Biconic semi-copulas with a given section

Tarad Jwaid ${ }^{1}$ Bernard De Baets ${ }^{1}$ Hans De Meyer ${ }^{2}$ Radko Mesiar ${ }^{3}$

${ }^{1}$ Dept. of Mathematical Modelling, Statistics and Bioinformatics, Ghent University Coupure links 653, B-9000 Gent, Belgium
${ }^{2}$ Dept. of Applied Mathematics, Computer Science, Ghent University
Krijgslaan 281 S9, B-9000 Gent, Belgium
${ }^{3}$ Dep. of Mathematics and Descriptive Geometry, Slovak University of Technology Radlinského 11, 81368 Bratislava, Slovakia

Abstract

Inspired by the notion of biconic semi-copulas, we introduce biconic semi-copulas with a given section. Such semi-copulas are constructed by linear interpolation on segments connecting the graph of a continuous and decreasing function to the points $(0,0)$ and $(1,1)$. Special classes of biconic semi-copulas with a given section such as biconic (quasi-)copulas with a given section are considered. Some examples are also provided.

Keywords: Biconic copula, Conic copula, Quasicopula, Copula, Linear interpolation

1. Introduction

Semi-copulas have recently gained importance in several areas of research, such as reliability theory, fuzzy set theory and multi-valued logic $[6,10$, 12]. Special classes of semi-copulas, such as quasicopulas and copulas, are widely studied. For instance, quasi-copulas appear in fuzzy set theoretical approaches to preference modeling and similarity measurement $[3,4,5]$. Due to Sklar's theorem [23], copulas have received ample attention from researchers in probability theory and statistics [14].
Recall that a semi-copula $[8,9]$ is a function S : $[0,1]^{2} \rightarrow[0,1]$ satisfying the following conditions:
(i) for any $x \in[0,1]$, it holds that

$$
S(x, 0)=S(0, x)=0, \quad S(x, 1)=S(1, x)=x ;
$$

(ii) for any $x, x^{\prime}, y, y^{\prime} \in[0,1]$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, it holds that $S(x, y) \leq S\left(x^{\prime}, y^{\prime}\right)$.
In other words, a semi-copula is nothing else but a binary aggregation function with neutral element 1. The functions T_{M} and T_{D} given by $T_{\mathbf{M}}(x, y)=\min (x, y)$ and $T_{\mathbf{D}}(x, y)=\min (x, y)$ whenever $\max (x, y)=1$, and $T_{\mathbf{D}}(x, y)=0$ elsewhere, are examples of semi-copulas. Moreover, for any semi-copula S the inequality $T_{\mathrm{D}} \leq S \leq T_{\mathrm{M}}$ holds.
A semi-copula Q is a quasi-copula $[11,13,20]$ if it is 1 -Lipschitz continuous, i.e. for any $x, x^{\prime}, y, y^{\prime} \in$ $[0,1]$, it holds that

$$
\left|Q\left(x^{\prime}, y^{\prime}\right)-Q(x, y)\right| \leq\left|x^{\prime}-x\right|+\left|y^{\prime}-y\right| .
$$

A semi-copula C is a copula $[1,21]$ if it is 2 increasing, i.e. for any $x, x^{\prime}, y, y^{\prime} \in[0,1]$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, it holds that $V_{C}\left(\left[x, x^{\prime}\right] \times\right.$ $\left.\left[y, y^{\prime}\right]\right):=$

$$
C\left(x^{\prime}, y^{\prime}\right)+C(x, y)-C\left(x^{\prime}, y\right)-C\left(x, y^{\prime}\right) \geq 0
$$

