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a b s t r a c t

The properties of silver nanoparticles (AgNPs) are affected by various parameters, making 

optimisation of their synthesis a laborious task. This optimisation is facilitated in this 

work by concurrent use of a T-junction microfluidic system and machine learning ap-

proach. The AgNPs are synthesized by reducing silver nitrate with tannic acid in the 

presence of trisodium citrate, which has a dual role in the reaction as reducing and sta-

bilizing agent. The study uses a decision tree-guided design of experiment method for the 

size of AgNPs. The developed approach uses kinetic nucleation and growth constants 

derived from an independent set of experiments to account for chemistry of synthesis, the 

Reynolds number and the ratio of Dean number to Reynolds number to reveal effect of 

hydrodynamics and mixing within device and storage temperature to account for particle 

stability after collection. The obtained model was used to define a parameter space for 

additional experiments carried out to improve the model further. The numerical results 

illustrate that well-designed experiments can contribute more effectively to the devel-

opment of different machine learning models (decision tree, random forest and XGBoost) 

as opposed to randomly added experiments.

© 2023 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical 

Engineers. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

The precise and controlled fabrication of silver nanoparticles 
(AgNPs) is required for a range of applications (Nathanael 
et al., 2022). Optimisation of the chemical synthesis process 
is a very labour-intensive, costly and time-consuming task 

because it includes multiple reagents and different in-
dependent experimental conditions including the types and 
concentrations of reagents, temperature, reactor design and 
mixing conditions. For example, the size of AgNPs strongly 
depends on both the type and concentration of stabilizing 
agent (Amir et al., 2021; Patel et al., 2017; Tejamaya et al., 
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Abbreviation: AgNPs, silver nanoparticles; AI, artificial intelligence; BO, Bayesian optimization; DCA, dicarboxyacetone; De, Dean 
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PTFE, polytetrafluoroethylene; PVA, polyvinyl alcohol; Re, Reynolds number; RF, Random Forest; RRSE, Root Relative Square Error; SI, 
supporting information; SN, silver nitrate; TA, tannic acid; TC, trisodium citrate; XGBoost, Extreme Gradient Boosting

]]]] 
]]]]]]

⁎ Corresponding author.
E-mail address: cxn782@student.bham.ac.uk (K. Nathanael).

Chemical Engineering Research and Design 193 (2023) 65–74

http://www.sciencedirect.com/science/journal/02638762
https://www.elsevier.com/locate/cherd
https://doi.org/10.1016/j.cherd.2023.03.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cherd.2023.03.007
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2023.03.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cherd.2023.03.007&domain=pdf
mailto:cxn782@student.bham.ac.uk
https://doi.org/10.1016/j.cherd.2023.03.007


2012) and often depends on pH of the solution (Anigol et al., 
2017, Dong et al., 2009, Qin et al., 2010). Ionic stabilizers such 
as citrate used in this study produce a charged layer around 
particles which inhibit agglomeration. Several studies 
showed that both decreasing (Guardia et al., 2010) and in-
creasing (Shevchenko et al., 2003) particles sizes can be ob-
tained by varying the amount of stabilizer. Das, 
Bandyopadhyay (Das et al., 2021) and Henglein and Giersig 
(Henglein and Giersig, 1999) found there is an optimum 
concentration of trisodium citrate in AgNP synthesis. They 
observed that smaller particles with a narrow size distribu-
tion can be formed for a specific range of citrate concentra-
tions and larger particles at concentrations higher than the 
optimal, due to the high ionic strength of the solutions. It 
was observed that the reducing ability of the completely 
hydrolysed citrate species and dicarboxyacetone (a by-pro-
duct of citrate reaction with silver) is higher at pH 12, causing 
a fast reduction rate of the precursor and therefore smaller 
particles (Marciniak et al., 2020). However, it was also found 
in Liu, Kozlovskaya (Liu et al., 2014) that alkaline pH in the 
presence of high salt concentrations can lead to thicker 
tannic acid-poly(N-vinylpyrrolidone) (TA-PVPON) multilayers 
as a result of screening of the negatively charged tannic acid. 
Furthermore, the hydrodynamic conditions play a significant 
role in the nucleation and growth steps for the synthesis of 
nanoparticles (Baber et al., 2017, Pal et al., 2020). Relevant 
works are represented in Khan, Günther (Khan et al., 2004) 
and Wu, De Varine Bohan (Wu et al., 2017). The former de-
monstrated that the sizes and size distributions of colloidal 
silica particles can be tuned in laminar flow reactors and 
segmented flow reactors by varying their linear flow velocity 
and mean residence time. The latter showed that decreasing 
the helix diameter increases the mixing in helical reactor 
(due to generation of Dean vortices) which then leads to a 
controlled size distribution in continuous synthesis of AgNPs 
in the absence of capping agents. A similar effect was ob-
served at increasing flow rates when the Dean number (De) 
was above 5.

