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ARTICLE INFO ABSTRACT

Artic{e history: Background: Gestational diabetes (GD) and maternal excess weight are common pregnancy conditions
Received 24 September 2021 that increase the risk of future complications for both the mother and her offspring. Their consequences
Accepted 10 May 2022 on neurodevelopment are widely described in the literature, but less is known concerning the potential

Available online 23 May 2022 transgenerational influence on the brain structure.

Methods: We used a combination of support vectors machine and hierarchical clustering to investigate
the potential presence of anatomical brain differences in a sample of 109 children aged six years, born to
mothers with overweight or obesity, or to mothers diagnosed with GD during pregnancy.
Results: Significant effects are visible in the brain of children born to mothers with GD associated with
pregestational excess weight, especially overweight instead of obesity. No differences in children's brain
were observed when considering those born to normal-weight mothers.
Conclusions: Our study highlights the need for clinical attention of pregnant women at risk to develop
GD, and especially those with pregestational excess weight, since this status was found to be associated
with detectable transgenerational brain changes. These effects may be due to the absence of specific and
individualized intervention in these mothers during pregnancy.
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Introduction

Gestational diabetes (GD) is a serious pregnancy complication
affecting 16.5% of pregnancies worldwide,? with long-term health
consequences. The most relevant are type 2 diabetes and cardio-
vascular diseases, in both mother and offspring, and macrosomia,
future obesity, and/or GD in the child.>* Prepregnancy excess
weight has been also linked to several health consequences and
long-term increased risk in the offspring, including child obesity,
diabetes, and cardiovascular diseases.>”’

The effects of GD and maternal excess weight on the offspring
neurodevelopment are widely investigated and well known.’""®
However, the potential transgenerational effects of those condi-
tions on brain structure and function have been so far rarely
investigated.'*?° Although clinical and sociologic studies pointed
out the relevance of environmental factors and domestic habits for
the emergence of excess weight and even type 2 diabetes,”!">* the
identification of further associations between maternal health
conditions and brain structural characteristics in their offspring
could help to consolidate a still developing research topic.

To this aim, we investigated if maternal prepregnancy body
mass index (p-BMI) and the presence or absence of GD can be
related to anatomical differences between their offspring's brains at
age six years. To do so, we adopted combined use of supervised and
unsupervised machine learning methodologies. As pointed out by
Koul et al.,?> this twofold approach allows to address two different
kinds of research questions. By means of supervised learning, and
in the present case support vector machine (SVM), it is possible to
determine whether data have “discriminatory information.” In
other words, SVM can answer the question: are offspring's brains
different enough to correctly assign each of them to the group it
belongs to? (e.g., child born to mother with GD or without GD).
Unsupervised learning, and in the present case hierarchical clus-
tering (HC), allows to analyze the variability of data.?> This method
can answer the questions: can the subjects be organized into
groups based on the characteristics of their brain? How many
groups must be created? Who enters each of the groups?

In the present work, these questions were answered based on
the analyses of the structural properties of the children's brains at
six years. Potential differences on these properties were not put
into relationship with nonbrain characteristics of the children
themselves, but with maternal p-BMI and/or the presence or
absence of GD. To evaluate whether results came from the whole
brain characteristics or if they were due to specific tissues, analyses
had been repeated on the whole brain, and using gray matter (GM)
or white matter (WM) only.

Based on scientific literature, we hypothesized that SVM and HC
methods can detect differences in the anatomical offspring's brain
characteristics associated with transgenerational effects.

Materials and Methods
Study design and selection of subjects

The present work is based on the PREOBE?® (www.ClinicalTrials.
gov, Identifier: NCT01634464) study, a prospective observational
cohort study, designed to explore pre- and postnatal influence of
maternal overweight, obesity, and GD on their offspring. Mothers
were recruited between 2008 and 2012 in the Clinical University
Hospital San Cecilio and the Mother-Infant University Hospital of
Granada (Granada, Spain) and their peripheral health centers.
Briefly, the database consists of medical and sociocultural infor-
mation concerning 331 pregnant women aged between 18 and
45 years and their full-term and healthy offspring. Full general in-
clusion and exclusion criteria can be found in Berglund et al.?° In
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the present work we focused on the structural magnetic resonance
imaging (MRI) acquired up until October 2017 for 155 healthy
children aged six years. This age was chosen as younger children
are rarely collaborative enough to allow the collection of reliable
MRI data. Moreover, six years has been described as the first end
point of early brain development and maturation.’’?® Twelve
subjects were excluded because their mothers were already
affected by diabetes before becoming pregnant. The remaining 143
subjects were then divided into six groups, on the bases of their
calculated maternal p-BMI at the recruiting visit (between weeks
12 and 20 of pregnancy) and the diagnosis of GD at 34 weeks of
gestation. Cutoff points for p-BMI were taken as follows: 18.5 <
p-BMI < 25 normal weight group (NW); 25 < p-BMI <
30 = overweight group (OW); p-BMI > 30 = obese group (OB) (see
Table 1 for group details).