$V_{C}\left(\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]\right)$ is called the C-volume of the rectangle $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$. The copulas T_{M} and $T_{\mathbf{L}}$, with $T_{\mathbf{L}}(x, y)=\max (x+y-1,0)$, are respectively the greatest and the smallest copula, i.e. for any copula C, it holds that $T_{\mathrm{L}} \leq C \leq T_{\mathrm{M}}$. Another important copula is the product copula Π defined by $\Pi(x, y)=x y$.
To increase modeling flexibility, new methods to construct semi-copulas, quasi-copulas and copulas are being proposed continuously in the literature. Several of these methods have been introduced starting from given sections. Such sections can be the diagonal section and/or the opposite diagonal section $[2,15,17]$, or a horizontal section and/or a vertical section $[7,19,22]$. All the above methods have used sections that are determined by straight lines in the unit square such as the diagonal, the opposite diagonal, a horizontal line or a vertical line. In the present paper, we consider sections that are determined by a curve in the unit square that represents a continuous and decreasing function.
For any continuous and decreasing $[0,1] \rightarrow[0,1]$ function f with $f(0)=1$ and $f(1)=0$, the surface of the semi-copula T_{M} is constituted from (linear) segments connecting the points $(0,0,0)$ and $(a, f(a), f(a))$ as well as segments connecting the points $(a, f(a), f(a))$ and $(1,1,1)$, with $f(a) \leq a$, and segments connecting the points $(0,0,0)$ and $(a, f(a), a)$ as well as segments connecting the points $(a, f(a), a)$ and $(1,1,1)$, with $f(a) \geq a$. This observation has motivated the present construction.
This paper is organized as follows. In the following section, we introduce biconic functions with a given section. In Section 3, we characterize the classes of biconic semi-copulas with a given section and biconic quasi-copulas with a given section. In Section 4, we also characterize under some additional assumptions the class of biconic copulas with a given section. Finally, some conclusions are stated.

2. Biconic functions with a given section

In this section we introduce the definition of a biconic function with a given section. We denote the (linear) segment with endpoints $\mathbf{x}, \mathbf{y} \in[0,1]^{2}$ as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\{\theta \mathbf{x}+(1-\theta) \mathbf{y} \mid \theta \in[0,1]\} .
$$

We denote the set of continuous and strictly decreasing functions $f:[0,1] \rightarrow[0,1]$ that satisfy $f(x) \leq 1-x$ for any $x \in[0,1]$ as \mathcal{U}.
Let $f \in \mathcal{U}, f(0)=d^{\prime}$ and d be the smallest value in $[0,1]$ such that $f(d)=0$. We introduce the following notations

$$
\begin{aligned}
S_{f} & =\{(x, y) \in[0, d] \times[0,1] \mid y<f(x)\} \\
\Delta_{d^{\prime}} & =\Delta_{\left\{\left(0, d^{\prime}\right),(0,1),(1,1)\right\}} \\
\Delta_{d} & =\Delta_{\{(d, 0),(1,1),(1,0)\}} \\
F_{f} & =[0,1]^{2} \backslash\left(S_{f} \cup \Delta_{d^{\prime}} \cup \Delta_{d}\right) .
\end{aligned}
$$

The sets S_{f} and F_{f} as well as the triangles $\Delta_{d^{\prime}}$ and Δ_{d} are depicted in Figure 1. Let C be a semicopula and $g_{C}:[0,1] \rightarrow[0,1]$ be defined by $g_{C}(x)=$ $C(x, f(x))$. Then the function $A_{f, g_{C}}:[0,1]^{2} \rightarrow$ $[0,1]$ defined by $A_{f, g_{C}}(x, y)=$

$$
\begin{cases}\frac{g_{C}\left(x_{0}\right)}{x_{0}} x & , \text { if }(x, y) \in S_{f} \backslash\{(0,0)\} \tag{1}\\ 1-\frac{1-g_{C}\left(x_{1}\right)}{1-x_{1}}(1-x) & , \text { if }(x, y) \in F_{f} \backslash\{(1,1)\} \\ \min (x, y) & , \text { otherwise }\end{cases}
$$

where $\left(x_{0}, f\left(x_{0}\right)\right)$ (resp. $\left(x_{1}, f\left(x_{1}\right)\right)$ is the unique point such that (x, y) is located on the segment $\left\langle(0,0),\left(x_{0}, f\left(x_{0}\right)\right)\right\rangle \quad\left(\operatorname{resp} . \quad\left\langle\left(x_{1}, f\left(x_{1}\right)\right),(1,1)\right\rangle\right)$, is well defined. The function $A_{f, g_{C}}$ is called a biconic function with section $\left(f, g_{C}\right)$ since $A_{f, g_{C}}(t, f(t))=$ $g_{C}(t)$ for any $t \in[0,1]$, and since it is linear on each segment $\left\langle(0,0),(t, f(t)\rangle\right.$ on S_{f} as well as on each segment $\left\langle(t, f(t),(1,1)\rangle\right.$ on F_{f}.