Microfluidic technology can improve the optimisation 
process by providing better control over the reactions and 
reduced reagent consumption (Kulkarni and Goel, 2020). 
Machine learning combined with microfluidic synthesis of-
fers a promising approach to tackle the repeated and ex-
tensive experimental tests and accelerate the development 
of efficient protocols (Chen and Lv, 2022).

Recently, artificial intelligence (AI) has become a valuable 
aid for many scientific and engineering fields, including na-
notechnology, due to its contribution in data acquisition and 
processing improvements (Hrvat et al., 2021, Zhang et al., 
2021, Adir et al., 2020). Machine learning (ML) algorithms 
which are a subset of AI have been employed specifically in 
the synthesis of AgNPs to predict their characteristics (Sun 
et al., 2017, shafaei and Khayati, 2020, Findlay et al., 2018) or 
perform other kinds of decision making under uncertainty 
(Liu et al., 2021). Mekki-Berrada, Ren (Mekki-Berrada et al., 
2021) combined a deep neural network (DNN) and Gaussian 
process-based Bayesian optimization (BO) to synthesize 
AgNPs with a desired absorbance spectrum in a droplet mi-
crofluidic device. They used the flow rates of silver seeds 
(Qseed), of silver nitrate, SN (Q AgNO3), of trisodium citrate, TC 
(QTC) and polyvinyl alcohol, PVA (Q PVA) as input parameters 
and efficiently predicted the desired plasmon resonance for 
the reaction synthesis. Sattari and Khayati (Sattari and 
Khayati, 2020) applied a Gene Expression Programming (GEP) 

to predict the size of AgNPs prepared by a green synthesis 
route. The proposed predictive model with coefficient of 
determination R, 2= 0.9961, mean absolute error, MAE 
= 0.2545, and root relative square error, RSME= 0.0668 showed 
that the initial concentration of silver precursor and plant 
extract were the most influential parameters for the final 
particle size. Other relevant work used to predict the final 
particle size of AgNPs is shown in Shabanzadeh, Senu 
(Shabanzadeh et al., 2013).

Decision trees are an established keystone in machine 
learning literature (Myles et al., 2004) as a powerful tool for 
prediction, interpretation and data manipulation. More spe-
cifically, a decision tree is a supervised learning algorithm 
which sorts a population into segments. This approach looks 
like an inverted tree with a root node, some internal nodes 
and leaf nodes. The root node is always on the top of the tree 
structure and represents the variable that best splits the 
data, whilst the leaf nodes at the bottom display the final 
outcome of a combination of decisions. A decision pathway 
is presented by a line connecting the root node with one of 
the leaf nodes (Song and Lu, 2015). Compared with deep 
learning approaches (LeCun et al., 2015), the advantages of a 
tree-based algorithm are the good interpretability of the 
constructed models and the low computational cost. It can 
identify, in a linear way, information and relationships that 
can be used to design future experiments and analyse data 
(Myles et al., 2004). A limitation is that it can display over-
fitting or underfitting within a small data set (Song and 
Lu, 2015).