The study was approved by the Human Research Ethics Com-
mittee of the University of Granada and conducted in accordance
with the Helsinki Declaration for human research studies. Written
informed consent forms were obtained at the beginning of the
study and before the MRI session, from all parents or guardians of
the children involved in the PREOBE Follow-up study.

MRI acquisition and preprocessing

Before the real MRI acquisition, the children participated in a
practice session. The children were familiarized with the MRI
environment, and they were introduced in a mock scanner and
listened to the real scanner's noise. In addition, to reassure and
keep them from movement and falling asleep, the children watched
a cartoon film during the real acquisition. Furthermore, a foam
system was located around the participant's head.

T1 images were acquired for each participant, using a 3T Mag-
netom Trio scanner (Siemens Medical System, ERLANGEN, Ger-
many), located at Mind, Brain and Behavior Research Centre at the
University of Granada. A high-resolution T1-weighted 3D
magnetization-prepared rapid gradient-echo (MPRAGE) sequence
was acquired with the following parameters: repetition time
(TR) = 2.3 ms, echo time (TE) = 3.1 ms, flip angle = 9°, field of view
(FOV) = 256 x 256 mm, matrix size = 320 x 320, and number of
slices 208, resulting in an isotropic resolution of 0.8 x
0.8 x 0.8 mm. Acquisition time was 6 minutes 35 seconds. Of note,
this scanner provides images on which field inhomogeneity
correction has already been performed. These images were inde-
pendently checked by two expert researchers, to detect artifacts
due to motion or other causes. Thirty-four subjects were excluded
at this point, after convergent judgment (see Table 1 for details on
the group subdivision).

T1 images were preprocessed and segmented into GM and WM
using DARTEL?® as implemented in DBAPI 2.3.3° To obtain addi-
tional tissue segmentation maps with intensity values in it (instead
of probability values as provided by DARTEL), the whole brain T1 of
each subject was multiplied for either the binarized GM or binar-
ized WM DARTEL maps of the same subject.

Preliminary confounding interaction assessment

To exclude potential confounding effects, we performed linear
regression between relevant couples of variables. These analyses
were performed on GD groups and non-GD groups separately. In
detail, we contrasted maternal pre-pregnancy BMI (p-BMI) versus
gestational weight gain (GWG); GWG versus children's BMI at the
moment of the MRI evaluation; p-BMI versus children's birth
weight; and p-BMI versus children's BMI at the moment of the MRI
evaluation. Moreover, we performed a one-way ANOVA on chil-
dren's BMI at the moment of the MRI evaluation.
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TABLE 1.
Characteristics of the Study Population
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Non-Gestational Diabetes (N = 78)

Gestational Diabetes (N = 31)

Normal Weight (NW; Overweight (OW; Obesity (OB; Normal Weight (NWGD; Overweight (OWGD; Obesity (OBGD;
n = 44) n=19) n=15) n=12) n=10) n=29)
Maternal p-BMI (kg/m?) 22.50 (1.65) 27.00 (1.25) 31.96 (1.28) 22.06 (2.01) 27.53 (1.15) 35.96 (4.86)
GWG (kg) 12.93 (5.73) 10.10 (6.67) 9.34 (6.52) 10.10 (7.63) 7.14 (4.25) 1.74 (10.15)
Birth weight (g) 3246.36 (399.92) 3468.95 (574.30) 3382.67 (514.94) 3459.17 (514.94) 3056.00 (347.63) 3454.44 (418.81)
Children's BMI at MRI 16.00 (1.50) 17.09 (2.29) 17.28 (2.51) 16.82 (2.60) 17.72 (2.85) 17.00 (2.30)
(kg/m?)
Maternal age (years) 31.48 (3.75) 32.63 (4.34) 29.00 (4.14) 33.50 (5.20) 33.80 (2.97) 34.44(4.72)
Child sex (M/F) 24/20 8/11 7/8 8/4 4/6 5/4
Gestational age (weeks) 39.57 (1.13) 39.56 (1.89) 39.60 (1.64) 39.58 (1.44) 39.10(1.52) 39.44 (1.51)
Children's age at MRI 2386.59 (116.10) 2373.84 (115.51) 2293.40 (105.90) 2317.83 (101.15) 2256.10 (75.69) 2256.44 (45.72)
(days)
Subjects removed 17 3 3 4 5 2
Abbreviations:
F = Female
GWG = Gestational weight gain
M = Male

