pohjoismaiden, Baltian maiden ja Venäjän alueella tehtyjä painovoimahavaintoja (FORSBERG *et al.*, 1999). Yli 300 GPS-vaaituspisteen avulla on todettu, että geoidimallin tarkkuus on 10 cm:n luokkaa (FORSBERG *et al.*, 1996). NKG96 mallin geoidikorkeuksien ja GPS-vaaituspisteiden avulla lasketut geoidikorkeuksien erojen RMS on Suomessa 12 cm ja kallistuksen poistamisen jälkeen 6 cm (Kuva 3-2 ja BILKER *et al.*, 2003).

3.3.3. NKG2004

Uusin pohjoismaiden geoidimalli on NKG2004 (FORSBERG *et al.*, 2004). Laskemiseen on käytetty NKG96 malliin nähden uutta painovoimadataa Ruotsista ja Norjasta, lentogravimetrisia havaintoja Itämereltä, Baltian maiden dataa, uutta Venäjän dataa sekä uutta korkeusmallia. Pohjana käytettiin GRACE-satelliittien havainnoista laskettua globaalia painovoimamallia GGM02S, joka on yhdistetty EGM96 mallin kanssa. NKG2004 malli sopii huomattavasti paremmin GPS-vaaituskorkeuseroihin kun NKG96 malli. Suomessa NKG2004 mallien geoidikorkeuksien ja GPS-vaaituspisteiden avulla lasketut geoidikorkeuksien erojen RMS on 5 cm ja kallistuksen poistamisen jälkeen 3 cm (Kuva 3-2). NKG2004 geoidikorkeudet ovat kuvassa 3-3.

Kuva 3-3. NKG2004 geoidimalli.

3.4. Suomen alueen vanhat geoidimallit

Vuosikymmenten aikana Suomen alueelle on laskettu eri geoidimalleja. Uusin on FIN2005N00 -malli joka on kuvattu luvussa 5.

3.4.1. Astrogeodeettinen Bomford 1970 geoidimalli

Viime vuosisadan alkupuolella tiedot Maan painovoimakentästä olivat niin puutteellisia, ettei painovoiman potentiaaliin perustuva geoidimallin määrittäminen ollut mahdollista. Geoidin korkeuksien määrittäminen tehtiin tällöin astrogeodeettisella menetelmällä. Astronomisten ja geodeettisten koordinaattien välisistä eroista saadaan lasketuiksi luotiviivanpoikkeamien pohjoisja itäkomponentit, joiden avulla puolestaan voidaan johtaa havaintopaikkojen väliset geoidin korkeuserot. Kolmiomittauspisteillä tehtiin astronomiset pituus- ja leveysastehavainnot, joiden avulla saatiin selville luotiviivanpoikkeamien arvot kolmiopisteillä. Koska menetelmä antaa tulokseksi vain geoidin korkeuseroja, on lähtöpisteen geoidin korkeuden valinnalla ratkaiseva merkitys koko alueen geoidin korkeuksille.

Astrogeodeettinen menetelmä antaa pääpiirteiltään todellista geoidia vastaavan pinnan. Kun laskentaan käytettiin kolmiomittauksen avulla määritettyjä geodeettisia koordinaatteja ja näiden vertauspintana oli Kansainvälinen v. 1924 ellipsoidi, saatiin tulokseksi geoidimalli joka ei ole geosentrisesti sijoitettu. Tällaisen mallin geoidin korkeudet ovat sellaisen ellipsoidin suhteen, jonka pinnalla kolmiomittaus on laskettu.

GL:ssä on tehty useita astrogeodeettisen geoidin määrityksiä, joista viimeisten lähtökorkeus otettiin eurooppalaisesta, v. 1963 julkaistusta astrogeodeettisesta geoidista (BOMFORD, 1963). Näihin korkeuksiin liitettiin v. 1970 G. Bomfordin ilmoituksen mukainen –0.9 m:n vakiokorjaus. Tälle geoidimallille annettiin nimeksi "Bomford 1970".

3.4.2. FIN95

90-luvulla johdettiin Suomen alueelle gravimetrinen geoidimalli FIN95 (Kuva 3-4). Mallin pohjana käytettiin OSU91A painovoimamallia. FIN95-mallin laskemiseen on käytetty Suomen ja naapurimaiden painovoimadataa. Geoidimalli sovitettiin 43 GPS/vaaituspisteen avulla siten, että mallin avulla voidaan GPS-korkeudet muuntaa suoraan valtakunnalliseen N60-korkeusjärjestelmään. Sovituksessa käytettyjen GPS-havaintojen epookki oli n. 1993. Kun pisteiden korkeudet vertausellipsoidista muuttuvat maankohoamisen vuoksi, on aikaero GPS-havaintojen epookista otettava huomioon FIN95-geoidin korkeuksia käytettäessä. FIN95-mallin keskimääräiseksi tarkkuudeksi arvioitiin 6 cm, mutta maamme raja-alueilla, Pohjois- ja Itä-Suomessa, virheet saattavat nousta lähelle 20 cm:iä, mikä johtuu GPS/vaaituspisteiden harvalukuisuudesta näillä alueilla geoidimallin laskemisen aikoihin. FIN95-mallin tarkka kuvaus on julkaistu GL:n raportissa no. 95:5 (VERMEER, 1995).

Kuva 3-4. FIN95-geoidimalli ja sen laskennassa käytetty GPS/vaaituspisteistö.

4. FIN2000-geoidimalli

FIN2000 geoidimalli johdettiin sen jälkeen, kun 1990 luvulla oli saatu valmiiksi EUREFpisteistön tihentäminen. Sen pohjana on NKG96-geoidimalli, jota korjattiin 4. asteen polynomipinnan avulla. Korjaavan polynomipinnan kertoimet johdettiin 156:n GPS/vaaituspisteen havaintojen avulla. Pintasovituksen painoyksikön keskivirhe oli 28 mm, joka kuvaa geoidimallin sisäistä tarkkuutta. FIN2000-mallin ratkaisemiseen käytettyjen GPS-havaintojen epookki on 1997.0. Mallin avulla voidaan muuntaa EUREF-FIN-koordinaatistossa GRS-80 ellipsoidista lasketut korkeudet valtakunnallisen N60-korkeusjärjestelmään. Seuraavissa kappaleissa kerrotaan tarkemmin FIN2000-mallin laskennassa käytetyistä pisteistä ja menetelmistä.

4.1. Pisteet

Mallin sovitukseen oli käytettävissä suuri joukko vuosina 1996-99 mitattuja GPS-pisteitä, joiden vaaitut korkeudet tunnetaan N60-järjestelmässä. GPS-koordinaattien osalta on tärkeää, että niiden referenssijärjestelmä on sama ja että ne kohdistuvat samaan mittausepookkiin. Mainittujen vuosien GPS-mittaukset on laskettu ETRF89-koordinaatistossa, jonka suomalaiselle realisaatiolle on annettu nimeksi EUREF-FIN. Koordinaattien mittausepookki on 1997.0. (OLLIKAINEN *et al.*, 2000 ja 2001). Pintasovituksessa käytettiin kaikkiaan 156 vaaittua pistettä. Näiden joukossa oli 9 pysyvää GPS-asemaa (FinnRef), 6 mareografia, 34 I-luokan kolmiopistettä, 36 tarkkavaaituspistettä ja 71 MML:n vaaitsemaa pistettä. Pisteiden jakautuma maan eri puolille nähdään kuvasta 4-1.

4.2. Polynomipinnan ratkaiseminen

GPS-korkeudet muunnettiin ensin normaalikorkeuksiksi NKG96-geoidin korkeuksien avulla. Näitä korkeuksia verrattiin pisteiden N60-järjestelmän mukaisiin ortometrisiin korkeuksiin. Ortometristen ja normaalikorkeuksien eroa ei korjattu, koska ero katsottiin niin pieneksi koko maan alueella (ks. Taulukko A-1), ettei sillä ole korkeuksien muunnoksessa käytännön merkitystä.

GPS/vaaitus- ja N60-korkeuksien erotusten keskiarvo oli +338 mm. Korkeuserojen neliöllinen keskiarvo (RMS) oli puolestaan ±122 mm. Kaikki korkeuserot vaihtelivat välillä -454 mm ... +180 mm. Korkeuserojen keskiarvo on itseisarvoltaan suuri, koska GPS-korkeuksia ei ole redusoitu vaaitusten epookkiin 1960.0. Jos ETRF89-korkeuksista poistettaisiin maannousu, joka on tapahtunut GPS-mittausten epookin (1997.0) vaaitusten epookin (1960.0) välillä pienenisi korkeuserojen keskiarvo 105 mm:iin. Tämä on hyvin lähellä arvoa + 101 mm, joka saatiin Baltic Sea Level -projektin tuloksena GPS/vaaitus ja ortometristen korkeuksien vertauksesta (FORS-BERG, 1996).

Pienimmän neliösumman menetelmällä ratkaistiin GPS/vaaitus- ja N60-korkeuksien eroja kuvaava polynomipinta, jonka avulla pyritään minimoimaan NKG96-mallin ja N60-korkeuksien väliset ristiriidat. Parhaan korjaavan pinnan löytämiseksi tehtiin useita kokeita. Erotukset tasoitettiin 1., 2., 3. ja 4. asteen polynomipinnoiksi. Taulukossa 4-1 ovat tasoituksen jälkeiset jäännösvirheet. Jäännösvirheet pienenevät kun polynomin astelukua kasvatetaan, mutta polynomin asteluvun kasvattaminen 4. astetta suuremmaksi ei enää parantanut tulosta. Kuvassa 4-2 on esitetty 4. asteen polynomipinnan jäännösvirheet.

Yhdistämällä NKG96-geoidimalli ja 4. asteen polynomipinta, saatiin aikaan malli, jolle annettiin nimeksi FIN2000. Perinteisessä mielessä FIN2000 ei ole geoidimalli, koska siinä gravimetriseen geoidiin yhdistetään GPS-mittausten ja tarkkavaaitusten avulla kerättyä informaatiota. Parhaiten FIN2000-mallia kuvaa termi muunnospinta, koska sen avulla voidaan muuntaa EURF-FIN -koordinaatistossa määritetyt korkeudet kansalliseen N60-korkeus-järjestelmään. Mallin tarkkuudesta saamme kuvan jäännösvirheiden neliöllisen keskiarvon perusteella, joka on ± 28 mm. Kun mallin välittämää muunnosta testattiin 154:llä testipisteellä, havaittiin suurimpien muunnosvirheiden olevan 8-9 cm (OLLIKAINEN, 2002).

Taulukko 4-1. GPS/vaaitus- ja N60-korkeuksien erojen pienimmän neliösumman menetelmällä ratkaistut polynomipinnat. Jäännösvirheiden keskiarvot, neliölliset keskiarvot (RMS) sekä jäännösvirheiden maksimi- ja minimiarvot.

Polynomin asteluku	Keskiarvo (mm)	RMS (mm)	Minimi (mm)	Maksimi (mm)
0	+338	±122	- 454	180
1	0	±121	- 422	189
2	0	±45	- 154	122
3	0	±32	- 114	99
4	0	±28	- 79	69

Kuva 4-1. FIN2000-geoidimallin laskemiseen Kuva 4-2. käytetty GPS/vaaitus-pisteistö.

GPS/vaaitus- ja N60-korkeuksien eroihin sovitetun 4. asteen polynomipinnan jäännösvirheet Käytetty geoidimalli: NKG96. Jäännösvirheiden RMS: ± 28 mm.

5. FIN2005N00-geoidimalli

Vuonna 2005 ryhdyttiin kehittämään uutta geoidisovitusta Suomen alueelle. Tähän oli monta syytä. Ensimmäinen oli uuden Pohjoismaisen geoidimallin NKG2004 julkaiseminen vuonna 2004. Edelliseen malliin nähden NKG2004-malli oli huomattavasti parempi uuden maanpäällisen painovoimadatan ja painovoimasatelliittien tuoman datan vuoksi. Toinen syy oli Suomen uuden korkeusjärjestelmän N2000 luominen. Uusi korkeusjärjestelmä loi tarpeen uuden muunnospinnan määrittämiselle. Uusi sovitus tuli mahdolliseksi koska EUVN-DA kampanjasta oli saatu uusia GPS/vaaituspisteitä.

5.1. Havaintopisteet

Geoidimallin sovittamiseen on käytetty Suomen EUVN-DA GPS/vaaitusaineistoa. Ensimmäinen EUVN (European Vertical Reference Network) kampanja järjestettiin vuonna 1997. Sen tarkoituksena oli yhdistää eurooppalaiset korkeusjärjestelmät. Suomesta kampanjassa oli mukana vain 10 asemaa. Vuonna 2002 EUREF-kokouksessa päätettiin EUVN-DA (EUVN densification act) kampanjasta, jonka tarkoituksena oli lisätä pisteiden määrää. EUVN-DA:n ensimmäisessä vaiheessa tarkistettiin jo olevat GPS/vaaitusdatat ja alkuperäisten Suomen 10 EUVN pisteen lisäksi hyväksyttiin 10 vuosina 1996-1997 EUREF-FIN-kampanjassa mitattua GPS-pistettä. Toisessa vaiheessa mitattiin 30 uutta GPS/vaaituspistettä, jotka olivat tarkkavaaituskiintopisteitä tai uusia pisteitä jotka oli vaaittu ennen GPS-kampanjaa. GPS-mittaukset suoritettiin kesällä 2005. EUVN-DA:ta varten molempien kampanjojen datat redusoitiin ETRF89 koordinaatistoon epookkiin 2000.0. Uusien pisteiden koordinaattien tarkkuus arvioitiin kampanjoiden yhteisten pisteiden avulla. Yhteisten pisteiden koordinaattierojen RMS arvot olivat: $\pm 3.2 \text{ mm}, \pm 3.4 \text{ mm}$ ja $\pm 3.8 \text{ mm}$ pohjois-, itä- ja korkeuskomponentissa. Julkaisussa OLLIKAINEN (2006) on yksityis-kohtaisempi kuvaus EUVN-DA kampanjasta.

Geoidisovitusta varten kaikki GPS koordinaatit muunnettiin EUREF-FIN-koordinaatistoon epookissa 1997.0. Vuosien 1996-1997 kampanjassa mitatut GPS-koordinaatit olivat jo valmiina EUREF-FIN-koordinaatistossa. Vuoden 2005 kampanjan tulokset redusoitiin ensin ITRF2000-koordinaatistosta ETRF89-koordinaatistoon käyttämällä BOUCHER:n ja ALTAMIMIN (2001) julkaisemia parametreja (Kuva 5-1). Sen jälkeen koordinaatit redusoitiin epookista 2005.58 EUREF-FIN-epookkiin 1997.0 NKG:n koordinaattijärjestelmä- ja paikannustyöryhmässä kehitetyn nopeusmallin avulla (NøRBECH *et al.*, 2006). Vaakaliikkeen nopeudet otettiin BIFROST-mallista (MILNE *et al.*, 2001) ja GPS-datasta lasketuista nopeuksista (LIDBERG *et al.*, 2007). Korkeuden muutos on peräisin NKG2005LU maannousumallista (VESTØL, 2007; ÅGREN ja SVENSSON, 2007). Lopuksi laskettiin vielä molemmissa mittauskampanjassa mukana olevien pysyvien GPS-asemien tuloksien avulla Helmert muunnos, jolla toisen kampanjan data sovitettiin EUREF-FIN-dataan (Kuva 5-1). Lopputuloksena oli 50 pisteitä joilla oli EUREF-FIN GPS-koordinaatit sekä N60 ja N2000 korkeudet tarkkavaaitusverkosta (Kuva 5-2).

5.2. Laskelmat

Sovituspinnan laskemista varten GPS-korkeudet muunnettiin normaalikorkeudeksi NKG2004geoidimallin avulla sekä laskettiin ero N2000-vaaituskorkeuksiin nähden, jolloin saatiin geoidikorkeuksien väliset erot:

$$\Delta N = h_{GPS} - N_{NKG2004} - H_{N2000}.$$
(5-1)

N2000 vaaituskorkeuksiin verrattuna geoidierojen minimi, maksimi, keskiarvo ja keskihajonta olivat -119 mm, 69 mm, -32 mm ja 41 mm.

