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Abstract — This paper presents a sliding mode
control strategy suitable for mechanical sub-systems
with varying trajectory dynamics. An illustrative
example of a two link robot actuator/manipulator is
used. The non-integer order function is introduced
in the setpoint definition as to represent changes
in the desired trajectory of this sub-system, as well
as being used to adapt the control law to the new
dynamics. Uncertainties are introduced in the model
used for the control law, hence robustness is tested.
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I – Introduction

Typical two link robot manipulators are often found
in heavy duty industry, e.g. automotive assembly lines,
agricultural harvesting machines [1]. Due to vary-
ing product specification the reference trajectory may
change dynamics and amplitude and calibration of the
system along with re-tuning controller parameters are
necessary to maintain optimal operation [2]. Often these
systems are in fact part of complex processes, where
sub-system interaction is present and safe operation
must be ensured at all times by adapting the reference
trajectory.

Another class of applications where reference tra-
jectory may change dynamics and amplitude is that of
spacecraft dynamics and spacecraft rendez-vous. Or-
bital coordinates may be required to adapt to other
values due to unexpected space drifts and winds, or
obstacle avoidance maneuver.

Medical applications such as radiotherapy for lung
tumours also make use of robot link manipulators for
positioning laser beam or near infra-red spectroscopy
[3]. While at rest, the patient breaths during the treat-
ment, hence the tumour changes position and shape
along with the lung tissue [4]. This requires adaptation
of the reference trajectory of the beam and accurate
position control is of utmost importance.

A nice retrospective with the pioneers of fractional
calculus is given in [5]. A comprehensive overview of
applications of fractional order control is given in [6].
Discussion on stability in relay controlled systems is
made in [7]. Gain adaptation in fractional order con-
trol has been discussed in [8]. A practical approach
to implementing a fractional order control in a PLC
for industrial use has been discussed in [9]. Design of
sliding mode controllers for a class of fractional order
chaotic systems has been proposed in [10]. The systems
under analysis were the fractional-order Chen system,

the fractional order Lorenz system and a fractional order
financial system. Numerical simulations supported the
effectiveness of the proposed method. On the other
hand, fractional order sliding mode controller with
terminal convergence bound was proposed for a class
of dynamical systems with uncertainty in [11]. There
the switching law contains fractional order differential
operators and ensures finite stability of the closed loop
system.

The present paper proposes a sliding mode control
algorithm in which varying reference trajectories
are defined using fractional order dynamics. This
information is used in the tuning of the control laws
and simulation examples illustrate the effectiveness of
the proposed methodology for this class of applications.

II – Model description

Consider an n-joint robot as follows:

H(q)q̈+C(q, q̇)q̇+G(q)+F(q̇)+ τd = τ (1)

where q ∈ Rn is the angle vector, H(q) ∈ Rnxn is the
inertia matrix, C(q, q̇) ∈ Rn denotes the centrifugal and
coriolis forces, G(q) ∈ Rn is the gravity, F(q̇) ∈ Rn is
the frictional force, τ ∈ Rn is the control moment, and
τd ∈ Rn is the disturbance moment.

The characteristics of the kinetic model are [1]:

• the kinetic model contains a higher number of
elements and this depends on the number of robot
joints;

• the model has a high degree of nonlinearity;

• there exists a strong interaction between the vari-
ous sub-systems (i.e. joints);

• there exists model uncertainty and varying dynam-
ics; these depend on the load and joint friction.

Properties of the model defined in 1 [1, 12]:

• H(q) is a positive-definite symmetrical and
bounded matrix; i.e. m1I≤H(q)≤ m2I

• C(q, q̇) is bounded, i.e. | C(q, q̇) |≤ cb(q) ‖ q̇ ‖

• matrix Ḣ− 2C is a skew-symmetric matrix, i.e.
xT (Ḣ−2C)x = 0, with x a vector

• the measurable (known) disturbance is bounded by
a positive constant ‖ τd ‖≤ τM
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Figure 1: Schematic representation of the robot’s last two
links. See text for notations.

The illustrative example used in this paper is given by
a two joint robot manipulator. This is well in agreement
with the real-life cases where position control is mainly
achieved by accurate control of the last two joints, as in
figure 1.