MRI = Magnetic resonance imaging

NW = Normal weight

NWGD = Normal weight and gestational diabetes
OB = Obese

OBGD = Obesity and gestational diabetes

OW = Overweight

OWGD = Overweight and gestational diabetes
p-BMI = Prepregnancy body mass index

Data are expressed in mean (S.D.) and refers to the population analyzed after subjects removal.

Neuroimaging analyses

Support vector machine analyses

To investigate whether brain data contained discriminatory in-
formation, we performed classification task between the experi-
mental groups, using PRONTO tool.>! We used a binary support
vector machine (SVM), with leave one subject out as cross-
validation method, and no hyperparameter optimization. SVM is
one of the most widely used classification algorithm in the field of
neuroimaging.®” In this class of algorithms, a hyperplane is
searched that optimally separates the items into two, or more,
classes.>® Therefore, the best solution is based only on those items
in the proximity of the hyperplane, rather than on the whole
sample.> Several comparisons were realized, to separately analyze
the effect of GD and the effect of p-BMI (see Table 2 for an overview
of the comparisons). The results were evaluated considering total
accuracy (TA), balanced accuracy (BA), and area under the curve
(AUC). Chance level cutoffs for SVM accuracy were set in accor-
dance with the work of Combrisson and Jerbi*” considering P < 0.05
and two classes. This cutoff, which is always specified in the results
section, depends on the number of subjects included in each
analysis. For those comparisons showing statistically significant
accuracy, weight maps were inspected to identify possible brain
regions particularly relevant for the classification procedure, which
means showing a more marked difference between the compared
groups. SVM was applied to the whole brain T1, and to GM and WM
separately.

Hierarchical clustering analyses

To further verify the statistically significant SVM results, we
performed HC analysis, using Orange 2.7.3° Clustering algorithms
are abundantly used in MRI research,’” and, generally speaking,
they organize items into a set of nested partitions.>* HC does not
require the definition of a predetermined number of clusters, as
it is instead necessary for the widely-used k-means clustering.>*
In the present case, a NxM matrix was created, in which each
row represented a different subject, and each column, a same
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voxel through all the subjects. Nonbrain voxels were excluded
from the matrix by means of a group mask. Distances between
rows (i.e., between subjects) were calculated using Euclidean
metric, and Ward linkage was used to build the dendrogram.
Ward linkage tries to minimize the variability inside each clus-
ter.>**® HC was performed separately for GM and WM, due to
computational constraints. Results were evaluated as a ratio
between the majority class and the total number of items in
each cluster. In other words, we observed if the majority of
subjects in every given cluster belonged to the same study

group.
Results
Confounding interaction analyses

Overall, none of the linear regression analyses between
maternal variables and children's variables highlighted marked
confounding effects (Figs. S1, S3, S4, and S6-S9). The only relevant
interaction was found between maternal p-BMI and GWG for
mothers with GD (R? = 0.4) (Figs. S1 and S2). The higher the p-BMI
was, the lesser the kilograms gained during the pregnancy; how-
ever, GWG does not seem to influence children's BMI at the
moment of the MRI evaluation (R* = 0.07) (Figs. S3 and S4). The
one-way ANOVA performed on the children's BMI at the moment of
the evaluation did not show statistically significant differences (see
Fig. S5).