Geoidieroihin ΔN sovitettiin erilaisia korjauspintoja ja testattiin niiden tarkkuutta. Koska GPSvaaituspisteiden määrä oli pieni eikä testipisteitä ollut N2000-korkeusjärjestelmässä, korjauspintojen tarkkuus testattiin ristiinvalidoinnin avulla. Ristiinvalidoinnissa jätettiin yksi piste pois sovituspinnan estimoinnissa ja laskettiin sen jälkeen kuinka hyvin sovitus pystyi ennustamaan geoidieron kyseiselle pisteelle. Näin käytiin kaikki pisteet läpi jolloin saatiin ulkoiset tarkkuusluvut korjauspinnoille.

Kuva 5-1. EUVN-DA datan redusoinnissa ETRF89-koordinaatistoon ja epookkiin 1997.0 käytetty menetelmä.

Kuva 5-2. FIN2005-geoidimallin pintasovituksessa käytetyt EUVN-DA GPS/vaaituspisteet ja Suomen kolmas tarkkavaaitusverkko.

Ensimmäiset pinnat laskettiin sovittamalla eriasteisia polynomipintoja geoidieroihin:

$$\Delta N = \sum_{i=0}^{n} \sum_{j=0}^{n-i} a_{ij} \Delta \varphi^{i} \Delta \lambda^{j} , \qquad (5-2)$$
$$\Delta \varphi = \frac{2\varphi - (\varphi_{\max} + \varphi_{\min})}{\varphi_{\max} - \varphi_{\min}}$$

jossa:

ja

$$\Delta \lambda = \frac{2\lambda - (\lambda_{\max} + \lambda_{\min})}{\lambda_{\max} - \lambda_{\min}}.$$

Sovituksien tulokset paranivat kun polynomin asteluku kasvoi. Ristiinvalidoinnissa kolmannen asteen polynomi osoittautui kuitenkin parhaaksi, jolloin virheiden minimi, maksimi ja keskihajonta olivat -44 mm, 59 mm ja 21 mm. Polynomisovituksessa ongelmana on se että virheet kasvavat hyvin nopeasti sovituspisteiden peittämän alueen ulkopuolella. Suomen raja-alueilla virheet voivat olla suurempia kuin lasketut tarkkuusluvut (esim. Kuva 5-3). Lisäksi polynomit ovat pelkkiä matemaattisia pintoja, joilla ei ole mitään tekemistä fysikaalisen todellisuuden kanssa.

Vaihtoehtona testattiin pienimmän neliösumman kollokaatiomenetelmä (MORITZ, 1989), jota on käytetty Tanskassa kehitetyssä GRAVSOFT-geoidilaskentaohjelmistossa (FORSBERG, 2003). Pienimmän neliösumman kollokaatiossa hilapisteiden arvot estimoidaan kovarianssifunktion avulla tunnetuista pistearvoista:

$$\hat{s} = C_{sx} C_{xx}^{-1} x, \tag{5-3}$$

jossa C(r) on kovarianssifunktio, joka riippuu vain pisteiden välisestä etäisyydestä r ja joka kuvaa pisteiden arvojen välistä yhteyttä. Tässä tapauksessa x kuvaa GPS-vaaitusdatasta laskettuja

Kuva 5-3. Geoidieroihin sovitettu kolmannen asteen polynomipinta.

geoidieroja ja \hat{s} laskettavan hilan pisteiden geoidieroja, joka muodostavat korjauspinnan. C_{sx} matriisissa ovat x:n ja s:n väliset kovarianssit ja C_{xx} matriisissa x_i :n ja x_j :n väliset kovarianssit. GRAVSOFT-ohjelmistossa kovarianssifunktio mallinnetaan toisen asteen Gauss-Markov mallilla:

$$C(r) = C_0 (1 + \frac{r}{\alpha}) e^{(-r/\alpha)},$$
(5-4)

jossa r on pisteiden välinen etäisyys. Parametri α määrittää korrelaatioetäisyyden. Ohjelma määrittää varianssin C_0 automaattisesti datan keskihajonnasta. Käyttäjä antaa korrelaatioetäisyyden ja arvioi datan kohinan. Kollokaatiomenetelmän ominaisuus on että pisteen vaikutus loppuarvoon pienenee kun etäisyys pisteeseen kasvaa ja pieneneminen riippuu korrelaatioetäisyydestä. Riittävän kaukana pisteistä korjauspinta menee nollaan. Tässä tapauksessa lopullinen geoidimalli vastaa NKG2004-geoidimallia jonkin matkaa pisteiden peittämän alueen ulkopuolella. Kollokaation yhteydessä GRAVSOFT-ohjelmistolla voidaan vielä ratkaista taso, kallistus tai kolmannen asteen polynomi.

Kollokaatiomenetelmää testattiin eri korrelaatioetäisyyksillä yhdessä polynomiratkaisun kanssa ja arvioitiin lasketut korjauspinnat ristiinvalidointimenetelmällä. Parhaan tuloksen antoi tasosovitus yhdessä kollokaation kanssa jossa korrelaatioetäisyys oli 200 km ja kohina 2 cm. Tällöin ristiinvalidoinissa sovituspinnan tarkkuus oli 19 mm (keskihajonta) ja minimi- ja maksimierot -47 mm ja 60 mm (Taulukko 5-1). Sovituspinnan jäännösvirheet näkyvät kuvassa 5-4 ja ristiinvalidoinnin virheet kuvassa 5-5. Huomaa kuvien skaala-ero. Kuvassa 5-6 on itse sovituspintaa. Kun tämä korjauspinta lisätään NKG2004-geoidimalliin saadaan Suomen uusi N2000-korkeusjärjestelmään sovitettu geoidimalli **FIN2005N00**. FIN2005N00-geoidikorkeudet ovat kuvassa 5-7.

	Minimi (m)	Maksimi (m)	Keskiarvo (m)	Keskihajonta (m)
Geoidierot ilman korjauspintaa	-0.119	0.069	-0.032	0.041
Sovituspinnan jäännösvirheet	-0.028	0.034	0.000	0.011
Ristiinvalidoinnin ennustusvirheet	-0.047	0.060	0.001	0.019

Taulukko 5-1. FIN2005N00-sovituspinnan laskennan virhearviot.

Kuva 5-4. FIN2005N00-malliin käytetyn sovituspinnan jäännösvirheet.

Kuva 5-5. FIN2005N00-malliin käytetyn sovituspinnan ristiinvalidoinnin virheet.

Kuva 5-6. FIN2005N00-malliin käytetty sovituspinta, joka on FIN200500-mallin ja NKG2004mallin ero.

6. Geoidimallien väliset erot

Kuva 6-1esittää FIN2005N00- ja FIN2000-geoidimallien välisiä eroja. Teoriassa kuvassa oleva pinta olisi N60- ja N2000-korkeusjärjestelmien välinen muunnospinta. Tämä ei kuitenkaan pidä paikkaansa, sillä kaikki FIN2005N00- ja FIN2000-mallien laskennassa käytettyjen datojen ja mallien erot ja virheet ovat mukana kuvassa. Korkeusjärjestelmien erojen lisäksi mukana on myös mm. geoidimallien taustalla olevien NKG-mallien erot, geoidisovitusmenetelmien erot ja sovituksissa käytettyjen GPS/vaaitusdatojen virheet. Kun lasketaan geoidimallien avulla N60-N2000-korkeusmuunnosluvut Geodeettisen laitoksen korkeuskiintopisteille, ovat erot pisteille julkaistuihin siirtokorjauksiin (LEHMUSKOSKI *et al.*, 2008) nähden keskimäärin 2.3 cm. Suurimmat erot löytyvät Suomen raja-alueilta, jossa suurin ero oli –16.8 cm. Kuitenkin suurin osa

Kuva 6-1. FIN2005N00- ja FIN2000-geoidimallien väliset erot (FIN2005N00 - FIN2000).

eroista jää alle 5 cm.

Kuvassa 6-1 suurin osa Suomen rajojen sisällä näkyvissä olevasta kuviosta johtuu N60- ja N2000-korkeusjärjestelmien eroista. Mallien välinen systemaattinen ero johtuu korkeusjärjestelmien eri lähtötasoista. Korkeusjärjestelmien epookkieroista johtuen myös 40 vuoden maannousua on näkyvissä kuvassa 6-1.

Suomen rajojen ulkopuolella erot kasvavat nopeasti erityisesti pohjois- ja kaakkoissuuntaan. Syynä ovat FIN2000- ja FIN2005N00-geoidimallien sovituspintojen laskennassa käytetyt menetelmät. FIN2005N00-mallin sovituspinta on laskettu pienimmän neliösumman kollokaatio-menetelmällä, jonka ominaisuus on että pinta menee nollaan laskentapisteiden alueen ulkopuolella. FIN2000-mallin sovituspinta on 4. asteen polynomipinta, jonka virheet kasvavat nopeasti sovituspisteiden peittämän alueen ulkopuolella. Tämän vuoksi FIN2000- ja FIN2005N00-mallien erot kasvavat myös nopeasti näillä alueilla.

Kuvassa 6-1 idässä olevat pienimuotoiset erokuviot johtuvat mahdollisesti geoidimallien taustalla oleviin NKG-malleihin käytettyjen datojen eroista. FIN2005N00 taustalla olevan NKG2004-mallin laskentaan oli käytettävissä uutta tiheämpää dataa Venäjän alueelta kuin FIN2000-laskennassa käytetyssä NKG96-mallissa.

NKG96-mallin laskennassa käytettiin Itämereltä havaittua satelliittialtimetriadataa, mutta NKG2004-mallin laskentaan oli käytettävissä ilmagravimetriahavaintoja Itämeren alueelta, joka puolestaan aiheutti eroja NKG96- ja NKG2004-mallien välillä tällä alueella. Nämät erot näkyvät myös kuvassa 6-1.

Edellä mainittujen seikkojen lisäksi sovituksissa käytettyjen GPS/vaaitusdatojen virheet aiheutivat myös pieniä eroja.

7. Suomen geoidimallien käyttö

Suomen geoidimallit antavat geoidikorkeudet Suomen rajojen sisällä. Näillä geoidikorkeuksilla voidaan muuntaa ellipsoidiset korkeudet Suomen viralliseen korkeusjärjestelmään N60 tai N2000 riippuen kumpaa mallia käytetään. FIN2005N00-mallia käytetään N2000-korkeusjärjestelmän ja FIN2000-mallia N60-korkeusjärjestelmän yhteydessä. Vaikka mallit ulottuvat Suomen rajojen ulkopuolelle, niitä ei pidä käyttää muualla, koska rajojen ulkopuolella virheet voivat kasvaa liian isoksi. Lisäksi korkeusjärjestelmät N60 ja N2000 ovat olemassa vain Suomen alueella.

Malleja voidaan käyttää suoraan pisteiden korkeuksien muunnoksiin (Kappale 7.1). On myös mahdollista määrittää paikallisesti uusi tarkempi muunnospinta joka sopii paremmin paikalliseen dataan (Kappale 7.2).

7.1. Pisteen korkeuden muunnos

Kun pisteen ellipsoidikorkeus halutaan muuntaa N2000 korkeuteen tai toisin päin, interpoloidaan kyseisen pisteen geoidikorkeus FIN2005N00-geoidimallista.

Pisteen lähtökoordinaatteina on oltava maantieteelliset koordinaatit (φ, λ) EUREF-FIN-järjestelmässä. Siinä tapauksessa että pisteen lähtökoordinaatit eivät ole maantieteellisiä tai ne ovat eri järjestelmässä kun EUREF-FIN, on pisteen koordinaatit ensin muunnettava maantieteellisiksi koordinaateiksi EUREF-FIN-järjestelmään.

Tämän jälkeen etsitään pisteen sijainti FIN2005N00 -geoidimallihilassa. Hilasta otetaan pistettä ympäröivän neljän hilapisteen geoidikorkeusarvot. Halutun pisteen geoidikorkeus voidaan nyt interpoloida näistä neljästä arvoista käyttämällä bi-lineaarista interpolointimenetelmää (katso myös kuva 7-1):

Kuva 7-1 Bi-lineaarinen interpolointi neljästä halutun pisteen ympäröivästä hilapisteestä.

$$N(\varphi,\lambda) = \frac{\varphi_2 - \varphi}{\varphi_2 - \varphi_1} N(\varphi_1,\lambda) + \frac{\varphi - \varphi_1}{\varphi_2 - \varphi_1} N(\varphi_2,\lambda),$$
(7-1)

jossa

$$N(\varphi_1,\lambda) = \frac{\lambda_2 - \lambda}{\lambda_2 - \lambda_1} N(\varphi_1,\lambda_1) + \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} N(\varphi_1,\lambda_2), \qquad (7-2)$$

ja

$$N(\varphi_2, \lambda) = \frac{\lambda_2 - \lambda}{\lambda_2 - \lambda_1} N(\varphi_2, \lambda_1) + \frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1} N(\varphi_2, \lambda_2).$$
(7-3)

Edistyneempiä interpolointimenetelmiä kuten kuutio-interpolointia voidaan myös käyttää, mutta yleensä bi-lineaarinen interpolointi on riittävä tarkka. Kun pisteen geoidikorkeus on määritetty, voidaan laskea N2000 korkeus (H_{N2000}) vähentämällä geoidikorkeus ($N_{FIN2005N00}$) ellipsoidi-korkeudesta (h): $H_{N2000} = h - N_{FIN2005N00}$. Samalla tavalla voidaan laskea ellipsoidikorkeus lisäämällä geoidikorkeus N2000-korkeuteen.

Jos halutaan muuntaa ellipsoidikorkeuksia N60-korkeuksiin tai N60-korkeuksia ellipsoidikorkeuksiin menetelmä on sama, mutta FIN2005N00-mallin sijaan on käytettävä FIN2000-mallia.

7.2. Paikallisen muunnospinnan määrittäminen

Valtakunnallista geoidimallia voidaan tarkentaa paikallisella muunnospinnalla, jos alueella on olemassa GPS/vaaituspisteitä, joilla on sekä ellipsoidikorkeus että vaaittu korkeus. Paikallinen muunnospinta on hila joka voi olla maantieteellisissä EUREF-FIN-koordinaateissa tai tasokoordinaateissa. Silloin valtakunnallisen geoidimallin sijasta geoidikorkeudet voidaan interpoloida paikallisesta muunnospintahilasta. Mallia ei pidä käyttää kyseisen alueen ulkopuolella.

7.2.1. Muunnospinta maantieteellisissä EUREF-FIN-koordinaateissa

Kun määritetään paikallinen muunnospinta EUREF-FIN-järjestelmässä maantieteellisissä koordinaateissa tarvitaan joukko pistettä jolla on maantieteelliset koordinaatit (φ , λ), GPS:lla mitattu ellipsoidikorkeus (h) ja vaaittu korkeus (H_{vaa}). Seuraavaksi esitetään muunnospinnan määrittämisen eri vaiheet (katso myös kuva 7-2).

- 1. Interpoloidaan geoidimallista GPS/vaaituspisteille geoidikorkeudet ($N_{\text{geoidimalli}}$). Käytetään FIN2005N00-mallia jos vaaitut korkeudet ovat N2000-järjestelmässä ja FIN2000-mallia jos korkeudet ovat N60-järjestelmässä.
- 2. Muunnetaan GPS/vaaituspisteiden ellipsoidikorkeudet (*h*) GPS-vaaituskorkeuksiksi (H_{GPS}) geoidimallista interpoloiduilla geoidikorkeuksilla: $H_{GPS} = h N_{geoidimalli}$.
- 3. Lasketaan geoidierot (ΔN) GPS-vaaituskorkeuksista ja vaaituksella määritetyistä korkeuksista: $\Delta N = H_{\text{GPS}} H_{\text{vaa}}$.
- 4. Sovitetaan polynomipinta geoidieroihin pienimmän neliösumman avulla:

$$\Delta N = \sum_{i=0}^{n} \sum_{j=0}^{n-i} a_{ij} \Delta \varphi^i \Delta \lambda^j , \qquad (7-4)$$

jossa $\Delta \varphi = \frac{\varphi - \varphi_{\min}}{\varphi_{\max} - \varphi_{\min}}$ ja $\Delta \lambda = \frac{\lambda - \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}$ ovat normeeratut koordinaatit ja φ_{\min} ,

 λ_{\min} , φ_{\max} , ja λ_{\max} ovat alueen minimi- ja maksimikoordinaatit. Pienellä alueella geoidierojen vaihtelut ovat pieniä ja yleensä toisen asteen (n = 2) polynomin sovitus riittää.