The literature review revealed that previous ML studies 
for the synthesis of AgNPs focused on input parameters 
which are related to specific chemical compositions and 
process conditions. This means that a model which is de-
rived for a certain experimental configuration cannot be 
applied for another set of reagents or for a different reactor 
design. The aim of this study is to develop a generalised 
workflow to design experiments for fast prediction of the size 
of AgNPs synthesized in microfluidic systems. It is suggested 
that the chemistry of the process can be described in the 
terms of nucleation and growth constants, whereas the hy-
drodynamics of the process can be accounted for by Reynolds 
number, Re , and the ratio of Dean number to Reynolds 
number De/Re. Storage temperature is included to enable 
consideration of particle stability after collection.

A machine learning-guided design of experiments based 
on the decision tree method has been applied for the pro-
duction of AgNPs in a continuous flow microreactor. The 
proposed strategy, which used optimal and flexible experi-
ment designs based on uncertainty analysis, can provide 
more flexibility compared to existing approaches such as 
design of experiments (Sethuramiah and Kumar, 2016), since 
the exact values of the initial parameters are not fixed and 
the training features could be parameters which have been 
calculated based on physical parameters, such as nucleation 
and growth constants. The nucleation and growth constants 
were derived from an independent set of experiments car-
ried out in a beaker using the Finke-Watzky (F-W) two-step 
mechanism (Watzky and Finke, 1997) which has been ap-
plied previously to describe well a wide range of kinetic 
processes such as protein aggregation (Iashchishyn et al., 
2017, Ohgita et al., 2022) and metal nanoparticle formation 
including silver (Sandoe et al., 2019), gold (Pestovsky and 
Srichana, 2022), palladium (Wojnicki et al., 2016) and rho-
dium (Yao et al., 2012). Only one set of chemicals was used in 
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this study providing several pairs of nucleation and growth 
constants. These kinetic constants were used as input 
parameters in the decision tree to build a ML model which 
combines parameters that can be applied in the future for 
different sets of chemicals. By applying this strategy, a gen-
eral model for the synthesis of AgNPs can be obtained in a 
more direct way by providing the region of interest for fur-
ther experiments. The suggested approach can also enable a 
considerable reduction of ecological impact of process opti-
mization by using microfluidics, which manipulates small 
samples under well-controlled conditions resulting in a 
considerable reduction of materials and energy con-
sumption.

2. Materials and methods

2.1. AgNPs synthesis and characterisation

The silver nanoparticles were synthesized in a T-junction 
microfluidic device composed of 0.5 mm inner diameter 
polytetrafluoroethylene (PTFE) cylindrical tubes (Cole- 
Parmer). Two inlets (length of 0.6 m each) were used to 
supply silver nitrate, SN (0.92 mM) and the mixture of tannic 
acid, TA (0.123 mM) / trisodium citrate, TC (1.91–3.82 mM.) 
respectively and an outlet tube of 2 m length was used as the 
reaction channel (Fig. 1). The inlet flow rates were regulated 
by syringe pumps (World precision instrument-AL-4000) 
equipped with 5 mL syringes (Fisher), while the three tubes 
were connected with a Tee tubing junction (0.020" (0.5 mm) 
Thru-Hole) from Upchurch Scientific. The outlet channel has 
the same cross section as the inlet channels, therefore the 
superficial velocity in the in the outlet channel is twice that 
observed in each of the two inlet channels.

The concentrations of reagents were determined based on 
a previous study of Kašpar, Koyuncu (Kašpar et al., 2019) with 
modifications in the concentrations of reducing agent (TA) 
and stabilizing agent (TC). The solution of TA and TC had a 
pH of 7 or 12. The reagents including silver nitrate, 99 + % 
(AgNO3), tannic acid (C H O7 52 46), trisodium citrate dihydrate 
(Na C H O H O23 6 5 7 2 ) and sodium hydroxide (NaOH) were pur-
chased from Alfa Aesar.