Gestational diabetes effect

GD groups versus non-GD groups

SVM analyses. To assess the effect of GD, independently from
maternal p-BMI, children born to mothers with GD (N = 31) or
without GD (N = 78) were collapsed into two macrogroups. The
SVM analysis at this macrogroups level (N = 109), on whole brain
data, showed TA = 73.39%. However, due to the marked unbalance
between the two classes, BA 58.09% (critical cutoff of
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TABLE 2.
Results of the SVM Analyses Based on Whole Brain Images
Group Comparison Total N Critical Cutoff Total Accuracy Balanced Accuracy AUC
GD effect
NW vs NWGD 56 60% 76.79% 48.86% 0.66
OW vs OWGD 29 70% 89.66% 87.37% 0.88
OB vs OBGD 24 70% 54.17% 47.78% 0.50
EW vs EWGD 53 60% 75.47% 70.43% 0.76
Non-GD vs GD 109 58% 73.39% 58.09% 0.79
p-BMI effect (GD groups)
NWGD vs OWGD 22 70% 72.73% 73.33% 0.69
OWGD vs OBGD 19 70% 63.16% 62.22% 0.78
NWGD vs OBGD 21 70% 52.38% 47.22% 0.42
NWGD vs EWGD 31 62.50% 64.52% 58.77% 0.64
p-BMI effect (non-GD groups)
NW vs OW 63 60% 68.25% 48.86% 0.30
OW vs OB 34 62.50% 29.41% 26.32% 0.10
NW vs OB 59 60% 74.58% 50% 0.35
NW vs EW 78 58.70% 44.87% 41.11% 0.46

Abbreviations:

AUC = Area under the curve

BMI = Body mass index

EW = Excess weight

EWGD = Excess weight (Overweight and obesity groups) with GD
GD = Gestational diabetes

NW = Normal weight

NWGD = Normal weight and gestational diabetes
OB = Obese

OBGD = Obesity and gestational diabetes

OW = Overweight

OWGD = Overweight and gestational diabetes
p-BMI = Prepregnancy BMI

SVM = Support vector machine

Critical cutoff is based on Combrisson and Jerbi,** considering P < 0.05 and two classes. Significant accuracy results are in bold.

reference = 58%) must be considered as a more reliable indicator
(Fig 1). The AUC was equal to 0.79. Inspection of the weight map
showed a global contribution rather than main involvement of
specific regions. Our result could be interpreted as a moderate
evidence of discriminability between the two groups (i.e., brain
imaging from children born to mothers with GD versus without
GD). At the same time, it suggests the need of a set of more accurate
analyses with a subtler subdivision of the groups. The SVM analysis
of both WM and GM alone did not produce statistically significant
results (see Tables S1 and S2).

Hierarchical clustering analyses. Coherently with the around-
threshold SVM result, the dendrograms obtained on both GM and
WM data did not show a net separation between the GD groups and
the non-GD groups.

In other words, the brain structural properties did not allow to
clearly discriminate between children born to mothers with GD and
children born to mothers without GD.
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SVM analyses. The around-threshold results obtained in previous
analyses on the whole GD groups could have been at least in part
due to the underlying effect of maternal p-BMI. To test this hy-
pothesis, we proceeded focusing on excess weight groups only. We
hence collapsed overweight and obesity groups with GD (EWGD;
N = 19) or without GD (EW; N = 34), and let apart normal weight
groups. The SVM analysis at this level (N = 53), on whole brain data,
showed TA = 75.47%. Again, due to the marked unbalance between
the two classes, BA = 70.43% (critical cutoff of reference = 60%)
must be considered as a more reliable indicator (Fig 2). The AUC
was equal to 0.76. Inspection of the weight map showed a global
contribution rather than main involvement of specific regions.
Hence, our result can be interpreted as a quite strong evidence of
discriminability between the two groups. The SVM analysis of both
WM and GM alone produced statistically significant and compa-
rable results as well (see Tables S1 and S2).

true positives

false positives

FIGURE 1. Results of the comparison between gestational diabetes (GD) groups and non-GD groups. Left: details of subjects’ discrimination based on whole brain images. The
farther the mark from the central dashed line, the more reliable the classification of the related subject. Blue squares = GD subjects, red circles = non-GD subjects. Right: Area under

the curve. The color version of this figure is available in the online edition.
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Hierarchical clustering analyses. The dendrogram obtained on GM
data shows the presence of two main clusters, one including 39
subjects and the other including 14 subjects. Thirty-one of 39
subjects (79.5%) in the first cluster belong to the EW group, whereas
11 of 14 subjects (78.6%) in the second cluster belong to the EWGD
group (Fig 2). Coherently with the SVM results, the clustering
analysis showed a net separation between the two groups. On the
contrary, the dendrogram obtained on WM data did not show a net
separation between the groups. These results suggest that when
focusing on children born to mothers with excess weight only, the
separation between children born to mothers with GD and children
born to mothers without GD became clearer.