- 5. Interpoloidaan geoidimallista halutun paikallishilan pisteille geoidikorkeudet ($N_{\text{geoidimalli-hila}}$).
- 6. Lasketaan 4. kohdassa määritetyillä polynomikertoimilla (a_{ij}) geoidierot paikallishilan pisteille (ΔN -hila).
- 7. Lisätään 6. kohdassa lasketut geoidierot 5. kohdassa laskettuihin geoidikorkeuksiin, jolloin saadaan paikallinen muunnospinta hilamuodossa: $N_{\text{paikallinen}} = N_{\text{geoidimallii}} + \Delta N$.

Näin laskettua muunnospintaa käytetään EUREF-FIN maantieteellisten koordinaattien kanssa. Jos paikallisesti halutaan käyttää jotain muuta koordinaattijärjestelmää tai tasokoordinaatteja, ketjuun tulee lisää muutamia koordinaattimuunnoksiin liittyviä askelia.

7.2.2. Muunnospinta tasokoordinaateissa

Kun paikallinen muunnospinta halutaan määrittää tasokoordinaatistossa (esimerkiksi ETRS-TM35FIN-tasokoordinaatisto), lähtöaineistona on joukko pisteitä joilla on tasokoordinaatit (x,y), GPS:lla mitatut ellipsoidikorkeudet (h) ja vaaitut korkeudet (H_{vaa}) . Menetelmä on esitetty graafisesti kuvassa 7-3. Muunnospinnan määritys tapahtuu seuraavasti:

- a. Muunnetaan tasokoordinaatit (*x*,*y*) maantieteelliseksi EUREF-FIN-koordinaatiksi (φ , λ).
- b. Interpoloidaan geoidimallista GPS/vaaituspisteille geoidikorkeudet ($N_{\text{geoidimalli}}$) käyttämällä maantieteellisiä koordinaatteja (φ, λ). Käytetään FIN2005N00-mallia jos vaaitut korkeudet ovat N2000-järjestelmässä ja FIN2000-mallia jos korkeudet ovat N60-järjestelmässä.
- c. Muunnetaan GPS/vaaituspisteiden ellipsoidikorkeudet (*h*) GPS-vaaituskorkeuksiksi (H_{GPS}) geoidimallista interpoloiduilla geoidikorkeuksilla: $H_{GPS} = h N_{geoidimalli}$.
- d. Lasketaan geoidierot (ΔN) GPS-vaaituskorkeuksista ja vaaituksella määritetyistä korkeuksista: $\Delta N = H_{GPS} H_{vaa}$.
- e. Sovitetaan polynomipinta geoidieroihin pienimmän neliösumman avulla käyttäen tasokoordinaatteja (x, y):

$$\Delta N = \sum_{i=0}^{n} \sum_{j=0}^{n-i} a_{ij} \Delta x^{i} \Delta y^{j} , \qquad (7-5)$$

jossa $\Delta x = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$ ja $\Delta y = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$ ovat normeeratut koordinaatit ja x_{\min} , y_{\min} ,

 x_{max} , ja y_{max} ovat alueen minimi- ja maksimikoordinaatit.

Pienellä alueella geoidierojen vaihtelut ovat pieniä ja yleensä toisen asteen (n = 2) polynomin sovitus riittää.

- f. Valitaan halutun paikallishilan pisteiden tasokoordinaatit (*x*,*y* -hila).
- g. Muunnetaan paikallishilan pisteiden tasokoordinaatit (x,y -hila) maantieteellisiksi koordinaateiksi (φ, λ).
- h. Interpoloidaan geoidimallista halutun paikallishilan pisteille geoidikorkeudet (N_{geoidimalli}hila) käyttämällä pisteiden maantieteellisiä koordinaatteja (φ, λ).
- i. Lasketaan e-kohdassa määritetyillä polynomikertoimilla (a_{ij}) geoidierot paikallishilan pisteille (ΔN -hila) käyttämällä pisteiden tasokoordinaatteja (x,y).
- j. Lisätään i-kohdassa lasketut geoidierot h-kohdassa laskettuihin geoidikorkeuksiin jolloin saadaan paikallinen muunnospinta hilamuodossa: $N_{\text{paikallinen}} = N_{\text{geoidimallii}} + \Delta N$.

Edellä laskettua muunnospintaa käytetään tasokoordinaattien kanssa. Hilasta voidaan nyt interpoloimalla saada valtakunnallista mallia tarkemmat paikalliset geoidikorkeudet.

Kuva 7-2 Paikallisen muunnospinnan johtaminen valtakunnallisen geoidimallin ja GPS/vaaitushavaintojen avulla. EUREF-FIN maantieteelliset koordinaatit. Numerot viittaavat kappaleessa 7.2.1. esitettyihin muunnospinnan määrityksen vaiheisiin.

Kuva 7-3 Paikallisen muunnospinnan johtaminen valtakunnallisen geoidimallin ja GPS/vaaitushavaintojen avulla. ETRS-TM35FIN tasokoordinaatit. Kirjaimet a-j viittaavat kappaleessa 7.2.2. esitettyihin muunnospinnan määrityksen vaiheisiin.

8. Mistä geoidimalleja saa

Suomessa käytettävät FIN2000- ja FIN2000N00-geoidimallit saa joko geodeettisen laitoksen muunnospalvelun kautta [http://coordtrans.fgi.fi/] (Kovanen, 2008) tai tilauksesta Geodeettisesta laitoksesta. Mallit ovat hilamuodossa ja kolmessa eri ASCII formaatissa.

Formaatti 1: Hila taulukkona

Esimerkissä 8-1 on tiedoston alkua. Ensimmäinen rivi on otsikkorivi, jossa annetaan hilan reunakoordinaatit ja hilapisteiden välinen etäisyys asteina:

Otsikon selitys:	minimilatitudi, ϕ_{min}	59.00
	maksimilatitudi, φ_{max}	70.70
	minimilongitudi, λ_{\min}	17.48
	maksimilongitudi, λ_{max}	33.00
	pisteväli latitudin suunnassa, Δφ	0.02
	pisteväli longitudin suunnassa, $\Delta\lambda$	0.04

Otsikkorivin jälkeen seuraa hilapisteiden geoidikorkeudet rivi kerallaan niin, että yksi rivi hilassa on yksi rivi tiedoston taulukossa. Korkeudet on annettu pohjoisesta etelään alkaen luoteesta ja loppuen kaakkoon (Esimerkki 8-2).

Ensimmäistä riviä vastaava latitudi on 70.70° ja viimeistä riviä vastaava 59.00°. Rivin ensimmäisen korkeuden longitudi on 17.48° ja rivin viimeisen 33.00°. Näin ollen rivien lukumäärä on (70.70 - 59.00)/(0.02 + 1) = 586 ja sarakkeiden lukumäärä (33.00 - 17.48)/(0.04 + 1)389. Pisteiden kokonaislukumäärä on 586 x 389 = 227 954.

0.040000

]	Esimerkki 8-1 1. Formaatin esimerkki: Hila taulukkona.									
	59.00	00000	70.700	200 1	7.480000	33.0	000000	0.020	0000	0.0
	34.415	34.318	34.219	34.120	34.017	33.914	33.812	33.709	33.610	
	34.433	34.336	34.235	34.135	34.032	33.928	33.824	33.722	33.622	
	34.450	34.350	34.250	34.148	34.046	33.943	33.838	33.734	33.634	
	34.467	34.365	34.265	34.163	34.059	33.956	33.851	33.747	33.646	
	34.481	34.380	34.278	34.175	34.072	33.968	33.862	33.759	33.656	•••

34.493	34.391	34.288	34.185	34.081	33.976	33.872	33.768	33.665	•••
34.502	34.399	34.295	34.191	34.088	33.983	33.880	33.775	33.673	•••
34.508	34.405	34.301	34.197	34.093	33.988	33.885	33.783	33.680	•••
34.514	34.410	34.307	34.202	34.098	33.994	33.890	33.788	33.689	•••
34.517	34.413	34.311	34.206	34.103	33.999	33.898	33.797	33.698	•••
34.518	34.415	34.313	34.210	34.108	34.006	33.906	33.808	33.713	
34.516	34.415	34.315	34.215	34.115	34.016	33.918	33.823	33.730	
34.510	34.415	34.318	34.219	34.123	34.026	33.930	33.837	33.746	
÷	÷	:	÷	÷	÷	÷	÷	÷	·

Esimerkki 8-2 1. Formaatin esimerkin vasen yläkulman koordinaatit.						
		17.48°	17.52°	17.56°	•••	
		\downarrow	\downarrow	\downarrow		
70.70°	\rightarrow	34.415	34.318	34.219		
70.68°	\rightarrow	34.433	34.336	34.235		
70.66°	\rightarrow	34.450	34.350	34.250		
:		÷	÷	÷	·	

Formaatti 2: Hila gravsoft-formaatissa (FORSBERG, 2003)

Formaatti 2 on periaatteessa sama kun formaatti 1, mutta nyt hilan rivit on katkaistu joka 8. luvun jälkeen (Esimerkki 8-3). Tiedosta alkaa otsikkorivillä jonka jälkeen seuraavat hilapisteiden arvot alkaen luoteesta. Otsikon jälkeen ensimmäiset 389 lukua kuuluvat hilan pohjoisimmalle riville (latitudi 70.70°). Seuraavat 389 lukua kuuluvat hilan toiseksi pohjoisimmalle riville (latitudi 70.68°). Tiedoston viimeiset 389 lukua kuuluvat hilan eteläisimmälle riville (latitudi 59.00°).