Note that for $g_{C}(x)=0$, the class of binary conic functions is retrieved [18]. Note also that for $f(x)=$ $1-x$, the class of biconic functions with a given opposite diagonal section is retrieved [16].

Let us introduce, for a biconic function $A_{f, g_{C}}$, the functions $\left.\varphi_{f}, \widehat{\varphi}_{f}, \psi_{g_{C}}, \widehat{\psi}_{g_{C}}:\right] 0, d[\rightarrow \mathbb{R}$ defined by

$$
\begin{gathered}
\varphi_{f}(x)=\frac{x}{f(x)}, \quad \widehat{\varphi}_{f}(x)=\frac{1-x}{1-f(x)}, \\
\psi_{g_{C}}(x)=\frac{g_{C}(x)}{x}, \quad \widehat{\psi}_{g_{C}}(x)=\frac{1-g_{C}(x)}{1-x} .
\end{gathered}
$$

These functions will be used along the paper.

3. Biconic semi-(resp. quasi-)copulas with a given section

Here, we characterize the class of biconic semi-(resp. quasi-)copulas with a given section.

Figure 1: Illustration of the sets F_{f} and S_{f} as well as the triangles Δ_{d} and $\Delta_{d^{\prime}}$.

Proposition 1 Let $f \in \mathcal{U}$ and C be a semi-copula. The function $A_{f, g_{C}}$ defined in (1) is a semi-copula if and only if
(i) the functions $\varphi_{f} \psi_{g_{C}}$ and $\psi_{g_{C}}$ are increasing and decreasing, respectively;
(ii) the functions $\widehat{\varphi}_{f} \widehat{\psi}_{g_{C}}$ and $\widehat{\psi}_{g_{C}}$ are decreasing and increasing, respectively.

Proposition 2 Let $f \in \mathcal{U}$ and C be a quasi-copula. The function $A_{f, g_{C}}$ defined in (1) is a quasi-copula if and only if
(i) the conditions of Proposition 1 are satisfied;
(ii) the functions $\frac{1}{\varphi_{f}}-\psi_{g_{C}}$ and $\varphi_{f}\left(1-\psi_{g_{C}}\right)$ are decreasing and increasing, respectively;
(iii) the functions $\frac{1}{\widehat{\varphi}_{f}}-\widehat{\psi}_{g_{C}}$ and $\widehat{\varphi}_{f}\left(1-\widehat{\psi}_{g_{C}}\right)$ are increasing and decreasing, respectively.

Example 1 Let $f \in \mathcal{U}$ and $C=T_{\mathbf{L}}$. One easily verifies that the conditions of Proposition 1 are satisfied and the corresponding biconic function $A_{f, g_{C}}$ is a semi-copula. On the other hand, $A_{f, g_{C}}$ is a quasi-copula if and only if the functions $\frac{f(x)}{1-x}$ and $\frac{x}{1-f(x)}$ are decreasing and increasing on the interval]0, $d[$, respectively.

Example 2 Let $f \in \mathcal{U}$ and C be the product copula, i.e. $C=\Pi$. One easily verifies that the conditions of Proposition 2 are satisfied and the corresponding biconic function $A_{f, g_{C}}$ is a quasi-copula, and hence a semi-copula. Consequently, when the considered semi-copula is Π, the class of biconic semi-copulas with a given section and the class of biconic quasicopulas with a given section coincide.

4. Biconic copulas with a given section

Next, we characterize for specific cases the class of biconic copulas with a given section. A function
$f:[0,1] \rightarrow[0,1]$ is called piecewise linear if its graph is constituted of segments. Next, we restrict our attention to the case when $C=\Pi$ and hence, $g_{C}(x)=x f(x)$ for any $x \in[0,1]$.