Group by group comparisons

SVM analyses. To further refine the focus of the analyses, we then
moved to the comparison between couples of groups with same p-
BMIL. The only condition to produce statistically significant results
was overweight group without GD (OW; N = 19) versus overweight
group with GD (OWGD; N = 10). The SVM analysis at this level
(N = 29), on whole brain data, showed TA = 89.66% and
BA = 87.37% (critical cutoff of reference = 70%) (Fig 3). The AUC was
equal to 0.88. Inspection of the weight map showed a global
contribution rather than main involvement of specific regions. Our
results can be interpreted as a marked evidence of discriminability
between the two groups. The SVM analysis of both WM and GM
alone produced statistically significant and comparable results as
well (see Tables S1 and S2).

Of note, the SVM comparison for normal weight groups with or
without GD did not produce significant results (TA = 76.79%,
BA = 48.86%, AUC = 0.66). This finding suggests that the barely
significant results obtained when comparing all the groups without
GD against all the groups with GD could be masked by the simi-
larity among normal weight groups. After removing them, limiting
the groups to excess weight condition, results became significant.
However, whereas the comparison between overweight groups
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(OW versus OWGD) resulted in statistically significant results, the
comparison for obesity groups (OB versus OBGD [obesity and
gestational diabetes]) did not produce significant results
(TA = 54.17%, BA = 47.78%, AUC = 0.50). Therefore, results for excess
weight groups were probably driven by the discriminability be-
tween overweight groups.

Hierarchical clustering analyses. The dendrogram obtained on GM
data for the overweight groups (OW versus OWGD) shows the
presence of two main clusters, one including 21 subjects and the
second one including eight subjects. Eighteen of 21 subjects (85.7%)
in the first cluster belong to the OW group, whereas seven of eight
subjects (87.5%) in the second cluster belong to the OWGD group.
The dendrogram obtained on WM data shows the presence of two
main clusters, one including 15 subjects and the second one
including 13 subjects. One subject from the OW group remained
outside from the two clusters, appearing as an outlier. Thirteen of
15 subjects (86.7%) in the first cluster belong to the OW group,
whereas eight of 13 subjects (61.5%) in the second cluster belong to
the OWGD group. Coherently with the SVM results, the clustering
analysis showed a net separation between these two groups.

Maternal prepregnancy BMI effect

SVM analyses

To explore the effect of maternal p-BMI the same approach used
for GD was followed, but in this case p-BMI groups without GD and
p-BMI groups with GD were tested separately. In this context, the
only comparison to produce statistically significant results was the
one testing normal weight group with GD (NWGD [normal weight
and gestational diabetes]; N = 12) versus obesity group with GD
(OWGD; N = 10). The SVM analysis at this level (N = 22), on whole
brain data, showed TA = 72.73% and BA = 73.33% (critical cutoff of
reference = 70%) (Fig 4). The AUC was equal to 0.69. Inspection of
the weight map showed a global contribution rather than main
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FIGURE 2. Results of the comparison between EWGD (excess weight overweight and obesity groups with gestational diabetes [GD]) group and EW group (overweight and obesity
groups without GD). Top left: details of subjects' discrimination based on whole brain images. The farther the mark from the central dashed line, the more reliable the classification
of the related subject. Blue squares = GD subjects, red circles = non-GD subjects. Top right: Area under the curve. Bottom: hierarchical clustering results for gray matter (GM). The
blue cluster mainly includes EW subjects, whereas the red cluster mainly includes EWGD subjects. The squares on the right side of the dendrogram mark subjects not belonging to
the majority group in that cluster. The color version of this figure is available in the online edition.
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]

true positives

false positives

FIGURE 3. Results of the comparison between OWGD group (overweight group with gestational diabetes) and OW (overweight group without gestational diabetes) group. Top left:
details of subjects' discrimination based on whole brain images. The farther the mark from the central dashed line, the more reliable the classification of the related subject. Blue
squares = GD subjects, red circles = non-GD subjects. Top right: area under the curve. Bottom left: hierarchical clustering results for gray matter (GM). The blue cluster mainly
includes OW subjects, whereas the red cluster mainly includes OWGD subjects. The squares on the right side of the dendrogram mark subjects not belonging to the majority group
in that cluster. Bottom right: hierarchical clustering results for white matter (WM). Color scheme was used as described for GM. The color version of this figure is available in the

online edition.

involvement of specific regions. Our result could be interpreted as a
moderate evidence of discriminability between the two groups.
The SVM analysis of both WM and GM alone produced statistically
significant and comparable results as well (see Tables S1 and S2).