59.0000070.7000017.4800033.000000.020000.040000 $34,415$ $34,318$ $34,219$ $34,120$ $33,014$ $33,012$ $33,014$ $33,012$ $33,201$ $32,016$ $32,012$ $32,171$ $33,020$ $32,250$ $32,040$ $32,050$ $32,013$ $32,241$ $31,120$ $32,011$ $31,040$ $32,050$ $31,024$ $31,024$ $31,150$ $31,040$ $31,040$ $31,040$ $31,025$ $31,041$ $31,040$ $31,040$ $31,040$ $31,020$ $31,025$ $31,041$ $30,041$ $30,045$ $30,025$ $30,023$ $30,653$ $31,025$ $31,041$ $30,040$ $30,025$ $30,027$ $30,653$ $30,221$ $30,054$ $30,045$ $30,046$ $30,029$ $30,646$ $28,057$ $30,053$ $30,055$ $30,046$ $30,029$ $30,047$ $30,673$ $30,253$ $30,221$ $30,056$ $30,029$ $30,046$ $30,029$ $29,051$ $29,051$ $29,051$ $29,051$ $29,073$ $29,053$ $29,555$ $29,154$ $29,051$ $29,051$ $29,051$ $29,051$ $29,074$ $29,029$ $29,555$ $29,154$ $29,021$ $29,051$ $29,051$ $29,074$ $29,020$ $29,155$ $29,157$ $28,057$ $28,057$ $28,051$ $28,951$ $29,074$ $29,020$ $28,157$ $28,057$ $28,057$ $28,057$ $28,051$ $28,951$ $29,074$ $29,020$ $28,157$ $28,057$ $28,057$	Esimerkki 8-3	2. Formaatin	ı esimerkki	: Hila gravs	oft-formaat	issa.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.000000	70.70000	0 17.48	0000 33.	000000	0.020000	0.040000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.415	34.318	34.219	34,120	34.017	33.914	33.812	33.709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.610	33.512	33.417	33.323	33.230	33.141	33.054	32,969
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.888	32.806	32.727	32.649	32.573	32.500	32.430	32.361
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.293	32.224	32.154	32.084	32.011	31.940	31.867	31.794
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 722	31 651	31 580	31 509	31 434	31 359	31 280	31 203
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 125	31 047	30 971	30 896	30 825	30 754	30 686	30 621
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 558	30 501	30 445	30 394	30 345	30 297	30 253	30 212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 172	30 135	30 099	30 064	30 029	29 996	29 965	29 934
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 903	29 874	29 845	29 814	29 781	29 747	29.711	29 671
29.274 29.202 29.165 29.105 29.054 29.001 28.948 28.896 28.848 28.803 28.777 28.567 28.695 28.667 28.643 28.651 28.604 28.589 28.577 28.667 28.650 28.667 28.643 28.604 28.589 28.577 28.667 28.667 28.661 28.651 28.667 28.661 28.668 29.800 27.897 27.623 27.755 27.650 27.630 27.542 27.436 27.339 27.251 27.174 27.114 27.035 26.933 26.837 26.736 26.628 25.557 25.431 25.441 24.800 24.725 24.612 24.939 24.887 24.568 24.550 24.400 24.567 24.537 24.531 24.624 24.944 24.568 24.550 24.413 24.537 24.531 24.657 24.624 24.947 24.943 23.848 23.767 23.6	29 633	29 593	29 553	29 514	29 472	29 428	29 378	29 327
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.033	29.220	29.165	29.109	29 054	29.001	28 948	28 896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 848	28 803	28 763	28 727	28 695	28 667	28 643	28.621
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28 604	28 589	28 577	28 567	28 559	28 554	28 551	28 553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.558	28.570	28.587	28.608	28.629	28.650	28.667	28.681
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.691	28 695	28 695	28 688	28 676	28 655	28.626	28 592
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 548	28 502	28.466	28 419	28 337	28 268	28 214	28 155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 068	27 980	27 897	27 823	27 755	27 695	27 630	27 542
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 436	27.339	27.251	27.174	27 114	27 035	26 933	26 837
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 736	26 628	26 518	26 416	26 318	26 224	26 134	26.048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.967	25.894	25.834	25.784	25.713	25.636	25.557	25.493
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25,431	25.349	25.273	25.200	25.129	25.061	24.998	24.939
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.887	24.841	24.800	24.762	24.725	24.691	24.657	24.624
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 594	24 568	24 550	24 540	24 537	24 534	24 530	24 520
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 496	24.300	24.330	24.376	24 321	24 261	24 203	24 141
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.490	23 998	23 919	23.848	23 767	23 674	23 578	23 497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 416	23.332	23 261	23 202	23 150	23 105	23.065	23.030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 999	22 974	22 949	22 930	22 916	22 910	22 911	22 927
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.999	22 963	22 981	22.936	22.910	22.918	22.912	22.927
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.942	22.505	22.501	22.500	22.571	22.550	22.502	22.466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.000	22 393	22 362	22.334	22.310	22.291	22.276	22.265
22.261 22.264 22.273 22.286 22.299 22.312 22.318 22.316 22.312 22.304 22.295 22.289 22.260 22.264 22.242 22.222 22.198 22.164 22.125 22.083 22.040 21.989 21.928 21.871 21.817 21.769 21.730 21.700 21.683 21.671 21.631 21.551 21.496 21.458 21.429 21.408 21.396 21.393 21.394 21.394 21.389 21.377 21.362 21.348 21.322 21.308 21.755 21.233 21.181 21.127 21.073 20.053 20.503 20.457 20.409 20.357 20.299 20.230 20.147 20.049 19.956 19.881 19.815 19.759 19.690 19.605 19.517 19.431 19.342 19.250 19.162 19.075 18.990 18.901 18.813 18.730 18.649 18.569 18.487 18.408 18.330 18.254 18.179 <td< td=""><td>22.12/</td><td>22.000</td><td>22.002</td><td>22.001</td><td>22.010</td><td>22.271</td><td>22.270</td><td>22.200</td></td<>	22.12/	22.000	22.002	22.001	22.010	22.271	22.270	22.200
22.312 22.304 22.295 22.289 22.280 22.264 22.242 22.222 22.198 22.164 22.125 22.083 22.040 21.989 21.928 21.871 21.817 21.769 21.730 21.683 22.040 21.989 21.928 21.871 21.496 21.458 21.472 21.308 21.373 21.394 21.394 21.389 21.377 21.362 21.348 21.332 21.308 21.275 21.233 21.181 21.127 21.073 21.018 20.967 20.914 20.854 20.793 20.734 20.679 20.632 20.594 20.553 20.503 20.457 20.409 20.357 20.299 20.230 20.147 20.049 19.956 19.881 19.815 19.75 18.990 18.901 18.813 18.730 18.649 18.569 18.487 18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.833 17.769 17.708 17.242	22.261	22.264	22.273	22.286	22.299	22.312	22.318	22.316
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.312	22.304	22.295	22.289	22.280	22.264	22.242	22.222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.198	22.164	22.125	22.083	22.040	21.989	21.928	21.871
21.496 21.458 21.429 21.408 21.396 21.393 21.394 21.394 21.389 21.377 21.362 21.348 21.332 21.308 21.275 21.233 21.181 21.127 21.073 21.018 20.967 20.914 20.854 20.793 20.734 20.679 20.632 20.594 20.553 20.503 20.457 20.409 20.357 20.299 20.230 20.147 20.049 19.956 19.881 19.815 19.759 19.690 19.605 19.517 19.431 19.342 19.250 19.162 19.075 18.990 18.901 18.813 18.730 18.649 18.569 18.487 18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.463 16.431 16.400 16.369 16.338 <td< td=""><td>21.817</td><td>21.769</td><td>21.730</td><td>21.700</td><td>21.683</td><td>21.671</td><td>21.631</td><td>21.551</td></td<>	21.817	21.769	21.730	21.700	21.683	21.671	21.631	21.551
21.389 21.377 21.362 21.348 21.332 21.308 21.275 21.233 21.181 21.127 21.073 21.018 20.967 20.914 20.854 20.793 20.734 20.679 20.632 20.594 20.553 20.503 20.457 20.409 20.357 20.299 20.230 20.147 20.049 19.956 19.881 19.815 19.759 19.690 19.605 19.517 19.431 19.342 19.250 19.162 19.075 18.990 18.801 18.813 18.730 18.649 18.867 18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.833 17.769 17.708 17.650 17.594 17.543 17.492 17.442 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.552 17.006 16.960 16.598 16.555 16.530 16.496 16.431 16.431 16.400 16.369 16.338 16.309 <td< td=""><td>21.496</td><td>21.458</td><td>21.429</td><td>21.408</td><td>21.396</td><td>21.393</td><td>21.394</td><td>21.394</td></td<>	21.496	21.458	21.429	21.408	21.396	21.393	21.394	21.394
21.18121.12721.07321.01820.96720.91420.85420.79320.73420.67920.63220.59420.55320.50320.45720.40920.35720.29920.23020.14720.04919.95619.88119.81519.75919.69019.60519.51719.43119.34219.25019.16219.07518.99018.90118.81318.73018.64918.56918.48718.40818.33018.25418.17918.10618.03517.96617.89817.83317.76917.70817.65017.59417.54317.49217.44217.39217.34317.29217.24217.19417.14617.09917.05217.00616.96016.91516.86816.82416.78416.74416.70616.66916.63416.59816.56516.53016.49616.46316.43116.40016.36916.33816.30916.27816.25016.22116.19216.16316.13516.10716.08016.05216.02315.99815.97015.94415.91815.86315.83433.72233.62233.52533.42933.33533.24533.15533.06832.98232.90032.81832.73832.66032.58532.51332.44332.37532.30732.23832.16532.09232.01831.94331.86931.79731.72631.652 <td< td=""><td>21.389</td><td>21.377</td><td>21.362</td><td>21.348</td><td>21.332</td><td>21.308</td><td>21.275</td><td>21.233</td></td<>	21.389	21.377	21.362	21.348	21.332	21.308	21.275	21.233
20.734 20.679 20.632 20.594 20.553 20.503 20.457 20.409 20.357 20.299 20.230 20.147 20.049 19.956 19.881 19.815 19.759 19.690 19.605 19.517 19.431 19.342 19.250 19.162 19.075 18.990 18.901 18.813 18.730 18.649 18.569 18.487 18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.833 17.769 17.708 17.650 17.594 17.543 17.492 17.442 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.863 <td< td=""><td>21.181</td><td>21.127</td><td>21.073</td><td>21.018</td><td>20.967</td><td>20.914</td><td>20.854</td><td>20.793</td></td<>	21.181	21.127	21.073	21.018	20.967	20.914	20.854	20.793
20.35720.29920.23020.14720.04919.95619.88119.81519.75919.69019.60519.51719.43119.34219.25019.16219.07518.99018.90118.81318.73018.64918.56918.48718.40818.33018.25418.17918.10618.03517.96617.89817.83317.76917.70817.65017.59417.54317.49217.44217.39217.34317.29217.24217.19417.14617.09917.05217.00616.96016.91516.86816.82416.78416.74416.70616.66916.63416.59816.55516.53016.49616.46316.43116.40016.36916.33816.30916.27816.25016.22116.19216.16316.13516.10716.08016.05216.02315.99815.97015.94415.91815.89115.86315.83433.72233.06832.98232.90032.81832.73832.66032.58532.51332.44332.37532.30732.23832.16532.09232.01831.94331.86931.79731.72631.65231.58031.50631.43031.35331.27431.194:::::::::::	20.734	20.679	20.632	20.594	20.553	20.503	20.457	20.409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.357	20.299	20.230	20.147	20.049	19.956	19.881	19.815
19.075 18.990 18.901 18.813 18.730 18.649 18.569 18.487 18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.833 17.769 17.708 17.650 17.594 17.543 17.492 17.442 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 15.944 15.918 15.891 15.863 15.834 15.970 15.998 15.970 34.433 34.336 34.235 34.135 34.032 33.928 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 <td< td=""><td>19.759</td><td>19.690</td><td>19.605</td><td>19.517</td><td>19.431</td><td>19.342</td><td>19.250</td><td>19.162</td></td<>	19.759	19.690	19.605	19.517	19.431	19.342	19.250	19.162
18.408 18.330 18.254 18.179 18.106 18.035 17.966 17.898 17.833 17.769 17.708 17.650 17.594 17.543 17.492 17.442 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943	19.075	18.990	18.901	18.813	18.730	18.649	18.569	18.487
17.833 17.769 17.708 17.650 17.594 17.543 17.492 17.442 17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 <td< td=""><td>18.408</td><td>18.330</td><td>18.254</td><td>18.179</td><td>18.106</td><td>18.035</td><td>17.966</td><td>17.898</td></td<>	18.408	18.330	18.254	18.179	18.106	18.035	17.966	17.898
17.392 17.343 17.292 17.242 17.194 17.146 17.099 17.052 17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 i i i i i i<	17.833	17.769	17.708	17.650	17.594	17.543	17.492	17.442
17.006 16.960 16.915 16.868 16.824 16.784 16.744 16.706 16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : : : :	17.392	17.343	17.292	17.242	17.194	17.146	17.099	17.052
16.669 16.634 16.598 16.565 16.530 16.496 16.463 16.431 16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : : : :	17.006	16.960	16.915	16.868	16.824	16.784	16.744	16.706
16.400 16.369 16.338 16.309 16.278 16.250 16.221 16.192 16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 16.023 15.998 15.970 34.433 34.336 34.235 34.135 34.032 33.928 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : : : :	16.669	16.634	16.598	16.565	16.530	16.496	16.463	16.431
16.163 16.135 16.107 16.080 16.052 16.023 15.998 15.970 15.944 15.918 15.891 15.863 15.834 15.834 15.998 33.722 34.433 34.336 34.235 34.135 34.032 33.928 33.824 33.722 33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : : : :	16.400	16.369	16.338	16.309	16.278	16.250	16.221	16.192
15.94415.91815.89115.86315.83434.43334.33634.23534.13534.03233.92833.82433.72233.62233.52533.42933.33533.24533.15533.06832.98232.90032.81832.73832.66032.58532.51332.44332.37532.30732.23832.16532.09232.01831.94331.86931.79731.72631.65231.58031.50631.43031.35331.27431.194:::::::::	16.163	16.135	16.107	16.080	16.052	16.023	15.998	15.970
34.43334.33634.23534.13534.03233.92833.82433.72233.62233.52533.42933.33533.24533.15533.06832.98232.90032.81832.73832.66032.58532.51332.44332.37532.30732.23832.16532.09232.01831.94331.86931.79731.72631.65231.58031.50631.43031.35331.27431.194:::::::::	15.944	15.918	15.891	15.863	15.834			
33.622 33.525 33.429 33.335 33.245 33.155 33.068 32.982 32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : :	34 433	34,336	34.235	34.135	34.032	33,928	33.824	33.722
32.900 32.818 32.738 32.660 32.585 32.513 32.443 32.375 32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : :	33 622	33.525	33.429	33,335	33.245	33.155	33.068	32.982
32.307 32.238 32.165 32.092 32.018 31.943 31.869 31.797 31.726 31.652 31.580 31.506 31.430 31.353 31.274 31.194 : : : : : : : : : : :	32 900	32.818	32.738	32.660	32.585	32.513	32.443	32.375
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.307	32.238	32.165	32.092	32.018	31.943	31.869	31.797
	31.726	31.652	31.580	31.506	31.430	31.353	31.274	31.194
	:	:	•	:	•	:	:	:

Formaatti 3. Pistelista

Kolmannessa formaatissa kaikista hilapisteestä on annettu koordinaatit ja geoidikorkeus. Ensimmäinen sarake on latitudi asteena, toinen sarake on longitudi asteena ja kolmas sarake geoidikorkeus metrinä.

Fsimerkki 8.4 3 Formaatin esimerkki: Hil	a nistelistana	
Eshierkki 0-4 5. Formaann eshierkki. Ina	i pisiciisiana	
70.700000	17.480000	34.415
70.700000	17.520000	34.318
70.700000	17.560000	34.219
70.700000	17.600000	34.120
70.700000	17.640000	34.017
70.700000	17.680000	33.914
70.700000	17.720000	33.812
70.700000	17.760000	33.709
70.700000	17.800000	33.610
70.700000	17.840000	33.512
70.700000	17.880000	33.417
70.700000	17.920000	33.323
70.700000	17.960000	33.230
70.700000	18.000000	33.141
70.700000	18.040000	33.054
70.700000	18.080000	32.969
70.700000	18.120000	32.888
70.700000	18.160000	32.806
70.700000	18.200000	32.727
70.700000	18.240000	32.649
70.700000	18.280000	32.573
70.700000	18.320000	32.500
70.700000	18.360000	32.430
70.700000	18.400000	32.361
70.700000	18.440000	32.293
70.700000	18.480000	32.224
70.700000	18.520000	32.154
÷	÷	÷

Kirjallisuusviitteet

- ANON (2004): Suomen valtakunnallisen korkeusjärjestelmän ajantasaistaminen. Työryhmäraportti 3.12. 2004. Masala
- BLOMQVIST, Edv., H. RENQVIST (1910): Das präcisionsnivellement Finlands 1892-1910. *Fennia*, **31**, N:o 2, s.
- BILKER, M., M. OLLIKAINEN and M. POUTANEN (2003): Evaluation of Geoid Models with GPS/Levelling Points in Sweden and Finland. In: C. Reigber, H. Lühr, P. Schwintzer (Eds.) *First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies*, 1st CHAMP Science Meeting, 21-24 January, 2002, Potsdam, Germany. Berlin: Springer, 2003.
- BILKER, M. (2005): Evaluation of the new global gravity field models from CHAMP and GRACE with GPS-levelling data in Fennoscandia. In: A. Viljanen, P. Mäntyniemi (Eds.) XXII Geofysiikan Päivät, Helsingissä 19.-20.5.2005. Geofysiikan Seura, Helsinki, 2005. pp. 21-26.
- BOMFORD, G. (1963): Report of Study Group No. 10. The Geoid in Europe and Connected Countries. Travaux de l'Association Internationale de Géodésie, 22, 1963.
- BOUCHER, C., Z. ALTAMIMI (2001): Specifications for reference frame fixing in the analysis of a EUREF GPS campaign, Version 5, 12-04-2001, http://lareg.ensg.ign.fr/EUREF/memo.pdf
- DENKER, H., D. BEHREND, W. TORGE (1996): The European Gravimetric Quasigeoid EGG96. In: Segawa, J., H. Fuijimoto, S. Okubu (eds) *Gravity, geoid and marine geodesy*, IAG Symposium Series 117. Springer-Verlag, Berlin Heidelberg New York, pp 532-539.
- FORSBERG, R. (1989): NKG Nordic Standard Geoid 1989. Kort- og Matrikelstyrelsen. Charlottenlund, Denmark.
- FORSBERG, R. (1990): A new high resolution geoid of the Nordic Area. Proc. IAG Symposium 106: "Determination of the Geoid, Present and Future". (Eds. R. Rapp, F. Sansò). Springer Verlag. New York.
- FORSBERG, R., J. KAMINSKIS and D. SOLHEIM (1996): Geoid of the Nordic and Baltic Region from gravimetry and satellite altimetry. In: Segawa J., H. Fujimoto and S. Okubu (eds.) *Gravity, geoid and marine geodesy*, IAG Symposium Series 117. Springer-Verlag, Berlin-Heidelberg-New York, p. 540-547.
- FORSBERG, R., J. KAMINSKIS and D. SOLHEIM (1999): The NKG-96 geoid. *Proc. of The 13th General Meeting of the Nordic Geodetic Commission*, May 25-29, 1998, Gävle, Sweden (Ed. Bo Jonsson), Part 2, p. 255-262. Lantmäteriet, Gävle, Sweden 1999.
- FORSBERG, R. (2003): An overview manual for the GRAVSOFT, Geodetic Gravity Field Modelling Programs. Draft–1. September 2003. National Survey and Cadastre of Denmark.
- FORSBERG, R., G. STRYKOWSKI, D. SOLHEIM (2004): NKG-2004 geoid of the Nordic and Baltic area. Poster on CD-ROM-proceedings from the International Association of Geodesy Conference "Gravity, Geoid and Satellite Gravity Missions", Aug 30 Sep 3, 2004, Porto, Portugal, 2004.
- HEISKANEN, W.A. and H. MORITZ (1967): *Physical Geodesy*. W.H. Freeman and Co., San Francisco.
- JHS 153 (2002): Julkisen hallinnon suositus JHS 153. ETRS89-järjestelmän mukaiset koordinaatit Suomessa. http://www.jhs-suositukset.fi/.
- JHS 154 (2002): Julkisen hallinnon suositus JHS 154. ETRS89-järjestelmään liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako. http://www.jhs-suositukset.fi/
- JHS 163 (2007): Julkisen hallinnon suositus JHS 163. Suomen korkeusjärjestelmä N2000. http://www.jhs-suositukset.fi/
- KIVINIEMI, A. (1980): Gravity measurements in 1961-1978 and the results of the gravity survey in Finland in 1945-1978. Liitekartta: Gravity Measurements of the Finnish Geodetic Institute in 1945-1978, Bouguer Anomalies. Suomen Geodeettisen laitoksen julkaisuja 91. Helsinki.
- KOVANEN, J. (2008): Geodeettisen laitoksen koordinaattimuunnospalvelu. In: Henriksson, R. ja Mäkelä, J. (Eds.): *Historiaa kunnioittaen, tulevaisuuteen suunnaten*, Maanmittaustieteiden Seuran julkaisu n:o 45, Maanmittaustieteiden Päivät 2008, 27.-28.11.2008, TKK, Espoo, Finland.