The outlet tube was either straight or coiled onto a 3D- 
printed helical shape devices with diameters of 3 mm and 
5 mm to improve the mixing of the reagents. The particle size 
was measured using dynamic light scattering (DLS) by 
Zetasizer Nano series (Malvern) and confirmed by transmis-
sion electron microscopy (TEM) (JEOL JEM-1400). The con-
centration of silver nitrate in the collected sample at 
different flow rates was measured to investigate the com-
pleteness of the reaction. A silver electrode from EDT direc-
tion connected to mV meter from Mettler Toledo-FP20 
was used.

The nucleation, k1, and growth, k2, rate constants were 
derived from the absorbance intensity at 400 nm, character-
istic for AgNPs using F-W two step mechanism (Watzky and 
Finke, 1997) which combines a homogenous nucleation re-
action and an autocatalytic growth process in which nuclei 
and growing particles play the role of auto-catalysts. The 
time dependence of the absorbance of AgNPs (kinetic curve) 
for different experimental conditions was measured by 
UV–vis spectrophotometer (Jenway-6300). Reactions were 
carried out in a beaker and mixing was set at a point where 
further increase of mixing intensity does not affect the ki-
netic curve. Thus, AgNPs synthesis was independent of 

mass-transfer and the rate was determined by true chemical 
kinetics. To quantify the amount of silver in AgNPs at any 
time during synthesis, the UV–vis spectra was recorded every 
5 min. All measurements were performed in triplicate.

The synthesis of AgNPs involves three different steps 
(Thanh et al., 2014) including the reduction of silver ions to 
silver atoms, the formation of silver nuclei and their sub-
sequent growth to generate AgNPs (see Fig. 2). In this study, 
the reaction was performed through the reduction of SN in 
the presence of TA which is a weak reducing agent and TC 
which is both reducing and stabilizing agent.

As described in Eqs. (1) and (2), nuclei represented as B are 
produced uniformly from the precursor represented as A. 
This reaction follows an autocatalytic growth of nuclei 
leading to the formation of B particles (see Fig. 2).

=Nucleation A n k A: B; [ ],
k

0 1
1

(1) 

+ =Growth A B B G k A B: 2 ; [ ][ ],
k

2
2

(2) 

where, n0 and G are the nucleation and growth rates, k1 and k2

are the nucleation and growth kinetic constants and A[ ] and 
B[ ] are the molar concentrations of the precursor and silver in 
the nuclei/particles. The overall reaction rate can be ex-
pressed as shown:

= = +d A
dt

d B
dt

k A k A B
[ ] [ ]

[ ] [ ][ ]1 2 (3) 

The F-W mechanism can be expressed though the in-
tegrated form (Eq. (4)) which was also used to fit all experi-
mental kinetic data sets (Sandoe et al., 2019). It was 
considered that the concentration of material inside the 
particles changes with time t as =B A A[ ] [ ] [ ]t t0 , where A[ ]0 is 
the concentration of the precursor solution at t = 0 and A[ ]t
the concentration of precursor at time t.

=
+

+ +
B t A

A

k k A t
[ ]( ) [ ]

[ ]

1 *exp ( [ ] )
.

k
k

k
k A

0
0

[ ] 1 2 0

1

2

1

2 0 (4) 

Fig. 1 – A) Experimental set up B) Schematic diagram of T- 
junction microfluidic device.
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For curve fitting procedures, the value of A[ ] was esti-
mated using Eq. (5), where a is B B/t and Bt and B are the 
maximum absorbance at t and , respectively (Amirjani and 
Haghshenas, 2018).

=A A
A

a
a

[ ] [ ]
[ ] 1

o

(5) 

The nucleation k1 and growth k2 constants were estimated 
using the linearized form below under assumptions that 
nucleation happens more slowly than growth (i.e. k k A[ ])1 2

and <A A[ ] [ ]0 Amirjani and Haghshenas (2018).