As a real-life example, the radiotherapy of lung tu-
mours are making use of Cyberknife robot to radiate
the tumour tissue. During breathing, the spatial and
volumetric shape of the tumour tissue is changing. The
breathing period at rest of a patient diagnosed with lung
disease is between 0.5-1 Hz (as opposed to a healthy
patient, whose breathing period is around 0.3 Hz at
rest). Since the changes in amplitude position are very
small, it is not necessary to control the position of the
robot arm in all its joints. Hence, only the last two joints
are used and the model for control is simplified.

The kinetic equation is simplified to:

H(q)q̈+C(q, q̇)q̇+G(q) = τ (2)

where q = [q1 q2], τ = [τ1 τ2]
T and

H =

[
α +2ε cos(q2)+2η sin(q2) β + ε cos(q2)+η sin(q2)

β + ε cos(q2)+η sin(q2) β

]
(3)

C =

[
(−2ε sin(q2)+2η cos(q2))q̇2 (−ε sin(q2)+η cos(q2))q̇2
(ε sin(q2)−η cos(q2))q̇1 0

]
(4)

G =

[
εe2 cos(q1 +q2)+ηe2 sin(q1 +q2)+(α−β + e1)e2 cos(q1)

εe2 cos(q1 +q2)+ηe2 sin(q1 +q2)

]
(5)

where α , β , ε and η are constants, with α =
I1 + m1l2

c1 + Ie + mel2
ce + mel2

1 , β = Ie + mel2
ce, ε =

mel1lce cos(δe), η = mel1lce sin(δe). The numerical val-
ues of the robot joint elements are taken as:

m1 = 1kg l1 = 1m lc1 = 1/2m I1 = 1/12kg me = 3kg
lce = 1m Ie = 2/5kg δe = 0 e1 =−7/12 e2 = 9.81 (6)

Let a = [α β ε η ]T and â its estimated values. We
assume ã = â− a since a is a constant vector and thus
˙̃a = ˙̂a. This implies that we can estimate the matrices Ĥ,
Ĉ and Ĝ, respectively.

For our system, we do not know the values of a. De-
note by qd the desired reference trajectory. The tracking
error is given by:

e = qd−q (7)

Define
q̇r = q̇d +Λ(qd−q) (8)

with Λ a positive diagonal matrix. In this relation, the
terms in qd are important since they define the desired
trajectories. In case the sliding surface is not adapted to
changes in desired trajectory, this control strategy will
have steady state error.

Making use of the dynamic regression matrix formu-
lation from [13, 2], we have that:

H(q)q̈r +C(q, q̇r)q̇+G(q) = Y(q, q̇, q̇r, q̈r)a (9)

and

H̃(q)q̈r + C̃(q, q̇r)q̇+ G̃(q) = Y(q, q̇, q̇r, q̈r)ã (10)

where

Y (q, q̇, q̇r, q̈r) =

[
y11 y12 y13 y14
y21 y22 y23 y24

]
(11)

with
y11 = ¨qr1 + e2 cos(q1) (12)

y12 = ¨qr2− e2 cos(q1) (13)

y13 = 2cos(q2) ¨qr1 + cos(q2) ¨qr2−2sin(q2)q̇2 ˙qr1−
−sin(q2)q̇2 ˙qr2 + e2 cos(q1 +q2)

(14)
y14 = 2sin(q2) ¨qr1 + sin(q2) ¨qr2 +2cos(q2)q̇2 ˙qr1+

+cos(q2)q̇2 ˙qr2 + e2 sin(q1 +q2)
(15)

y21 = 0;y22 = ¨qr1 + ¨qr2 (16)

y23 = cos(q2) ¨qr1+sin(q2)q̇1 ˙qr1+e2 cos(q1+q2) (17)

y24 = sin(q2) ¨qr1−cos(q2)q̇1 ˙qr1+e2 sin(q1+q2) (18)

III – Sliding Mode Control Algorithm

In this paper, we propose the use of classical slid-
ing mode control strategy as briefly introduced in the
remainder of this section for the application defined
by (9)[13]. The originality of our approach is not in
the control algorithm itself, but in the definition of the
reference trajectory, consequently used in the controller
law.