All the other comparisons focusing on maternal p-BMI effect did
not produce statistically significant results (see Tables 2 and S1 for
an overview).

Hierarchical clustering analyses

Despite the statistically significant SVM result, the dendrograms
obtained on both GM and WM data did not showed a net separation
neither between p-BMI groups associating with GD nor between
p-BMI groups without GD.

Additional SVM comparisons focusing on OWGD, evaluating the
interaction between p-BMI and GD, are described in the supple-
mentary material (see also Table S3).

Discussion
GD and maternal excess weight are common pregnancy condi-
tions that can have a negative impact for both the mother and her

offspring. In the present study, we tried to understand if these
clinical variables are associated with the structural properties of the

27
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function value

offspring's brains, using a combination of supervised and unsu-
pervised learning methods. We found overall moderate evidence of
differences on the brain of children born to mothers with and
without GD. This effect is stronger especially in children born to
mothers with overweight and GD, and it was not found in children
born to normal weight mothers. In terms of brain involvement,
what allowed to differentiate between the compared groups seems
to be a global property, rather than marked differences in specific
cortical or subcortical regions.

Based on the results, the effect of GD at increasing maternal
p-BMI seems to follow a bell-shaped distribution. In fact, GD seems
to play a relevant role especially in the case of children born to
mothers with overweight. On the contrary, there was no evidence
of significant differences between the offspring of mothers with
normal weight without GD and those born to mothers with normal
weight and GD. Similarly, no significant differences were detected
between the offspring born to mothers with obesity and no GD and
those born to mothers with obesity and GD.

To the best of our knowledge there is only one previous study
that explored the additive association of GD and maternal p-BMI on
children brains.'® The results showed a linear correlation between
maternal BMI and hypothalamic dysfunction, but the statistical
significance of this effect disappeared when adjusting for GD

true positives

false positives

FIGURE 4. Results of the comparison between normal weight and gestational diabetes (NWGD) group and overweight and gestational diabetes (OWGD) group. Left: details of
subjects' discrimination based on whole brain images. The farther the mark from the central dashed line, the more reliable the classification of the related subject. Blue
squares = overweight subjects, red circles = normal weight subjects. Right: Area under the curve. The color version of this figure is available in the online edition.
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exposition. The authors suggest that GD mediates the association
between maternal BMI and brain function. Although these results
could appear as conflicting with ours, some elements should be
noted. First, the authors investigated a functional dysregulation
limited to the hypothalamus, whereas the present study focused on
whole brain structural properties. Second, the PREOBE children
were scanned at the age of six years, whereas the sample analyzed
in Page et al. (2019) ranged between 7 and 11 years. Last, our
findings suggest a nonlinear interaction, whereas Page and col-
leagues only tested a linear relationship. Other previous studies
that found significant relationships between GD and offspring's
neurodevelopment'?>° did not explore the additive impact of
excessive maternal weight before pregnancy.

Our findings are in line with those of a previous study conducted
on this same cohort that reported an additive effect of GD and
maternal BMI on latencies of visual evoked potentials at age
18 months.*® A similar bell-shaped relation was in fact found be-
tween maternal BMI and latencies for the GD group. The authors
claimed that poorer myelination of the auditory system may
explain the results. However, previous analyses,'* including one
conducted on the PREOBE cohort,'® failed to find a significant as-
sociation of WM of children aged six years with maternal p-BMI.
Coherently, in the present study HC results gave better separation
when applied to GM rather than WM, possibly suggesting that GD
and maternal BMI could influence mainly GM at this stage of
development. Nevertheless, the SVM analyses suggested that GM
and WM are substantially equally informative to discriminate be-
tween groups. Further research at different development phases
will help to elucidate the possible different role of maternal p-BMI
and GD on these tissues in their offspring brain.