= +A A
A

k
k A

k A tln
[ ] [ ]

[ ]
ln

[ ]
[ ] ,0 1

2 0
2 0

(6) 

By plotting, a aln( /1 ) versus t, a straight line with a slope 
and intercept were obtained as shown in Fig. 4B in Section 
3.1. The values of rate constants were found by varying pH of 
reducing solution at two levels, pH 7 and pH 12. At each value 
of pH, three different concentrations of TC were probed: 1.91, 
2.87 and 3.82 mM. This provided six different pairs of nu-
cleation and growth constants to be used in the ML models.

2.2. Machine learning modelling

The machine learning analysis was performed using Python 
programming language with the Scikit-learn package 
(Pedregosa, 2011). Tree-based algorithms, including Decision 
Tree (DT), Random Forest (RF), and Extreme Gradient 
Boosting (XGBoost) were applied to test the prediction per-
formance for the sizes of AgNPs. These methods have been 
extensively used in a wide range of engineering problems 
(Natekin and Knoll, 2013, Cheng et al., 2022, Gong et al., 2022). 
After implementation, all the proposed models were com-
pared based on the accuracy of their predictions.

The DT algorithm used to guide the experiments was built 
based on 20 samples, each being repeated three times to 
obtain the averaged ‘(output quantity)’ as model output. For 
fair comparison, 10 extra experiments (30 experiments in 
total, including three replications) were carried out either 
randomly or following the DT-guided design of experiments 
to enhance the performance of the predictive models. For 
each experiment, the average size was recorded. Each da-
taset was divided into five inputs and one predicted output. 
The training features (inputs) and their investigated range 
are summarized in Table 1.

µ
= pud

Re
(7) 

=De d RRe /2 c (8) 

Eqs. (7) and (8) define Reynolds, Re, and Dean, De, num-
bers respectively, where d is the inner diameter of the mi-
crochannel, Rc is the radius of helix curvature, ρ is the fluid 
density, u is the velocity of the fluid, and µ is the viscosity of 
the fluid.

The effect of the chosen input parameters on the size of 
AgNPs was investigated through the Pearson correlation 
(Navlani et al., 2021) shown in Eq.(9) (Profillidis and 
Botzoris, 2019).

=p
x x y y

x x y y

( ¯ )( ¯ )

( ¯ ) ( ¯ )
XY

i i

i i
2 2 (9) 

In Eq. (9) xi is for the values of the independent variables, x
is the mean of the values of x-variable, yi is for the values of 
the dependent variables and y is the mean of the values of y- 
variable.

2.3. DT-guided design of experiments

The iterative process of prediction and experiment design 
carried out is shown in Fig. 3, with the key focus being to 
perform experiments where the predictive model has the 
highest uncertainties. In particular, DT is chosen to guide 
the experiments thanks to its good interpretability and 
computational efficiency (Gilpin et al., 2018). The first step 
in the proposed approach described previously was focused 
on obtaining the datasets required for the training of the 
algorithm, i.e., data collection based on experimental mea-
surements. The second and third steps included data 
sorting or any other required data processing and the de-
velopment of the most appropriate algorithm. For example, 
during these steps, the independent and dependent vari-
ables were identified, and a DT based algorithm was built. 
To ensure a good explainability of the DT model for the 
uncertainty evaluation, the maximum tree depth for this 
stage was set to be 4.

The fourth stage comprised carrying out additional ex-
periments where the obtained DT algorithm has the highest 
mean squared error (MSE). The challenge of this step was to 
ensure that the developed DT model based on the designed 
experiments can improve the performance regarding dif-
ferent metrics. As shown in Fig. 3, once the experimental 
design is performed using the preliminary DT model, other 
ML classifiers such as RF and XGBoost can be applied to 
achieve a more accurate prediction based on the new ex-
perimental data.

Fig. 2 – Formation of AgNPs through three different steps, i) 
the reduction of silver ions to silver atoms, ii) the nucleation 
step where the smallest thermodynamically stable clusters 
are formed and iii) their growth to produce AgNPs. The 
nucleation and growth step can be described based on F-W 
mechanism, where reduction rate is included in 
nucleation rate.