The sliding variable is given by

s = ė+Λe (19)

Notice that changes in the desired reference trajectory
qd are taken up via the error term defined earlier in (7).
Selecting the Lyapunov function

V (t) =
1
2

sT H(q)s (20)

we have that

V̇ (t) = sT [H(q)q̈r +C(q, q̇)q̇r +G(q)− τ] (21)
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Hence, we can design the controller law as:

τ = Ĥ(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q)+ τs (22)

with τs the design parameter for robustness. Making use
of (20) and (21) it follows that:

V̇ (t) = sT [H̃(q)q̈r + C̃(q, q̇)q̇r + G̃(q)− τs] =
sT [Y(q, q̇, q̇r, q̈r)ã− τs]

(23)
Selecting

τs = ksgn(s)+ s =
[

k1sgn(s1)+ s1
k2sgn(s2)+ s2

]
(24)

where ki = ∑
4
j=1 Ȳi j ¯̃a j, with i = 1,2. From (23) and (24)

we obtain the control law.
Considering the desired reference trajectories as de-

fined by:
qd1 = ωγ sin(ωγ t)
qd2 = ωγ sin(ωγ t) (25)

This implies that if dynamics of the true system (i.e.
frequency) are varying in such way that dynamics
of γ may be introduced, adaptation is necessary
and sufficient to ensure good performance. By
estimating the γ values of the desired reference
trajectories using a simple iterative algorithm, one
can significantly improve the controller performance.
This can be done by changing values for γ with small
increments/decrements to detect improvements in the
performance due to variations in (25). The control law
(22) will then adapt the sliding surface via (8) where
the desired trajectory is changed according to the new
values for γ .

IV – Results

In this analysis, assume Λ = 5 · I. To avoid chattering
in the control effort, the saturated function is used
instead of the switch function with 4 = 0.05. The
basis frequency is assumed to be ω=1 Hz, denoting a
breathing frequency of a patient. These parameters do
not change from these values in the next simulation
tests.

First, we test the system assuming we know perfectly
the trajectory of the reference, for γ = 1. The results of
the closed loop control are given in figure 2 for the two
controlled positions and two control efforts.

Second, we assume three possible cases:

• when γ = 0.3

• when γ = 0.5 and

• when γ = 0.8

in which the value for γ used in the controller is not
known apriori and needs to be estimated online. Uncer-
tainty between model and plant is introduced at 50%. A
classical recursive least squares identification algorithm
is used in this case. The initial value is set to γ = 1.

Figure 2: Simulation results for the ideal case when the
reference trajectory is perfectly known, with a fractional order
variable γ = 1.
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Figure 3: Output of the first joint for various values of the
reference signal fractional order variable γ = 0.3;0.5;0.8 -
from top to bottom.

Figure 4: Output of the second joint for various values of the
reference signal fractional order variable γ = 0.3;0.5;0.8 -
from top to bottom.
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Figure 5: Control effort of the two joints for various values of
the reference signal fractional order variable γ = 0.3;0.5;0.8
- from top to bottom.

The results are given in figure 3 for the output of the fist
link. Figure 4 depicts the output of the second link. The
control effort of the two joints is given in figure 5.

Third, we introduce saturations at ±500 mV in the
control effort. This is likely to be the case in real-life
applications. We want to check the adaptation algorithm
for changes in the frequency which introduce modelling
errors. At time instant 2.5 seconds the value is changed
from 1 to 1.15 Hz. The results for γ = 0.8 are given in
figure 6. Indeed, it can be observed that now the control
output reaches saturation when the change in frequency
occurs and the performance slightly deteriorates at the
beginning; however, this deterioration is circumvented
successfully by the adaptation law in the control algo-
rithm.

It can be observed that under all conditions, the
control law is able to follow the reference trajectory
which changes due to the changes in the γ values.
As expected, the closed loop performance becomes
optimal after the correct value for γ has been identified
in the model of the controller. Once this is done, then
the controller has no difficulty to follow the dynamic
reference trajectory.

V – Conclusion

In this paper, sliding mode control of a dynamic
reference trajectory is presented. The example used to
illustrate the effectiveness of the control can be widely
encountered in industrial and medical applications.
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