- KÄÄRIÄINEN E. (1963): Suomen toisen tarkkavaaituksen kiintopisteluettelo I. Bench mark list of the Second Levelling of Finland. *Suomen Geodeettisen laitoksen julkaisuja* 57. Helsinki. Liitekartat.
- KÄÄRIÄINEN, E. (1975): Maamme korkeusjärjestelmät ja niiden lähtökohdat. *Maanmittaus* 1975: **1-4**, ss. 48-53. Vammala.
- LEHMUSKOSKI, P., V. SAARANEN, M. TAKALO, P. ROUHIAINEN (2008): Suomen Kolmannen Tarkkavaaituksen Kiintopisteluettelo – Bench Mark List of the Third Levelling of Finland, *Suomen Geodeettisen Laitoksen Julkaisuja*, N:o **139**. Kirkkonummi 2008, 220 pp.
- LEMOINE, F.G., S.C. KENYON, J.K. FACTOR, R.G. TRIMMER, N.K. PAVLIS, D.S. CHINN, C.M. COX, S.M. KLOSKO, S.B. LUTHCKE, M.H. TORRENCE, Y.M. WANG, R.G. WILLIMASON, E.C. PAVLIS, R.H. RAPP, T.R. OLSON (1998): The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential Model EGM96. NASA/TP-1998-206861.
- LIDBERG, M. J.M. JOHANSSON, H.-G. SCHERNECK, J.L. DAVIS (2007): An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia, *Journal of Geodesy*, **81** (3), 2007, pp 213-230.
- MILNE, G.A., J.L. DAVIS, J.X. MITROVICA, H.-G. SCHERNECK, J.M. JOHANSSON, M. VERMEER, H. KOIVULA (2001): Space-Geodetic Constraints on Glacial Isostatic Adjustments in Fennoscandia, *Science* 291, 23 March, 2001, pp. 2381-2385.
- MORITZ, H. (1989): Advanced Physical Geodesy, 2. ed., H. Wichmann Verlag, Karlsruhe, 500 pp, ISBN 3-87907-195-0.
- NØRBECH, T., K. ENGSAGER, L. JIVALL, O. KNUDSEN, H. KOIVULA, M. LIDBERG, M. OLLIKAINEN, M. WEBER (2006): Transformation from a common Nordic reference frame to ETRS89 in Denmark, Finland, Norway, and Sweden status report. In: *Proceedings of the NKG General Assembly*, May 29 June 2, Copenhagen, Denmark, 2006.
- OLLIKAINEN M., H. KOIVULA ja M. POUTANEN (2000): The densification of the EUREF network in Finland. *Suomen Geodeettisen laitoksen julkaisuja*, **129**, 61 s.
- OLLIKAINEN M., H. KOIVULA ja M. POUTANEN (2001): EUREF-FIN-koordinaatisto ja EUREFpistetihennykset Suomessa. Suomen Geodeettisen laitoksen tiedote 24, 32 s.
- OLLIKAINEN, M. (2002): The Finnish geoid model FIN2000. *Proceedings of the XIV General Meeting of the Nordic Geodetic Commission* (Eds. Poutanen, M and H. Suurmäki), Oct. 1-5, 2002, Helsinki University of Technology, Espoo, Finland, pp. 111-116.
- OLLIKAINEN, M. (2006): The EUVN_DA campaign in Finland. Suomen Geodeettisen laitoksen julkaisuja, 135, 39 s.
- POUTANEN, M. (2000): Sea surface topography and vertical datums using space geodetic techniques. *Suomen Geodeettisen laitoksen julkaisuja*, **128**, 312 s.
- RAPP, R.H., Y.M. WANG and N.K. PAVLIS (1991): The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Model. Report No. 410, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio.
- RAPP, R. (1996): Letter from Dick Rapp on the release of the final version, Sept. 24, 1996. International Geoid Service, Special Working Group On The GSFC/DMA Model Evaluation. News and Results Using the Final GSFC/DMA Model EGM96, Updated Oct. 22, 1996. http://www.ucalcary.ca/~sideris/SWWG/EGM96.html #final-model.
- TAPLEY, B., J. RIES, S. BETTADPUR, D. CHAMBERS, M. CHENG, F. CONDI, B. GUNTER, Z. KANG, P. NAGEL, R. PASTOR, T. PEKKER, S. POOLE, F. WANG (2005). GGM02 - An improved Earth gravity field model from GRACE, *Journal of Geodesy* (2005), **79**, pp. 467-478.
- VERMEER, M. (1995): Two New Geoids Determined at the FGI. Rep. of the FGI 95:5. 25 p. Helsinki.
- VESTØL, O. (2007): Determination of postglacial land uplift in Fennoscandia from levelling, tidegauges and continuous GPS stations using least squares collocation, *Journal of Geodesy*, 80, pp. 248-258.
- ÅGREN, J., R. SVENSSON (2007): Postglacial land uplift model and system definition for the new Swedish height system RH 2000. *Reports in Geodesy and Geographical Information Systems, LMV-Rapport* **2007:4**, Gävle, 2007, 124 pp.

Liite A: Erityyppiset korkeudet

Geoidimalleihin liittyvät erityyppiset korkeudet selitettiin lyhyesti kappaleessa 2. Tässä liitteessä esitellään tarkemmin korkeuksiin liittyvää teoriaa. Geoidilaskentaa ei käsitellä. Siihen liittyvä teoria löytyy oppikirjoista, esim. HEISKANEN ja MORITZ (1967).

A.1. Korkeus ellipsoidista

GPS-mittausten laskennan tuloksena saadaan pisteen kolmiulotteiset koordinaatit (X, Y, Z), jotka voidaan muuntaa maantieteellisiksi koordinaateiksi (φ , λ) ja ellipsoidikorkeudeksi (h). Muunnokseen tarvitaan koordinaattijärjestelmään liittyvän ellipsoidin (Kuva A-1) isoakselin puolikas (a) ja litistyssuhde (f = [a - b] / a). Laskukaavat löytyvät useimmista geodesian oppikirjoista (esim. HEISKANEN ja MORITZ, 1967).

Ellipsoidikorkeus (h) on geometrinen suure, joka kertoo mittauspisteen etäisyyden ellipsoidipinnasta.

A.2. Ortometrinen korkeus

Tarkkavaaituksessa mitataan pisteiden välisiä geopotentiaalieroja. Mittauksen tuloksena saadaan pisteen P geopotentiaaliluku (C_P), joka on merenpinnan potentiaalin (W_0) ja pisteen P potentiaalin (W_P) ero (Kuva A-2):

$$C_{\rm P} = W_0 - W_{\rm P} \tag{A-1}$$

Pisteen P ortometrisen korkeuden (*H*) ja sen geopotentiaaliluvun välinen yhteys esitetään kaavalla (HEISKANEN ja MORITZ 1967, s. 166):

$$C_{\rm p} = \int_{0}^{H} g dH , \qquad (A-2)$$

missä g on luotiviivaa pitkin oleva painovoima. Integroimalla kaava (A-2) saadaan:

$$C_{\rm p} = \overline{g}H_{\rm p}, \qquad (A-3)$$

missä \overline{g} tarkoittaa pisteen P ja geoidin välistä keskimääräistä painovoimaa luotiviivaa pitkin laskettuna. Ortometriselle korkeudelle saadaan yksinkertainen kaava:

$$H_{\rm p} = \frac{C_{\rm p}}{\overline{g}} \,. \tag{A-4}$$

Kaavan (A-4) soveltaminen käytännössä on vaikeaa, koska keskimääräistä painovoimaa \overline{g} ei voida mitata vaan se täytyy arvioida. Tähän tarkoitukseen käytetään usein Helmertin johtamaa kaavaa

Kuva A-1. *Kolmiulotteiset koodinaatit* (X, Y, Z) *ja maantieteelliset koodinaatit* (φ, λ, h).

Kuva A-2. Ortometrinen korkeus (H), korkeus **Kuva A-3.** Normaalikorkeus (H*) ja korkeusellipsoidista (h) ja geoidin korkeus anomalia (ζ). (N).

$$\overline{g} = g_p + 0.0424H, \qquad (A-5)$$

missä g_p on painovoima maan pinnalla galleina, gals (1 gal = 10^{-2} m/s²), ja *H* pisteen korkeus kilometreinä. Suomen N60-korkeusjärjestelmässä olevat korkeudet ovat ortometrisia korkeuksia.

A.3. Normaalikorkeus

Jos Maata approksimoidaan pyörähdysellipsoidilla, on sen painovoimakenttä silloin kyseisen ellipsoidin synnyttämä normaalipainovoimakenttä (U). Pisteen normaalipainovoima γ voidaan laskea suoraan ellipsoidin parametreista (HEISKANEN ja MORITZ, 1967).

Jos maan painovoimakenttä oletetaan normaalipainovoiman synnyttämän kentän kaltaiseksi, voidaan pisteen P geopotentiaaliluku laskea analogisesti kaavan (A-2) kanssa:

$$C_P = \int_0^{H^*} \gamma \, dH^*, \tag{A-6}$$

ja

$$C_P = \bar{\gamma} H^*. \tag{A-7}$$

Kaavoissa esiintyvää korkeutta H^* sanotaan normaalikorkeudeksi (Kuva A-3), joka saadaan keskimääräisen normaalipainovoiman $\overline{\gamma}$ avulla:

$$H^* = \frac{C_p}{\bar{\gamma}} \,. \tag{A-8}$$

Suomen uuden N2000-korkeusjärjestelmän korkeudet ovat normaalikorkeuksia.

A.4. Geoidikorkeus ja korkeusanomalia

Ellipsoidikorkeuden (h) ja ortometrisen korkeuden (H) välinen yhteys antaa geoidikorkeuden (N) (Kuva A-2):

$$N = h - H . \tag{A-9}$$

Ellipsoidisen korkeuden (h) ja normaalikorkeuden (H*) eroa sanotaan korkeusanomaliaksi (ζ), joka saadaan kaavasta (Kuva A-3):

$$\zeta = h - H^*. \tag{A-10}$$

Korkeusanomaliat määrittävät telluroidiksi kutsutun pinnan, joka seuraa varsin tarkasti maanpinnan korkeusvaihteluita (Kuva A-4). Sen mukaan normaalikorkeus on ellipsoidin ja telluroidin välinen etäisyys. Käytännössä korkeusanomaliat kuvataan kuitenkin etäisyytenä ellipsoidista ja silloin muodostuu kvasigeoidi (Kuva A-4). Tämän vuoksi normaalikorkeudet voidaan tulkita samalla tavalla kun ortometriset korkeudet, paitsi että etäisyys mitataan

Kuva A-4. *Yhteenveto erityyppisistä korkeuksista ja niiden yhteyksiä telluroidiin, kvasigeoidiin ja geoidiin. H on ortometrinen korkeus, H* normaalikorkeus, h ellipsoidikorkeus, N geoidikorkeus, ja ζ korkeusanomalia.*

kvasigeoidiin eikä geoidiin. Tässä tiedotteessa on käytetty termejä geoidikorkeus ja geoidimalli myös kun todellisuudessa on kyse korkeusanomaliasta ja kvasigeoidimallista.

Yhdistämällä kaavat (A-9) ja (A-10) saadaan ortometrisen korkeuden ja normaalikorkeuden erotus:

$$H - H^* = \zeta - N . \tag{A-11}$$

HEISKANEN ja MORITZ (1967, s. 327) ovat osoittaneet, että (ζ –N) saadaan lasketuksi kaavalla:

$$(\zeta - N) = \frac{-\Delta g_B}{\bar{\gamma}} \cdot H , \qquad (A-12)$$

missä Δg_B on havaintopisteelle laskettu Bouguer-anomalia ja $\overline{\gamma}$ on keskimääräinen normaalipainovoima. Bouguer-anomalia lasketaan pisteellä mitatusta painovoima-arvosta g (HEISKANEN ja MORITZ, 1967):

$$\Delta g_B = g - \gamma_0 - A_B + F = g - \gamma_0 - 0.1119 \cdot H + 0.3086 \cdot H.$$
(A-13)

Ensin vähennetään normaalipainovoima ellipsoidin pinnalla, γ_0 . Sen jälkeen poistetaan Bouguerkorjaus, A_B , joka kuvaa painovoiman muutosta kun poistetaan pisteen ja geoidin välissä oleva massa, olettaen että massa on äärettömän kauas jatkuvan laatan muotoinen (Bouguer-laatta). Lopuksi lisätään free-air -korjaus F, joka kuvaa painovoimalisäystä kun piste siirretään geoidipinnalle olettaen että väliaineena on ilma.

Taulukossa A-1 esitetään joillakin paikkakunnilla ortometrisen ja normaalikorkeuden ero, jotta saisimme käsityksen siitä minkä suuruisesta erosta on kysymys. Taulukon arvoista nähdään selvästi maaston korkeuden vaikutus ortometrisen ja normaalikorkeuden eroon. Suomen pienistä korkeuksista johtuen erotus $H - H^*$ pysyy koko maan alueella pienempänä kuin 10 cm.

Taulukko A-1. Ortometrinen korkeus H, normaalikorkeus H* ja niiden ero muutamilla paikoilla Suomessa. Laskussa tarvittavat painovoiman Bouguer-anomalia-arvot (Δg_B) on interpoloitu Suomen Bouguer-anomaliakartasta (KIVINIEMI, 1980). Normaalipainovoiman $(\overline{\gamma})$ laskemiseen käytetty kaava löytyy oppikirjoista (esim. HEISKANEN ja MORITZ, 1967, s. 170). (ζ - N) on normaali- ja ortometrisen korkeuden ero. N on geoidinkorkeus ja ζ korkeusanomalia.

Paikka	Latitudi	$\overline{\gamma}$	Δg_B	Н	$-(\zeta - N)$	H^*
	[°']	[mgal]	[mgal]	[m]	[m]	[m]
Helsinki	60 09	981921.94	- 16.	50.0	-0.001	49.999
Kouvola	60 50	981967.31	- 40.	100.0	-0.004	99.996
Turku	60 30	981949.25	5.	50.0	0.000	50.000
Säkylä	61 00	981987.94	- 45.	50.0	-0.002	99.998
Halti	69 20	982369.75	60.	1300.0	0.079	1300.079

Liite B: Laskuesimerkki: Bi-lineaarinen interpolointi FIN2005N00-geoidimallin hilassa

FIN2005N00-geoidimallilla voidaan muuntaa GPS:llä mitatut ellipsoidikorkeudet N2000korkeuksiksi seuraavan esimerkin mukaisesti bi-lineaarisella interpolointimenetelmällä. Pisteelle on GPS:llä mitattu seuraavat maantieteelliset EUREF-FIN-koordinaatit:

 $\varphi = 61.0632^{\circ}$ $\lambda = 26.5463^{\circ}$ h = 98.636 m

=15.846

Etsitään pisteen sijainti FIN2005N00-hilassa ja otetaan hilasta pistettä ympäröivän neljän pisteen muunnosarvot (kuvat B-1 ja B-2):

$\varphi_1 = 61.06^{\circ}$	$\lambda_1 = 26.52^\circ$	$N(\varphi_1, \lambda_1) = 15.865 \text{ m}$
$\varphi_1 = 61.06^\circ$	$\lambda_2 = 26.56^{\circ}$	$N(\varphi_1, \lambda_2) = 15.836 \text{ m}$
$\varphi_2 = 61.08^{\circ}$	$\lambda_1 = 26.52^\circ$	$N(\varphi_2, \lambda_1) = 15.893 \text{ m}$
$\varphi_2 = 61.08^{\circ}$	$\lambda_2 = 26.56^{\circ}$	$N(\varphi_2, \lambda_2) = 15.864 \text{ m}$

Nyt pisteen geoidikorkeus voidaan laskea kaavoilla 7-1, 7-2, ja 7-3. Ensin interpoloidaan $N_{\text{FIN2005N00}}(\varphi_1, \lambda)$ ja $N_{\text{FIN2005N00}}(\varphi_2, \lambda)$:

$$N_{\text{FIN2005N00}}(\varphi_{1},\lambda) = \frac{\lambda_{2} - \lambda}{\lambda_{2} - \lambda_{1}} N_{\text{FIN2005N00}}(\varphi_{1},\lambda_{1}) + \frac{\lambda - \lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{\text{FIN2005N00}}(\varphi_{1},\lambda_{2})$$
$$= \frac{26.56 - 26.5463}{26.56 - 26.52} \times 15.865 + \frac{26.5463 - 26.52}{26.56 - 26.52} \times 15.836$$
(7-2)

$$N_{\text{FIN2005N00}}(\varphi_{2},\lambda) = \frac{\lambda_{2} - \lambda}{\lambda_{2} - \lambda_{1}} N_{\text{FIN2005N00}}(\varphi_{2},\lambda_{1}) + \frac{\lambda - \lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{\text{FIN2005N00}}(\varphi_{2},\lambda_{2})$$
$$= \frac{26.56 - 26.5463}{26.56 - 26.52} \times 15.893 + \frac{26.5463 - 26.52}{26.56 - 26.52} \times 15.864$$
(7-3)
$$= 15.874$$

Sitten lasketaan $N_{\text{FIN2005N00}}(\varphi, \lambda)$:

$$N_{\text{FIN2005N00}}(\varphi, \lambda) = \frac{\varphi_2 - \varphi}{\varphi_2 - \varphi_1} N_{\text{FIN2005N00}}(\varphi_1, \lambda) + \frac{\varphi - \varphi_1}{\varphi_2 - \varphi_1} N_{\text{FIN2005N00}}(\varphi_2, \lambda)$$
$$= \frac{61.08 - 61.0632}{61.08 - 61.06} \times 15.846 + \frac{61.0632 - 61.06}{61.08 - 61.06} \times 15.874$$
(7-1)
$$= 15.850$$

Esimerkkipisteen N2000-korkeus on: $H_{N2000} = h - N_{FIN2005N00}(\varphi, \lambda) = 98.636 - 15.850 = 82.786$ m.

Kuva B-1 Bi-lineaarinen interpolointi neljästä halutun pisteen ympäröivästä hilapisteestä.

Kuva B-2 Osa FIN2005N00-hilasta jossa esimerkkipiste sijaitsee. Punaisessa laatikossa on mitatun pisteen ympäröivän neljän hilapisteen geoidikorkeudet.