Table 1 – Input parameters and their investigated range. 

Feature Range investigated

Nucleation constant (min 1 ) 0.0011–0.1

Growth constant (M min1 1 ) 13.66–77.97

Storage temperature ( ) 0–20

Dean number/Reynolds number 0–0.41

Reynolds number 0.0849–16.96
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3. Results and discussion

3.1. Kinetic constants

The kinetic curves describing time dependence of con-
centration of silver included in nanoparticles (Figs. 4A, 4B) 
were analysed by F-W mechanism (Watzky and Finke, 1997) 
described in detail in Section 2.1. At pH 7, nucleation is rather 
slow, and the kinetic curves have a typical sigmoidal shape. 
The values of kinetic constants found from the linear fitting 
are given in Table 2. Using these values, it is easy to find that 
condition k k A[ ]1 2 is valid for [A] >   > 0.03 mM, which is only 

3% of initial concentration of SN, 0.92 mM. The obtained va-
lues of rate constants are validated by recalculating the full 
kinetic curve using Eq. (4) with these constants. Excellent 
agreement between the theoretical and experimental kinetic 
curves is shown in Fig. 4A (pH 7).

Multiple studies such as Anigol, Charantimath (Anigol et al., 
2017), Jebakumar Immanuel Edison and Sethuraman 
(Jebakumar Immanuel Edison and Sethuraman, 2013), and Dong, 
Ji (Dong et al., 2009) have shown that pH changes the kinetics in 
the formation of AgNPs, using Capparis Moonii fruit extract, Pod 
Extract of Acacia nilotica and citrate as reducing agents, respec-
tively. At low pH, there is a slow reduction rate of the precursor 

Fig. 3 – Workflow chart and description of methods used in the building of machine learning-guided design of experiment 
based on the decision tree method.

Fig. 4 – Application of the F-W mechanism for the analysis of AgNPs formation kinetics. Time evolution of B[ ] at 400 nm for A) 
pH 7 and B) pH 12 and different concentrations of the stabilizing agent: symbols represent experimental data; lines are fitting 
of full model Eq. (4) with kinetic constants found from linear fitting; Fitting of experimental data using linear form of Finke- 
Watzky model as shown in Eq. (6) for C) pH 7 and D) for pH 12.
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while at high pH there is an improved reducing ability of the 
reducing agent that results in smaller size particles.

At pH 12, it was observed that the silver nuclei formation 
proceeded very fast, without a noticeable lag phase for all 
studied stabilizing agent concentrations, in agreement with 
literature data (Iashchishyn et al., 2017). Only the right-hand 
side part of sigmoidal curve can thus be measured, which 
mostly accounts for particle growth. Although the linear fit-
ting in Fig. 4D (pH 12) gives a reasonable fit, using values of 
kinetic constants provided in Table 2 shows that this linear 
fitting is valid only for [A] >   > 0.5 mM for [TC] = 3.82 mM and 
[A] >   > 1 mM for [TC] = 1.91 mM. Using these constants with 
the full F-W model, Eq. (4), does not provide as good agree-
ment with experimental data as for the lower value of pH, 
but it is still acceptable as can be seen from Fig. 4D (pH 12). 
Note, non-linear fitting directly using Eq. (6) does not im-
prove the fitting presented in Fig. 4B (pH 12). Thus, the values 
of nucleation and growth constants presented in Table 2
were used as the best possible fitting. For the investigated 
case, under alkaline pH, there is a full dissociation of citrate 
species (Dong et al., 2009) and dicarboxyacetone (DCA) 
(Marciniak et al., 2020), generated as a by-product of the 
decarboxylation of citrate during silver ions reduction, which 
makes the chemistry of the system more complex. There-
fore, it is possible that several parallel processes are involved 
with different nucleation and growth constants making fit-
ting of the kinetic curves much more challenging.