Of note, the children born to mothers who were overweight and
had GD were not only found to differ from those born to mothers
with comparable BMI but without GD. The children were also
different from the offspring of normal weight mothers, with or
without GD, as well as from the offspring born to mothers with
obesity and no GD. Hence, the co-occurrence of maternal over-
weight and GD is likely to be the more effective condition deter-
mining long-term consequences in their offspring brain. This aspect
deserves further clinical consideration in light of the documented
increased risk of GD with increasing BML*' On the contrary,
maternal p-BMI alone was not found to be associated with differ-
ences in offspring of mothers without GD. At present, overweight
pregnant women are considered at risk to develop gestational
diabetes. Although there are new clinical protocols to identify the
presence of GD during the first trimester of pregnancy, there are no
specific recommendations or interventions for these pregnant
women until they are diagnosed of GD.

The observed bell-shaped effect could also be influenced by
different maternal conduct depending on group membership. If, on
the one hand, prepregnancy normal weight could act as a pro-
tecting factor, on the other hand mothers with obesity could be
more aware of the risks related to their BMI. In virtue of this, they
could adopt special preventive measures. Moreover, obstetricians
could recommend avoiding an excessive gestational weight gain,
and supervise them frequently. Conversely, mothers with over-
weight are still on the way to potentially develop obesity; as a
consequence, they could still have those negative habits that were
already abandoned (or at least mitigated) by mothers with obesity.
Moreover, if the latter are likely to be followed by a specialist, the
former could even not be aware of the risks they are exposed to.
This hypothesis is supported by a qualitative survey realized on a
sample of Latinas women, showing that mothers who were over-
weight rarely gave importance to body weight, and underestimated
the role of diet, compared with both healthy weight women and
those with obesity.*> More generally, Shub et al.**> found that the
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majority of the interviewed mothers with prepregnancy excess
weight had limited knowledge of the risk associated with maternal
obesity. In light of this, it is not possible to exclude that mothers
enrolled in PREOBE could have adopted more responsible behaviors
for the fact of being part of a research project (a kind of Hawthorne
effect). This fact could be reflected in the negative linear relation
between p-BMI and GWG, especially marked for mothers with GD.
Consequently, the influence between GD/BMI and offspring's brain
structural properties in the real population could be more evident.

Finally, it is fundamental to note that at the moment of the MRI
evaluation there were no statistically significant differences for the
BMI of the children. Coherently, no relationship was found between
the maternal p-BMI and the BMI of their children at age six years.
Therefore, the results are unlikely attributable to differences in
build or development of the subjects.

One potential limitation of the present work is the sample
composition. Although quite consistent as a whole size, the
decomposition into six subgroups, and the data quality assessment,
generated reduced cardinalities. Moreover, some of the compari-
sons involved unbalanced groups. However, this aspect, which re-
flects at least in part the rate of incidence of GD,***> was taken into
consideration when evaluating the results. Head movement is a
second relevant problem, common to the MRI research field, and
particularly marked when working with children. To try to limit the
influence on data, specific procedures were followed, as explained
in the methods section. In addition to this precaution, data were
subjected to manual screening and discarded when corrupted.
Although many control variables were collected, it is not possible to
exclude confounding effects due to uninvestigated parameters.
Last, HC had been performed for GM and WM separately, but it was
not possible to jointly analyze the two for computational con-
straints. Interestingly, future studies could benefit from the addi-
tion of information concerning the fathers. Since the present study
suggests the existence of structural brain differences emerging as a
global property, the analysis of cortical parameters, such as cortical
thickness and gyrification, could help to clarify the contribution of
specific regions instead. At the same time, the absence of specific
brain regions sticking out from the global pattern does not facilitate
the speculation about possible behavioral implications. To this aim,
future investigation of the functional MRI counterpart would be
meaningful. Finally, a longitudinal approach would allow to follow
the temporal evolution of the transgenerational influences. In fact,
although at the time of the analyses the existing structural differ-
ences were not related with any sign of impairment, these could
possibly evolve into elements of concerns during development, or
on the contrary to become no longer detectable.

In the present article we analyzed the potential transgenera-
tional signs of maternal GD and excess weight before pregnancy
detectable on the offspring’s brains at age six years. Results showed
that the relationship with GD is visible for the children born to
mothers with excess weight, and in particular those with over-
weight. On the contrary, no detectable differences emerged when
considering mothers with normal weight. Relationship with p-BMI
was only found for GD-positive groups, suggesting that maternal p-
BMI alone is not associated with transgenerational signs. From the
clinical point of view, our study highlights the need for specific care
of mothers with excess weight diagnosed with GD, since the
combination of these two factors seems to have the capability to
induce transgenerational brain signs.
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