Liite C: Laskuesimerkki: Paikallisen muunnospinnan johtaminen FIN2005N00-mallin avulla maantieteellisessä EUREF-FINkoordinaateissa

Seuraavassa esimerkissä lasketaan paikallinen muunnospinta EUREF-FIN-koordinaateissa FIN2005N00-mallin avulla. Esimerkissä käytetyt GPS- ja vaaituskorkeudet ovat fiktiivisiä ja laskun tuloksen muunnospinta ei ole reaalimaailmassa käytettävissä. Laskenta tehdään kappaleessa 7.2.1 ja kuvassa 7-2 esitetyn kaavan mukaan.

C.1. Lähtökoordinaatit

Esimerkkialue on 0.1° (~11 km) x 0.2° (~10 km) alue Etelä-Suomessa jossa on 7 pistettä käsittävä runkoverkko EUREF-FIN-koordinaatistossa. Pisteillä on ellipsoidisten korkeuksien lisäksi myös N2000-korkeusjärjestelmässä vaaitut normaalikorkeudet. Pisteiden koordinaatit ja korkeudet ovat taulukossa C-1 sarakkeissa 1-5.

Pisteiden sijainti ja alueen FIN2005N00-mallin geoidikorkeudet ovat kuvassa C-1. Kuvassa C-1 on myös merkattu alueeseen osuvat FIN2005N00-mallin hilapisteet. FIN2005N00-hila testialueella näyttää seuraavalta:

61.000000	61.10000	26.48	26000 26	5.680000	0.020000	0.040000
15.951	15.920	15.895	15.868	15.845	15.825	
15.924	15.893	15.864	15.836	15.812	15.790	
15.899	15.865	15.836	15.806	15.779	15.756	
15.867	15.832	15.804	15.772	15.744	15.719	
15.838	15.799	15.766	15.735	15.707	15.681	
15.807	15.764	15.728	15.699	15.670	15.644	

C.2. Paikallisen muunnospinnan johtaminen

Käydään läpi kappaleessa 7.2.1 ja kuvassa 7-2 esitetyt laskentavaiheet.

- 1. Interpoloidaan geoidimallista GPS/vaaituspisteille geoidikorkeudet ($N_{\text{FIN}2005\text{N00}}$). Geoidikorkeudet on annettu taulukossa C-1 sarakkeessa 6.
- 2. Muunnetaan pisteiden ellipsoidikorkeudet (*h*) GPS-vaaituskorkeuksiksi (H_{GPS}) geoidimallista interpoloiduilla geoidikorkeuksilla: $H_{GPS} = h N_{geoidimalli}$. GPS-vaaituskorkeudet on annettu taulukossa C-1 sarakkeessa 7.
- 3. Lasketaan geoidierot (ΔN) GPS/vaaituskorkeuksista ja vaaituksella määritetyistä N2000korkeuksista: $\Delta N = H_{GPS} - H_{N2000}$. Arvot on annettu taulukossa C-1 sarakkeessa 8. Kuvassa C-2 näkyy miten geoidierot ovat jakautuneet alueella. Keskihajonta on 1.3 cm ja suurin ja pienin ero –2.4 cm ja 0.3 cm. Kuvasta voidaan päätellä, että geoidimallia voidaan paikallisesti parantaa esim. 2. asteen polynomipinnan avulla.
- 4. Sovitetaan 2. asteen polynomipinta geoidieroihin:

$$\Delta N = \sum_{i=0}^{2} \sum_{j=0}^{2-i} a_{ij} \Delta \varphi^{i} \Delta \lambda^{j}$$

$$\Delta N = a_{00} + a_{01} \Delta \lambda + a_{02} \Delta \lambda^{2} + a_{10} \Delta \varphi + a_{11} \Delta \varphi \Delta \lambda + a_{20} \Delta \varphi^{2}$$
(7-4)

 $\Delta \varphi = \frac{\varphi - \varphi_{\min}}{\varphi_{\max} - \varphi_{\min}} \quad \text{ja } \Delta \lambda = \frac{\lambda - \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \text{ ovat normeeratut koordinaatit ja } \varphi_{\min}, \lambda_{\min}, \varphi_{\max}, \text{ ja}$

 λ_{max} ovat alueen minimi- ja maksimikoordinaatit.

Kaava 7-4 voidaan myös kirjoittaa matriisimuodossa y = Ax, jossa vektori y sisältää vaiheessa 3 lasketut geoidierot ja vektori x sisältää tuntemattomat polynomikertoimet:

Taulukko C-1. Alueen pisteiden koordinaatit. φ , λ , ja h ovat GPS:lla mitattu latitudi, longitudi ja ellipsoidinen korkeus. H_{N2000} on vaaittu N2000-korkeus. $N_{FIN2005N00}$ on FIN2005N00-geoidimallista interpoloitu geoidikorkeus. H_{GPS} on laskettu GPS-vaaituskorkeus. ΔN on korkeuksista laskettu geoidikorkeusero.

nro	φ (8)	λ	h (m)	$H_{\rm N2000}$	$N_{\rm FIN2005N00}$	H_{GPS}	ΔN (m)
	(-)	(-)	(III)	(III)	(III)	(III)	(111)
1	61.0985	26.5321	105.574	89.688	15.910	89.664	-0.024
2	61.0873	26.6275	111.050	95.204	15.831	95.219	0.015
3	61.0457	26.4883	86.914	71.048	15.869	71.045	-0.003
4	61.0524	26.5692	104.300	88.480	15.817	88.483	0.003
5	61.0559	26.6601	103.309	87.534	15.760	87.549	0.015
6	61.0036	26.5480	81.173	65.425	15.745	65.428	0.003
7	61.0247	26.6108	83.470	67.725	15.736	67.734	0.009

Kuva C-1. Testialueen runkoverkko, FIN2005N00-mallin mukaiset geoidikorkeudet ja FIN2005N00mallin hilapisteet

Kuva C-2. Geoidierot ΔN

Kuva C-3. Pisteiden geoidieroihin sovitettu 2. asteen polynomipinta

$$\begin{bmatrix} \Delta N_{1} \\ \Delta N_{2} \\ \vdots \\ \Delta N_{7} \end{bmatrix}_{y} = \begin{bmatrix} 1 & \Delta \lambda_{1} & \Delta \lambda_{1}^{2} & \Delta \varphi_{1} & \Delta \varphi_{1} \Delta \lambda_{1} & \Delta \varphi_{1}^{2} \\ 1 & \Delta \lambda_{2} & \Delta \lambda_{2}^{2} & \Delta \varphi_{2} & \Delta \varphi_{2} \Delta \lambda_{2} & \Delta \varphi_{2}^{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \Delta \lambda_{7} & \Delta \lambda_{7}^{2} & \Delta \varphi_{7} & \Delta \varphi_{7} \Delta \lambda_{7} & \Delta \varphi_{7}^{2} \end{bmatrix} \begin{bmatrix} a_{00} \\ a_{01} \\ a_{02} \\ a_{10} \\ a_{11} \\ a_{20} \end{bmatrix}$$
(C-1)

Polynomin kertoimet voidaan ratkaista pienimmän neliösumman keinolla:

$$\hat{x} = (A^t A)^{-1} A^t y,$$
 (C-2)

jossa vektori \hat{x} sisältää ratkaistut polynomikertoimet. Laskun tulokset on annettu taulukoissa C-2 ja C-3. Kuvassa C-3 näkyy tuloksen polynomipinta.

5. Interpoloidaan FIN2005N00-geoidimallista halutun paikallishilan pisteille geoidikorkeudet ($N_{\text{geoidimalli}}$ -hila). Valitaan pisteväli 0.01° pohjois-eteläsuunnassa ja 0.02° itä-länsisuunnassa. Alla hila on annettu formaatissa 1 (Kappale 8).

61.00000061.10000026.48000026.6800000.0100000.02000015.95115.93615.92015.90815.89515.88215.86815.85715.84515.83515.82515.93715.92215.90615.89315.86015.85215.84015.82915.81815.80715.92415.90815.87915.87815.86415.85015.83615.82415.81215.80115.79015.91115.89515.87915.86515.85015.83615.82115.80815.79515.78415.77315.89915.82615.85115.83615.82115.80815.77915.76715.75615.83315.86615.84815.83415.82015.80415.78915.77515.76215.75015.73715.86715.84915.83215.81815.80415.78815.77215.77515.74415.73115.71915.85215.83415.80015.78515.76915.73515.74015.72015.71315.70015.83815.81915.79915.78315.76615.75015.73515.72115.70715.69415.68115.82315.80215.78115.74615.74715.73215.71715.70315.68815.67515.66215.80715.78515.76415.72815.71415.69915.68415.67015.65715.644

6. Lasketaan 4. kohdassa määritetyillä polynomikertoimilla (a_{ij}) geoidierot paikallishilan pisteille (ΔN -hila). Hilan kuva näkyy kuvassa C-3. Hilan arvot on annettu formaatissa 1.

61.00	00000	61.1000	000 20	5.480000	26.	580000	0.01	0000	0.02000	00
-0.045	-0.037	-0.029	-0.021	-0.014	-0.006	0.001	0.008	0.015	0.022	0.029
-0.036	-0.029	-0.022	-0.015	-0.009	0.002	0.004	0.010	0.016	0.022	0.028
-0.020 -0.014	-0.015 -0.009	-0.010 -0.005	-0.005 -0.002	-0.001	0.004	0.008	0.012	0.017	0.020	0.024
-0.008	-0.005	-0.001	0.001	0.004	0.007	0.009	0.011	0.014	0.015	0.017
0.003	0.000	0.002	0.004	0.005	0.007	0.008	0.010	0.011	0.012	0.013
0.005	0.006	0.006	0.006	0.006	0.005	0.005	0.004	0.003	0.002	0.001
0.010	0.009	0.007	0.005	0.003	0.000	-0.002	-0.005	-0.007	-0.010	-0.013

7. Lisätään 6. kohdassa lasketut geoidierot 5. kohdassa laskettuihin geoidikorkeuksiin, jolloin saadaan paikallinen muunnospinta hilamuodossa: $N_{\text{paikallinen}} = N_{\text{geoidimalli}} + \Delta N$. Lopullinen muunnospinta näkyy kuvassa C-4. Pinnan arvot on annettu formaatissa 1.

61.00	00000	61.1000	200 20	5.480000	26.0	580000	0.01	0000	0.02000	00
15.906	15.899	15.891	15.887	15.881	15.876	15.869	15.865	15.860	15.857	15.854
15.901	15.893	15.884	15.878	15.871	15.864	15.856	15.850	15.845	15.840	15.835
15.896	15.886	15.877	15.868	15.860	15.851	15.843	15.836	15.829	15.823	15.816
15.891	15.880	15.869	15.860	15.849	15.840	15.829	15.820	15.812	15.804	15.797
15.885	15.873	15.860	15.849	15.838	15.827	15.815	15.805	15.794	15.785	15.777
15.875	15.861	15.847	15.835	15.824	15.811	15.798	15.786	15.776	15.765	15.754
15.864	15.849	15.834	15.822	15.809	15.795	15.780	15.768	15.755	15.743	15.732
15.854	15.837	15.820	15.805	15.791	15.775	15.760	15.747	15.733	15.720	15.707
15.843	15.825	15.805	15.789	15.772	15.755	15.740	15.725	15.710	15.696	15.682
15.831	15.809	15.788	15.770	15.751	15.735	15.719	15.703	15.686	15.671	15.656
15.817	15.794	15.771	15.751	15.731	15.714	15.697	15.679	15.663	15.647	15.631

Rajako	oordinaatit
φ_{\min}	61.0036°
$\varphi_{\rm max}$	61.0985°
λ_{\min}	26.4883°
$\lambda_{\rm max}$	26.6601°

Taulukko C-2. Sovitetun 2.asteen polynomipinnan parametrit

Poly	nomikertoimet
a_{00}	0.00902150
a_{01}	-0.01125163
a_{02}	-0.00565408
a_{10}	-0.01442389
a_{11}	0.07929072
a_{20}	-0.03485986

Taulukko C-3. Paikallisen muunnospinnan avulla laskettu geoidiero ΔN . φ , λ , ja h ovat GPS:lla mitattu latitudi, longitudi ja ellipsoidinen korkeus, H_{N2000} on vaaittu korkeus, $N_{paikallinen}$ on paikallisesta muunnospinnasta interpoloitu geoidikorkeus ja H_{GPS} on sen avulla laskettu GPS-vaaituskorkeus.

nro	φ (°)	λ (°)	<i>h</i> (m)	$\frac{H_{\rm N2000}}{\rm (m)}$	N _{paikallinen} (m)	H _{GPS} (m)	ΔN (m)
1	61.0985	26.5321	105.574	89.688	15.887	89.687	-0.001
2	61.0873	26.6275	111.050	95.204	15.844	95.206	0.002
3	61.0457	26.4883	86.914	71.048	15.864	71.050	0.002
4	61.0524	26.5692	104.300	88.480	15.822	88.478	-0.002
5	61.0559	26.6601	103.309	87.534	15.777	87.532	-0.002
6	61.0036	26.5480	81.173	65.425	15.750	65.423	-0.002
7	61.0247	26.6108	83.470	67.725	15.742	67.728	0.003

Kuva C-4. Testialueen paikallinen muunnospinta ja sen hilapisteet.

C.3. Muunnospinnan tarkkuus

Paikallisen muunnospinnan tarkkuus voidaan arvioida interpoloimalla testipisteille geoidikorkeudet ja laskemalla niiden avulla GPS-vaaituskorkeudet. Taulukossa C-3 on annettu pisteet ja niiden interpoloidut geoidikorkeudet. GPS-vaaituskorkeudet lasketaan vähentämällä geoidikorkeudet ellipsoidikorkeuksista. GPS-vaaituskorkeuden ja vaaittujen N2000-korkeuksien erot kertoivat paikallisen muunnospinnan tarkkuudesta. Taulukosta C-3 nähdään että erot ovat huomattavasti pienempiä kuin FIN2005N00-geoidimallilla lasketut (Taulukko C-1). Paikallisen muunnospinnan avulla lasketut erot ovat maksimissaan 3 mm ja keskihajonta on 2 mm.

Paikallista muunnospintaa voidaan käyttää vain sen alueen sisällä jota rajoittavat muunnospinnan laskemisessa käytetyt pisteet. Alueen ulkopuolella virheet kasvavat nopeasti.

C.4. Muunnospinnan käyttö: bi-lineaarinen interpolointi

Esimerkkialueella voidaan nyt muuntaa uudet GPS:llä mitatut ellipsoidikorkeudet N2000korkeuksiksi paikallisen muunnospinnan avulla esimerkiksi bi-lineaarisella interpolointimenetelmällä. Edetään samalla tavalla kun liitteessä B, mutta FIN2005N00-mallin sijaan käytetään paikallista muunnospintaa.

GPS:llä pisteelle on saatu seuraavat maantieteelliset EUREF-FIN-koordinaatit:

$$\varphi = 61.0632^{\circ}$$

 $\lambda = 26.5463^{\circ}$
 $h = 98.636$ m

Etsitään pisteen sijainti paikallisen muunnospinnan hilassa ja otetaan hilasta pistettä ympäröivän neljän pisteen muunnosarvot (kuvat C-5 ja C-6):

$\varphi_1 = 61.06^{\circ}$	$\lambda_1 = 26.54^\circ$	$N(\varphi_1, \lambda_1) = 15.849 \text{ m}$
$\varphi_1 = 61.06^{\circ}$	$\lambda_2 = 26.56^{\circ}$	$N(\varphi_1, \lambda_2) = 15.838 \text{ m}$
$\varphi_2 = 61.07^{\circ}$	$\lambda_1 = 26.54^{\circ}$	$N(\varphi_2, \lambda_1) = 15.860 \text{ m}$
$\varphi_2 = 61.07^{\circ}$	$\lambda_2 = 26.56^{\circ}$	$N(\varphi_2, \lambda_2) = 15.849 \text{ m}$

Nyt voidaan laskea pisteen geoidikorkeus kaavoilla 7-1, 7-2, ja 7-3. Ensin interpoloidaan $N_{\text{paikallinen}}(\varphi_1, \lambda)$ ja $N_{\text{paikallinen}}(\varphi_2, \lambda)$. Sen jälkeen voidaan laskea $N_{\text{paikallinen}}(\varphi, \lambda)$:

Kuva C-5 Bi-lineaarinen interpolointi neljästä halutun pisteen ympäröivästä hilapisteestä.