3.2. Pearson correlation and the effect of input 
parameters

The results of Pearson correlation calculations are presented 
in Fig. 5 which shows that all input variables impact the 

particle size significantly with a correlation larger than 0.12 
in absolute value. The estimation of the Pearson correlation 
value was obtained using all of the data generated in this 
study. The data used for this study can be found in the 
supporting information (SI). For example, it was observed 
that the variables including k1, k2 and De/Re impact the par-
ticle size negatively, whilst the storage temperature and Re
impact the size of particles positively. The Pearson correla-
tion calculations showed that k2 is less important compared 
to k1 for the prediction of the size of AgNPs. In this study, the 
effect of kinetic constants was investigated for only one set 
of chemicals, so that k1 and k2 cannot be considered as 
completely uncoupled. Therefore, it cannot be concluded 
that faster growth results in smaller particles, because for the 
chosen set of chemicals all growth constants are of the same 
order of magnitude, whereas nucleation constants vary over 
2 orders of magnitude. Thus, the particle size is mostly de-
fined by the nucleation constant. Similar studies, such as the 
works of Mansouri and Ghader (2009) and Liu et al. (2020)
showed that size of particles is a result of a significant effect 
of k1 instead of k2.

The samples of AgNPs were kept at 20 and 0 and Fig. 5
shows that the temperature has a positive effect on the par-
ticle size, i.e., that smaller particles were observed at low 
storage temperatures. The full set of data on the particles size 
depending on process parameters, including storage tem-
perature is provided in SI. Measurements of the silver nitrate 
concentration for different flow rates of reagents show that 
the reduction reaction is completed before collection. For ex-
ample, at =Re 5.66 with a 2 m outlet tube, the residual con-
centration of silver nitrate was around 0.017 ± 0.00053 mM 
(less than 2% of initial concentration) whilst at highest flow 
rate used, =Re 16.96 and 2 m length, the residual concentra-
tion of silver nitrate was 0 mM ( 3% of initial concentration). 
The small residual concentrations of silver nitrate showed 
that the reaction was practically complete for all the in-
vestigated values of Re including the highest one where re-
sidence time was smaller. Izak-Nau et al. (2015) and Peng et al. 
(2010) have described in detail the ageing of AgNPs samples 
stored at room temperature, proposing that growth of the 
particle size is due to agglomeration or oxidation of silver.

When helical coils are employed, improved mixing due to 
the formation of Dean vortices leads to smaller particles, and 
this effect is one of the largest (Fig. 5). It can be assumed that 
a decrease in particle size due to faster mixing is the result of 
more intensive nuclei formation at the initial stage of reac-
tion. Of course, faster mixing results also in faster particle 
growth, but comparing the relative effect of nucleation and 
growth constant in Fig. 5, it can be suggested that effect of 
faster nucleation is larger than the effect of faster growth. 
The effect of the Reynolds number is positive, yet the least 
significant.

3.3. Prediction results with DT-guided experiments

The performance of the developed models (DT, RF, XGBoost) 
was described through MSE, MAE and R2. In the following Eqs( 
10)-(12), n is the number of data within training and testing 
data sets, Xi is the predicted ith value, Yi is the actual ith value 
and Ŷ is the mean of true values (Chicco et al., 2021).
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X Y
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( )
i

n

i i
1

2

(10) 

Table 2 – Nucleation and growth constants for varied pH 
and concentrations of trisodium citrate. 

pH [TC] 
(mM)

Nucleation constant,k1

(min 1 ) 
(average)

Growth constant, k2

(M min1 1 ) 
(average)

7 1.91 0.0011 55.51
7 2.87 0.0013 37.86
7 3.82 0.0015 44.81
12 1.91 0.1 77.97
12 2.87 0.012 13.66
12 3.82 0.0128 26.01

Fig. 5 – Pearson correlation between input variables and the 
size of AgNPs.
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The decision tree shown in Fig. 6 examined the synthesis 
of AgNPs based on the combination of five conditions. The 
decision tree shows different routes from up to down for 
preparing AgNPs. Each box presents the value of the para-
meter, the estimated size, the MSE and the sample sizes. The 
tree showed that there is a high MSE (Eq. (10)) in some 
synthesis routes e.g., when the growth constant, k2 was 
smaller than 32, the storage temperature was higher than 10 