		61.00	0000	61.100	000 2	26.48000	0 26.	680000	0.01	0000	0.02	0000
61.10°	\rightarrow	15.906	15.899	15.891	15.887	15.881	15.876	15.869	15.865	15.860	15.857	15.854
61.09°	\rightarrow	15.901	15.893	15.884	15.878	15.871	15.864	15.856	15.850	15.845	15.840	15.835
61.08°	\rightarrow	15.896	15.886	15.877	15.868	15.860	15.851	15.843	15.836	15.829	15.823	15.816
61.07°	\rightarrow	15.891	15.880	15.869	15.860	15.849	15.840	15.829	15.820	15.812	15.804	15.797
61.06°	\rightarrow	15.885	15.873	15.860	15.849	15.838	15.827	15.815	15.805	15.794	15.785	15.777
61.05°	\rightarrow	15.875	15.861	15.847	15.835	15.824	15.811	15.798	15.786	15.776	15.765	15.754
61.04°	\rightarrow	15.864	15.849	15.834	15.822	15.809	15.795	15.780	15.768	15.755	15.743	15.732
61.03°	\rightarrow	15.854	15.837	15.820	15.805	15.791	15.775	15.760	15.747	15.733	15.720	15.707
61.02°	\rightarrow	15.843	15.825	15.805	15.789	15.772	15.755	15.740	15.725	15.710	15.696	15.682
61.01°	\rightarrow	15.831	15.809	15.788	15.770	15.751	15.735	15.719	15.703	15.686	15.671	15.656
61.00°	\rightarrow	15.817	15.794	15.771	15.751	15.731	15.714	15.697	15.679	15.663	15.647	15.631
		↑	1	↑	1	1	↑	1	1	↑	1	1
		26.48°	26 50°	26 52°	26 54°	26 56°	26 58°	26.60°	26.62°	26.64°	26.66°	26.68°

Kuva C-6

6 Paikallisen muunnospinnan hila. Punaisessa laatikossa on mitatun pisteen ympäröivän neljän hilapisteen muunnosarvot.

$$N_{\text{paikallinen}}(\varphi_{1},\lambda) = \frac{\lambda_{2} - \lambda}{\lambda_{2} - \lambda_{1}} N_{\text{paikallinen}}(\varphi_{1},\lambda_{1}) + \frac{\lambda - \lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{\text{paikallinen}}(\varphi_{1},\lambda_{2})$$
$$= \frac{26.56 - 26.5463}{26.56 - 26.54} \times 15.849 + \frac{26.5463 - 26.54}{26.56 - 26.54} \times 15.838$$
(7-2)
$$= 15.846$$

$$N_{\text{paikkalinen}}(\varphi_{2},\lambda) = \frac{\lambda_{2} - \lambda}{\lambda_{2} - \lambda_{1}} N_{\text{paikkalinen}}(\varphi_{2},\lambda_{1}) + \frac{\lambda - \lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{\text{paikkalinen}}(\varphi_{2},\lambda_{2})$$
$$= \frac{26.56 - 26.5463}{26.56 - 26.54} \times 15.860 + \frac{26.5463 - 26.54}{26.56 - 26.54} \times 15.849$$
$$= 15.856$$
(7-3)

$$N_{\text{paikallinen}}(\varphi, \lambda) = \frac{\varphi_2 - \varphi}{\varphi_2 - \varphi_1} N_{\text{paikallinen}}(\varphi_1, \lambda) + \frac{\varphi - \varphi_1}{\varphi_2 - \varphi_1} N_{\text{paikallinen}}(\varphi_2, \lambda)$$
$$= \frac{61.07 - 61.0632}{61.07 - 61.06} \times 15.846 + \frac{61.0632 - 61.06}{61.07 - 61.06} \times 15.856$$
(7-1)
$$= 15.849$$

Pisteen N2000-korkeus on:

$$H_{\rm N2000} = h - N_{\rm paikallinen}(\varphi, \lambda) = 98.636 - 15.849 = 82.787 \text{ m}$$

Liite D: Laskuesimerkki: Paikallisen muunnospinnan johtaminen FIN2005N00-mallin avulla ETRS-TM35FIN -tasokoordinaateissa

Seuraavassa esimerkissä lasketaan paikallinen muunnospinta ETRS-TM35FIN -tasokoordinaateissa FIN2005N00-mallin avulla. Esimerkissä käytetyt GPS- ja vaaituskorkeudet ovat fiktiivisiä ja laskun tuloksen muunnospinta ei ole reaalimaailmassa käytettävissä. Laskenta tehdään kappaleessa 7.2.2 ja kuvassa 7-3 esitetyn kaavan mukaan.

D.1. Lähtökoordinaatit

Esimerkkialue on 10 km x 12 km alue Etelä-Suomessa jossa on 7 pistettä käsittävä runkoverkko. Pisteillä on ETRS-TM35FIN-tasokoordinaatit, ellipsoidiset korkeudet ja sen lisäksi N2000-korkeusjärjestelmässä vaaitut normaalikorkeudet. Pisteiden koordinaatit ja korkeudet ovat taulukossa D-1, sarakkeissa 1-5. Pisteiden sijainti näkyy kuvassa D-1. ETRS-TM35FIN-tasokoordinaatit ovat annettu niin että x on pohjoissuuntainen koordinaatti ja y on itäsuuntainen koordinaatti.

D.2. Paikallisen muunnospinnan johtaminen

Käydään läpi kappaleessa 7.2.2. ja kuvassa 7-3 esitetyt laskentavaiheet.

- a. Muunnetaan ETRS-TM35FIN-tasokoordinaatit (x,y) maantieteellisiksi EUREF-FIN-koordinaateiksi (φ , λ). Maantieteelliset koordinaatit ovat taulukossa D-1, sarakkeissa 6 ja 7.
- b. Interpoloidaan FIN2005N00-geoidimallista pisteille geoidikorkeudet ($N_{\text{FIN2005N00}}$) käyttämällä maantieteellisiä koordinaatteja (φ, λ). Geoidikorkeudet on annettu taulukossa D-2, sarakkeessa 6.
- c. Muunnetaan pisteiden ellipsoidikorkeudet (*h*) GPS-vaaituskorkeuksiksi (*H*_{GPS}) FIN2005N00-geoidimallista interpoloiduilla geoidikorkeuksilla: $H_{\text{GPS}} = h N_{\text{FIN2005N00}}$. GPS-vaaituskorkeudet on annettu taulukossa D-2, sarakkeessa 7.
- d. Lasketaan geoidierot (ΔN) GPS-vaaituskorkeuksista ja vaaituksella määritetyistä N2000korkeuksista: $\Delta N = H_{GPS} - H_{N2000}$. Arvot on annettu taulukossa D-2, sarakkeessa 8. Kuvassa D-1 näkyy miten geoidierot ovat jakautuneet alueella. Keskihajonta on 1.3 cm ja suurin ja pienin ero –2.4 cm ja 0.3 cm.
- e. Sovitetaan 2. asteen polynomipinta geoidieroihin käyttäen tasokoordinaatteja (x,y):

$$\Delta N = \sum_{i=0}^{2} \sum_{j=0}^{2-i} a_{ij} \Delta x^{i} \Delta y^{j}$$

$$\Delta N = a_{00} + a_{01} \Delta y + a_{02} \Delta y^{2} + a_{10} \Delta x + a_{11} \Delta x \Delta y + a_{20} \Delta x^{2}$$
(7-5)

$$\Delta x = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \text{ ja } \Delta y = \frac{y - y_{\min}}{y_{\max} - y_{\min}} \text{ ovat normeeratut koordinaatit ja } x_{\min}, y_{\min}, x_{\max}, \text{ ja }$$

 y_{max} ovat alueen minimi- ja maksimikoordinaatit.

Kaava 7-5 voidaan myös kirjoittaa matriisimuodossa y = Ax, jossa vektori y sisältää vaiheessa d lasketut geoidierot ja vektori x sisältää tuntemattomat polynomikertoimet:

Taulukko D-1. Alueen pisteiden koordinaatit. x, y, ja h ovat ETRS-TM35FIN -tasokoordinaatit itä- ja pohjoissuuntaan ja ellipsoidinen korkeus. φ ja λ ovat vaiheessa a. lasketut maantieteelliset EUREF-FIN-koordinaatit.

nro	у	x	h	$H_{\rm N2000}$	φ	λ
	(m)	(m)	(m)	(m)	(°)	(°)
1	474771.788	6773848.990	105.574	89.688	61.09850000	26.53210000
2	479908.417	6772568.454	111.050	95.204	61.08730000	26.62749999
3	472364.243	6767985.622	86.914	71.048	61.04570000	26.48830001
4	476738.331	6768700.448	104.300	88.480	61.05240000	26.56920001
5	481648.597	6769061.406	103.309	87.534	61.05590000	26.66010000
6	475556.104	6763272.667	81.173	65.425	61.00360000	26.54800001
7	478966.226	6765601.051	83.470	67.725	61.02470000	26.61080000

Taulukko D-2. Alueen pisteiden koordinaatit. x, y, ja h ovat ETRS-TM35FIN -tasokoordinaatit itä- ja pohjoissuuntaan ja ellipsoidinen korkeus. H_{N2000} on vaaittu N2000-korkeus. $N_{FIN2005N00}$ on FIN2005N00-geoidimallista interpoloitu geoidikorkeus. H_{GPS} on laskettu GPS-vaaituskorkeus. ΔN on korkeuksista laskettu geoidikorkeusero.

nro	у	x	h	$H_{ m N2000}$	$N_{\rm FIN2005N00}$	$H_{\rm GPS}$	ΔN
	(m)	(m)	(m)	(m)	(m)	(m)	(m)
1	474771.788	6773848.990	105.574	89.688	15.910	89.664	-0.024
2	479908.417	6772568.454	111.050	95.204	15.831	95.219	0.015
3	472364.243	6767985.622	86.914	71.048	15.869	71.045	-0.003
4	476738.331	6768700.448	104.300	88.480	15.817	88.483	0.003
5	481648.597	6769061.406	103.309	87.534	15.760	87.549	0.015
6	475556.104	6763272.667	81.173	65.425	15.745	65.428	0.003
7	478966.226	6765601.051	83.470	67.725	15.736	67.734	0.009

Kuva D-1. Testialueen runkoverkko ja pisteiden korkeusarvoista lasketut geoidierot ΔN

Kuva D-2. *Pisteiden geoidieroihin sovitettu 2. asteen polynomipinta*

Taulukko D-3. Sovitetun 2.asteen polynomipinnan parametrit

Rajakoordinaatit						
x_{\min}	6763272.667 m					
$x_{\rm max}$	6773848.990 m					
y_{\min}	472364.243 m					
y _{max}	481648.597 m					

Polynomikertoimet								
a_{00}	0.00903071							
a_{01}	-0.01158554							
a_{02}	-0.00521287							
a_{10}	-0.01395158							
a_{11}	0.07917292							
a_{20}	-0.03553312							

$$\begin{bmatrix} \Delta N_1 \\ \Delta N_2 \\ \vdots \\ \Delta N_7 \end{bmatrix} = \begin{bmatrix} 1 & \Delta y_1 & \Delta y_1^2 & \Delta x_1 & \Delta x_1 \Delta y_1 & \Delta x_1^2 \\ 1 & \Delta y_2 & \Delta y_2^2 & \Delta x_2 & \Delta x_2 \Delta y_2 & \Delta x_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \Delta y_7 & \Delta y_7^2 & \Delta x_7 & \Delta x_7 \Delta y_7 & \Delta x_7^2 \end{bmatrix} \begin{bmatrix} a_{00} \\ a_{01} \\ a_{02} \\ a_{10} \\ a_{11} \\ a_{20} \end{bmatrix}$$
(D-1)

Polynomin kertoimet voidaan ratkaista pienimmän neliösumman keinolla:

$$\hat{\boldsymbol{x}} = (A^t A)^{-1} A^t \boldsymbol{y}, \qquad (D-2)$$

jossa vektori \hat{x} sisältää ratkaistut polynomikertoimet. Laskun tulokset on annettu taulukoissa D-3 ja D-4. Kuvassa D-2 näkyy tuloksen polynomipinta.

f. Valitaan halutun paikallishilan pisteiden tasokoordinaatit (x,y). Hilan rajat valitaan niin että x-koordinaatit ovat 6762000 m ja 6774000 m välillä ja y-koordinaatit 472000 m ja 482000 m välillä ja pisteiden väli on 1000 m sekä pohjois-etelä- että itä-länsisuunnassa:

6774000.000000	472000.000000
6774000.000000	473000.000000
6774000.000000	474000.000000
6774000.000000	475000.000000
6774000.000000	476000.000000
6774000.000000	477000.000000
6774000.000000	478000.000000
6774000.000000	479000.000000
6774000.000000	480000.000000
6774000.000000	481000.000000
6774000.000000	482000.000000
6773000.000000	472000.000000
6773000.000000	473000.000000
6773000.000000	474000.000000
6773000.000000	475000.000000
:	:
•	•

Paikallishilan pisteet näkyvät kuvassa D-4.

g. Muunnetaan paikallishilan pisteiden tasokoordinaatit (*x*,*y*) maantieteellisiksi EUREF-FINkoordinaateiksi (ϕ , λ):

61.09966800	26.48067263
61.09973797	26.49921919
61.09980539	26.51776584
61.09987027	26.53631257
61.09993260	26.55485940
61.09999240	26.57340631
61.10004964	26.59195329
61.10010434	26.61050035
61.10015650	26.62904748
61.10020612	26.64759469
61.10025319	26.66614195
61.09069059	26.48081976
61.09076053	26.49936106
61.09082793	26.51790245
61.09089278	26.53644394
:	:

Pisteiden sijainti FIN2005N00-hilan pisteisiin nähden näkyy kuvassa D-3. Huom. maantieteellisissä koordinaateissa paikallishilan pisteet eivät enää muodosta säännöllistä hilaa.

Kuva D-3. FIN2005N00-geoidimalli ja sen hilapisteet (×) testialueella, ja runkoverkon (▲) ja paikallishilan pisteet (+) maantieteellisessä EUREF-FIN-koordinaateissa.

h. Interpoloidaan FIN2005N00-geoidimallista paikallishilan pisteille geoidikorkeudet $(N_{\text{FIN2005N00}}$ -hila) käyttämällä pisteiden maantieteellisiä koordinaatteja (φ, λ) . Yhdistämällä interpoloidut geoidikorkeudet pisteiden tasokoordinaateihin, syntyy paikallinen FIN2005N00-hila tasokoordinaateissa. Hila on kuvassa D-4 ja alla annettu formaatissa 1 (Kappale 8):

6762000.000 6774000.000 472000.000 482000.000 1000.000 1000.000 15.950 15.936 15.921 15.910 15.898 15.886 15.874 15.862 15.852 15.842 15.832 15.938 15.924 15.909 15.897 15.884 15.872 15.859 15.848 15.837 15.827 15.817 15.926 15.911 15.897 15.884 15.871 15.858 15.845 15.833 15.822 15.811 15.801 15.914 15.899 15.884 15.871 15.858 15.844 15.831 15.819 15.807 15.796 15.786 15.903 15.887 15.872 15.858 15.845 15.831 15.818 15.805 15.793 15.782 15.771 15.889 15.874 15.858 15.845 15.831 15.817 15.803 15.790 15.778 15.766 15.755 15.875 15.859 15.843 15.830 15.817 15.803 15.788 15.775 15.762 15.750 15.739 15.861 15.845 15.828 15.815 15.802 15.787 15.773 15.759 15.746 15.734 15.722 15.848 15.830 15.813 15.799 15.785 15.770 15.756 15.742 15.730 15.717 15.705 15.834 15.816 15.798 15.783 15.768 15.753 15.739 15.726 15.713 15.700 15.688 15.820 15.801 15.782 15.766 15.751 15.736 15.723 15.709 15.696 15.684 15.672 15.806 15.786 15.767 15.750 15.734 15.720 15.706 15.693 15.680 15.667 15.655 15.791 15.772 15.752 15.736 15.719 15.705 15.691 15.677 15.663 15.651 15.639

i. Lasketaan e-kohdassa määritetyillä polynomikertoimilla (a_{ij}) geoidierot paikallishilan pisteille $(\Delta N$ -hila) käyttämällä pisteiden tasokoordinaatteja (x,y). Hila on kuvassa D-2. Hilan arvot on annettu formaatissa 1:

6762000.	000 67	74000.00	0 4720	000.000	482000	.000	1000.0	000	1000.000)
-0.044	-0.037	-0.030	-0.023	-0.016	-0.009	-0.002	0.005	0.011	0.018	0.024
-0.036	-0.030	-0.023	-0.017	-0.011	-0.005	0.001	0.007	0.013	0.019	0.024
-0.029	-0.023	-0.017	-0.012	-0.006	-0.001	0.004	0.009	0.014	0.019	0.023
-0.022	-0.017	-0.012	-0.007	-0.003	0.002	0.006	0.010	0.014	0.018	0.022
-0.016	-0.012	-0.008	-0.004	0.000	0.004	0.007	0.011	0.014	0.017	0.020
-0.010	-0.007	-0.004	0.000	0.003	0.005	0.008	0.011	0.013	0.016	0.018
-0.005	-0.003	0.000	0.002	0.004	0.006	0.008	0.010	0.012	0.013	0.015
-0.001	0.001	0.002	0.004	0.005	0.007	0.008	0.009	0.010	0.010	0.011
0.003	0.004	0.004	0.005	0.006	0.006	0.007	0.007	0.007	0.007	0.007
0.006	0.006	0.006	0.006	0.006	0.005	0.005	0.004	0.003	0.003	0.002
0.008	0.007	0.007	0.006	0.005	0.004	0.002	0.001	-0.001	-0.002	-0.004
0.010	0.008	0.007	0.005	0.003	0.001	-0.001	-0.003	-0.005	-0.008	-0.010
0.011	0.009	0.006	0.004	0.001	-0.002	-0.005	-0.008	-0.011	-0.014	-0.017

Kuva D-5. Testialueen paikallinen muunnospinta ja sen hilapisteet..

j. Lisätään i-kohdassa lasketut geoidierot h-kohdassa laskettuihin geoidikorkeuksiin jolloin saadaan paikallinen muunnospinta hilamuodossa: $N_{\text{paikallinen}} = N_{\text{FIN}2005N00} + \Delta N$. Lopullinen muunnospinta näkyy kuvassa D-5. Pinnan arvot on annettu formaatissa 1:

5762000	.000 67	774000.0	000 4	72000.00	0 482	2000.000) 10	000.000	100	00.000
15.906	15.899	15.891	15.887	15.882	15.877	15.872	15.867	15.863	15.860	15.856
15.902	15.894	15.886	15.880	15.873	15.867	15.860	15.855	15.850	15.846	15.841
15.897	15.888	15.880	15.872	15.865	15.857	15.849	15.842	15.836	15.830	15.824
15.892	15.882	15.872	15.864	15.855	15.846	15.837	15.829	15.821	15.814	15.808
15.887	15.875	15.864	15.854	15.845	15.835	15.825	15.816	15.807	15.799	15.791
15.879	15.867	15.854	15.845	15.834	15.822	15.811	15.801	15.791	15.782	15.773
15.870	15.856	15.843	15.832	15.821	15.809	15.796	15.785	15.774	15.763	15.754
15.860	15.846	15.830	15.819	15.807	15.794	15.781	15.768	15.756	15.744	15.733
15.851	15.834	15.817	15.804	15.791	15.776	15.763	15.749	15.737	15.724	15.712
15.840	15.822	15.804	15.789	15.774	15.758	15.744	15.730	15.716	15.703	15.690
15.828	15.808	15.789	15.772	15.756	15.740	15.725	15.710	15.695	15.682	15.668
15.816	15.794	15.774	15.755	15.737	15.721	15.705	15.690	15.675	15.659	15.645
15.802	15.781	15.758	15.740	15.720	15.703	15.686	15.669	15.652	15.637	15.622

D.3. Muunnospinnan tarkkuus

Paikallisen muunnospinnan tarkkuus voidaan arvioida interpoloimalla testipisteille geoidikorkeudet ja laskemalla niiden avulla GPS-vaaituskorkeudet. Taulukossa D-4 on annettu pisteet ja niiden interpoloidut geoidikorkeudet. GPS-vaaituskorkeudet lasketaan vähentämällä geoidikorkeudet ellipsoidikorkeuksista. GPS-vaaituskorkeuden ja vaaittujen N2000-korkeuksien erot kertoivat paikallisen muunnospinnan tarkkuudesta. Taulukosta D-4 nähdään että erot ovat huomattavasti pienempiä kuin FIN2005N00-geoidimallilla lasketut (taulukko D-2). Paikallisen muunnospinnan avulla lasketut erot ovat maksimissaan 3 mm ja keskihajonta on 2 mm.

Paikallista muunnospintaa voidaan käyttää vain sen alueen sisällä jota rajoittavat muunnospinnan laskemisessa käytetyt pisteet. Alueen ulkopuolella virheet kasvavat nopeasti.

nro	y (m)	x (m)	<i>h</i> (m)	H _{N2000} (m)	N _{paikallinen} (m)	H _{GPS} (m)	Δ <i>N</i> (m)				
1	474771.788	6773848.990	105.574	89.688	15.887	89.687	-0.001				
2	479908.417	6772568.454	111.050	95.204	15.844	95.206	0.002				
3	472364.243	6767985.622	86.914	71.048	15.865	71.049	0.001				
4	476738.331	6768700.448	104.300	88.480	15.821	88.479	-0.001				
5	481648.597	6769061.406	103.309	87.534	15.777	87.532	-0.002				
6	475556.104	6763272.667	81.173	65.425	15.750	65.423	-0.002				
7	478966.226	6765601.051	83.470	67.725	15.742	67.728	0.003				

Taulukko D-4. Alueen pisteiden koordinaatit. y, x, ja h ovat ETRS-TM35FIN- tasokoordinaatit itä- ja pohjoissuuntaan ja ellipsoidinen korkeus. H_{N2000} on vaaittu N2000-korkeus. $N_{paikallinen}$ on paikallisesta muunnospinnasta interpoloitu geoidikorkeus. H_{GPS} on laskettu GPSvaaituskorkeus. ΔN on korkeuksista laskettu geoidikorkeusero.

D.4. Muunnospinnan käyttö: bi-lineaarinen interpolointi

Esimerkkialueella voidaan nyt muuntaa uudet ellipsoidikorkeudet N2000-korkeuksiksi paikallisen muunnospinnan avulla esimerkiksi bi-lineaarisella interpolointimenetelmällä. Edetään samalla tavalla kun liitteessä B, mutta FIN2005N00-mallin sijaan käytetään paikallista muunnospintaa ja maantieteellisien koordinaattien sijaan ETRS-TM35FIN-tasokoordinaatteja.

Esimerkkinä on piste, jolla on seuraavat koordinaatit:

$$x = 6769911.743 m$$

$$y = 475510.161 m$$

$$h = 98.636 m$$

Etsitään pisteen sijainti paikallisen muunnospinnan hilassa ja otetaan hilasta pistettä ympäröivän neljän pisteen muunnosarvot (kuvat D-6 ja D-7):

$$x_1 = 6769000 \text{ m}$$
 $y_1 = 475000 \text{ m}$ $N(x_1, y_1) = 15.845 \text{ m}$
 $x_1 = 6769000 \text{ m}$ $y_2 = 476000 \text{ m}$ $N(x_1, y_2) = 15.834 \text{ m}$
 $x_2 = 6770000 \text{ m}$ $y_1 = 475000 \text{ m}$ $N(x_2, y_1) = 15.854 \text{ m}$
 $x_2 = 6770000 \text{ m}$ $y_2 = 476000 \text{ m}$ $N(x_2, y_2) = 15.845 \text{ m}$

Nyt voidaan laskea pisteen geoidikorkeus analogisesti kaavojen 7-1, 7-2, ja 7-3 mukaan, mutta φ :n sijaan

Kuva D-6 Bi-lineaarinen interpolointi neljästä halutun pisteen ympäröivästä hilapisteestä.

		676200	0.000	6774000	.000 4	72000.00	00 4820	000.000	1000	.000	1000	.000
6774000	\rightarrow	15.906	15.899	15.891	15.887	15.882	15.877	15.872	15.867	15.863	15.860	15.856
6773000	\rightarrow	15.902	15.894	15.886	15.880	15.873	15.867	15.860	15.855	15.850	15.846	15.841
6772000	\rightarrow	15.897	15.888	15.880	15.872	15.865	15.857	15.849	15.842	15.836	15.830	15.824
6771000	\rightarrow	15.892	15.882	15.872	15.864	15.855	15.846	15.837	15.829	15.821	15.814	15.808
6770000	\rightarrow	15.887	15.875	15.864	15.854	15.845	15.835	15.825	15.816	15.807	15.799	15.791
6769000	\rightarrow	15.879	15.867	15.854	15.845	15.834	15.822	15.811	15.801	15.791	15.782	15.773
6768000	\rightarrow	15.870	15.856	15.843	15.832	15.821	15.809	15.796	15.785	15.774	15.763	15.754
6767000	\rightarrow	15.860	15.846	15.830	15.819	15.807	15.794	15.781	15.768	15.756	15.744	15.733
6766000	\rightarrow	15.851	15.834	15.817	15.804	15.791	15.776	15.763	15.749	15.737	15.724	15.712
6765000	\rightarrow	15.840	15.822	15.804	15.789	15.774	15.758	15.744	15.730	15.716	15.703	15.690
6764000	\rightarrow	15.828	15.808	15.789	15.772	15.756	15.740	15.725	15.710	15.695	15.682	15.668
6763000	\rightarrow	15.816	15.794	15.774	15.755	15.737	15.721	15.705	15.690	15.675	15.659	15.645
6762000	\rightarrow	15.802	15.781	15.758	15.740	15.720	15.703	15.686	15.669	15.652	15.637	15.622
		1	\uparrow	\uparrow	1	1	\uparrow	1	\uparrow	1	1	\uparrow

472000 473000 474000 475000 476000 477000 478000 479000 480000 481000 482000

Kuva D-7

Paikallisen muunnospinnan hila. Punaisessa laatikossa on esimerkkipistettä ympäröivien neljän hilapisteen muunnosarvot.

käytetään x:ää ja λ :n sijaan y:tä. Ensin interpoloidaan $N_{\text{paikallinen}}(x_1, y)$ kaavasta D-1 ja $N_{\text{paikallinen}}(x_2, y)$ kaavasta D-2. Sen jälkeen voidaan laskea $N_{\text{paikallinen}}(x, y)$ kaavasta D-3:

$$N_{\text{paikallinen}}(x_1, y) = \frac{y_2 - y}{y_2 - y_1} N_{\text{paikallinen}}(x_1, y_1) + \frac{y - y_1}{y_2 - y_1} N_{\text{paikallinen}}(x_1, y_2)$$

= $\frac{476000 - 475510.161}{476000 - 475000} \times 15.845 + \frac{475510.161 - 475000}{476000 - 475000} \times 15.834$ (D-1)
= 15.839

$$N_{\text{paikkalinen}}(x_2, y) = \frac{y_2 - y_1}{y_2 - y_1} N_{\text{paikkalinen}}(x_2, y_1) + \frac{y - y_1}{y_2 - y_1} N_{\text{paikkalinen}}(x_2, y_2)$$

= $\frac{476000 - 475510.161}{476000 - 475000} \times 15.854 + \frac{475510.161 - 475000}{476000 - 475000} \times 15.845$ (D-2)
= 15.849

$$N_{\text{paikallinen}}(x, y) = \frac{x_2 - x}{x_2 - x_1} N_{\text{paikallinen}}(x_1, y) + \frac{x - x_1}{x_2 - x_1} N_{\text{paikallinen}}(x_2, y)$$

= $\frac{6770000 - 6769911.743}{6770000 - 6769000} \times 15.839 + \frac{6769911.743 - 6769000}{6770000 - 6769000} \times 15.849$ (D-3)
= 15.848

Pisteen N2000-korkeus on: $H_{N2000} = h - N_{paikallinen}(x,y) = 98.636 - 15.848 = 82.788 m$

SUOMEN GEODEETTISEN LAITOKSEN TIEDOTTEITA

- 1. MIKKO LINDHOLM & TAPANI SARJAKOSKI: Tietokone karttaopetuksessa. 1989. 33 s.
- 2. HANNA KEMPPAINEN: Oliot paikkatiedossa. 1991. 26 s.
- **3.** OLLI JAAKKOLA & TAPANI SARJAKOSKI: Satelliittikuvatulkinnan epävarmuuden visualisointi. 1991. 31 s. *
- 4. MIKKO LINDHOLM: Tietokonekartasto hypermediaa soveltaen. 1991. 86 s. *
- **5.** PANU SOTKAS, JUHANI LAAKSONEN & RISTO KUITTINEN: Satelliittikuvan tulkintatarkkuuden määrittäminen. 1992. 46 s.
- **6.** PEKKA LEHMUSKOSKI & MIKKO TAKALO: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1990-1991. 1992. 23 s.
- 7. PIRKKO LAURILA: Luonnonilmiöiden kolmiulotteisten mallien visualisointi tietokoneella. 1993. 84 s.
- **8.** MATTI OLLIKAINEN: GPS-koordinaattien muuntaminen kartastokoordinaateiksi. 1993. 31 s.
- **9.** JUHA JAAKKOLA & EIJA ORAVA: Pikselin suuruuden, sävyjen määrän ja tiivistämisen vaikutuksesta digitaalisen ilmakuvan geometriaan. 1993. 49 s.
- **10.** RISTO KUITTINEN & EERO AHOKAS: Maaston radianssien määrittäminen satelliittikuvilta. 1994. 59 s.
- **11.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1992-1993. 1994. 27 s.
- **12.** RISTO KUITTINEN & JUHANI LAAKSONEN: Kontrastin vaimeneminen satelliitista tehtävissä kuvauksissa. 1994. 23 s.
- **13.** PASI MYLLYNIEMI & TAPANI SARJAKOSKI: Itseorganisoituvat kartat alueellisessa analyysissä Itämeren lohikannan seuranta. 1996. 52 s.
- **14.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1994-1995. 1996. 35 s.
- **15.** HANNA KEMPPAINEN: Yhteenveto paikkatietojen laadun ja epävarmuuden mallintamisesta. 1997. 53 s.
- **16.** MATTI OLLIKAINEN, HANNU KOIVULA, MARKKU POUTANEN & RUIZHI CHEN: Suomen kiinteiden GPS-asemien verkko. 1997. 34 s.
- **17.** PAAVO ROUHIAINEN: Geodeettisen laitoksen suorittamat Suomen mareografien korkeudenmääritykset. 1997. 17 s.
- 18. HANNA KEMPPAINEN: Rakennustietojen integrointi ja laatu. 1998. 63 s.
- **19.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1996-1997. 1998. 37 s.
- **20.** HANNU RUOTSALAINEN, JAAKKO MÄKINEN & JUSSI KÄÄRIÄINEN: Gravimetrien kalibrointilinja Masala-Vihti. 1998. 8 s. + 6 liites.
- **21.** MIKA KARJALAINEN & RISTO KUITTINEN: Ortokuvien tuottaminen peltolohkotietokannan ajantasaistukseen ja viljakasvien tulkintaan. 1999. 39 s.
- **22.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 1998-1999. 2000. 31 s.
- **23.** VILLE HELMINEN, OLLI JAAKKOLA & TAPANI SARJAKOSKI: Slicesmaankäyttöluokituksen laadun tarkastus. 2001. 57 s.
- 24. MATTI OLLIKAINEN, HANNU KOIVULA & MARKKU POUTANEN: EUREF-FIN-koordinaatisto ja EUREF-pistetihennykset Suomessa. 2001. 32 s.
- **25.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 2000-2001. 2002. 26 s.
- **26.** PEKKA LEHMUSKOSKI & PAAVO ROUHIAINEN: Lisäyksiä ja korjauksia Suomen tarkkavaaitusten linjastoon 2002-2003. 2004. 30 s.
- 27. PASI HÄKLI & HANNU KOIVULA: Virtuaali-RTK (VRS™) tutkimus. 2004. 60 s.
- **28.** ANTTI JACOBSSON & HARRI HUTTUNEN: Kuntien ja Maanmittauslaitoksen tuottamien maastotietojen tietomallien harmonisointitarpeesta ja tietojen yhteiskäytön toteuttamisesta. 2005. 182 s. + 102 liites.
- **29.** MIRJAM BILKER-KOIVULA & MATTI OLLIKAINEN: Suomen geoidimallit ja niiden käyttäminen korkeuden muunnoksissa. 2009. 48 s.