, and the values of De/Re and Re were smaller and higher 
than 0.2 and 0.47 respectively. To improve the performance of 
the DT developed, synthesis routes were designed under the 
conditions with high MSE (orange routes on DT). These de-
signed experiments were used not only to improve the per-
formance of the developed DT model but also of other models 
such us RF and XGBoost. Additionally, the designed synthesis 
routes (set of parameters identified in the DT with high MSE) 
were applied to confirm the validity of this approach.

The closer the value of R2 is to 1 and the values of MAE and 
MSE are to zero, the better is the fit of the developed models. 
The statistical characteristics of the three appropriate 
models for the original (20 initial conditions used to build the 
DT model), random (10 random extra experiment conditions) 
and designed extra data sets (10 extra designed experiment 

conditions where high uncertainty was found) are given in 
detail in Table 3.

These results are obtained on the unseen test data. In 
particular, the designed data sets are obtained by uncertainty 
analysis (on the training data) of preliminary DT predictions 
as illustrated in Fig. 6. As shown, the values of R2 are always 
increasing with the designed experiments for all the models 
while MAE and MSE are decreasing. These results confirmed 
that the designed experiments based on DT approach can 
improve the final predictive models with less cost and time.

As shown in Fig. 7 and Table 3, the computed predictive 
models, including DT, RF, and XGBoost, which were assisted 
by DT-based designed of experiments, outperform con-
siderably the ones trained on random extra experiments. 
These results also confirmed that the proposed DT-based on 
designed experiments can significantly enhance the perfor-
mance of other machine learning algorithms with a con-
siderable reduction (−26% for XGBoost and −38% for RF) of 
MSE compared to the original model. Note, this paper con-
sists of a 'proof of concept' of the proposed DT-guided design 
of experiments and more experimental data should be col-
lected to obtain more reliable predictions.

B. Gradient Boosting

MSE MAE R2

Original 8.88 2.27 0.47
Random 7.26 2.01 0.57
Designed 6.56 2.16 0.61

C. Random Forest

MSE MAE R2

Original 9.42 2.52 0.44
Random 6.45 1.93 0.62
Designed 5.82 1.96 0.66

Fig. 6 – Decision tree which examines the size of synthesized AgNPs as a function of five parameters where x0, x1, x2, x3, x4, 
are nucleation constant k1, growth constant k2, storage temperature, Dean number/Reynolds number (De/Re) and Reynolds 
number (Re) respectively. Orange boxes are showing where there is a high MSE.

Table 3 – Decision tree (DT), Extreme Gradient boosting 
(XGBoost) and Random Forest (RF) results for original, 
random and designed experiments. 

A Decision Tree

MSE MAE R2

Original 9.43 2.46 0.45
Random 8.65 2.24 0.49
Designed 6.41 2.01 0.62
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4. Conclusions

A machine learning-guided design of experiments based on 
the decision tree method for the size of AgNPs synthesized in 
a continuous flow T-junction device was implemented. The 
parameters investigated were nucleation and growth con-
stants derived from an independent set of experiments using 
F-W mechanism, as well as storage temperature and hy-
drodynamic parameters including Reynolds and Dean 
number.

The decision tree based on designed experiments is an 
effective and low-cost strategy to improve a system in a 
much more directed manner. The obtained model showed 
the areas of interest for further experiments (regions with 
high MSE) and numerical results showed that well designed 
synthesis routes can improve significantly the performance 
not only of DT itself but also of other regression methods 
such as RF and XGBoost compared to randomly extra 
synthesis routes. In particular, considerable reduction of MSE 
compared to the original model, 26% for XGBoost and 38% for 
RF, was found.

Additionally, the obtained model can be developed fur-
ther in the future by data-assimilation from numerical si-
mulations and additional experiments, including 
experiments with other chemicals and other device types.
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