Proposition 3 Let $f \in \mathcal{U}$ such that f is piecewise linear and let $C=\Pi$. The function $A_{f, g_{C}}$ defined in (1) is a copula if and only if the functions φ_{f} and $\widehat{\varphi_{f}}$ are convex.

Example 3 Let $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=1-x$ for any $x \in[0,1]$, and let $C=\Pi$. One easily verifies that the functions φ_{f} and $\widehat{\varphi}_{f}$ are convex and the corresponding biconic function $A_{f, g_{C}}$ is a copula, and is given by
$A_{f, g_{C}}(x, y)= \begin{cases}\frac{x y}{x+y} & , \text { if } y \leq 1-x, \\ \frac{x y-(x+y-1)^{2}}{2-x-y} & , \text { otherwise. }\end{cases}$
Using the same technique as in [18], Proposition 3 can be generalized for any element from \mathcal{U}.

Proposition 4 Let $f \in \mathcal{U}$ and $C=\Pi$. The function $A_{f, g_{C}}$ defined in (1) is a copula if and only if the functions φ_{f} and $\widehat{\varphi}_{f}$ are convex.

Example 4 Let $f:[0,1] \rightarrow[0,1]$ be defined by

$$
f(x)= \begin{cases}(1-2 x)^{2} & , \text { if } x \leq 1 / 2 \\ 0 & , \text { otherwise }\end{cases}
$$

and let $C=\Pi$. One easily verifies that the functions φ_{f} and $\widehat{\varphi}_{f}$ are convex and the corresponding biconic function $A_{f, g_{C}}$ is a copula.

Rather than using the product copula, we consider now any copula C but we will suppose that f is piecewise linear.

Proposition 5 Let $f \in \mathcal{U}$ such that f is piecewise linear, and let C be a copula. Let $a \in[0, d]$ be the unique value such that $f(a)=a$. The function $A_{f, g_{C}}$ defined in (1) is a copula if and only if
(i) for any $x_{1}, x_{2}, x_{3} \in[0, d]$ such that $x_{1}<x_{2}<$ x_{3}, it holds that

$$
\left|\begin{array}{lll}
1-x_{1} & 1-y_{1} & 1-z_{1} \tag{2}\\
1-x_{2} & 1-y_{2} & 1-z_{2} \\
1-x_{3} & 1-y_{3} & 1-z_{3}
\end{array}\right| \geq 0
$$

and

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \tag{3}\\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right| \geq 0,
$$

where $f\left(x_{i}\right)=y_{i}$ and $g_{C}\left(x_{i}\right)=z_{i}$ for any $i \in$ $\{1,2,3\}$;
(ii) the function $\xi:[0, a[\cup] a, d] \rightarrow \mathbb{R}$ defined by $\xi(x)=\frac{x-g_{C}(x)}{x-f(x)}$ is decreasing on the interval $[0, a[$ as well as on the interval $] a, d]$.

In order to retrieve the class of conic copulas and the class of biconic copulas with a given opposite diagonal section, we need the following two lemmas.

Lemma 1 Let f be a real-valued function defined on the interval $[a, b]$. Then it holds that f is convex if and only if

$$
\left|\begin{array}{lll}
1-x_{1} & 1-f\left(x_{1}\right) & 1 \tag{4}\\
1-x_{2} & 1-f\left(x_{2}\right) & 1 \\
1-x_{3} & 1-f\left(x_{3}\right) & 1
\end{array}\right| \geq 0
$$

holds for any $x_{1}, x_{2}, x_{3} \in[a, b]$ such that $x_{1}<x_{2}<$ x_{3}.

Lemma 2 Let g be a real-valued function defined on the interval $[a, b]$. Then it holds that g is concave if and only if

$$
\left|\begin{array}{lll}
1-x_{1} & x_{1} & 1-g\left(x_{1}\right) \tag{5}\\
1-x_{2} & x_{2} & 1-g\left(x_{2}\right) \\
1-x_{3} & x_{3} & 1-g\left(x_{3}\right)
\end{array}\right| \geq 0
$$

holds for any $x_{1}, x_{2}, x_{3} \in[a, b]$ such that $x_{1}<x_{2}<$ x_{3}.

Remark 1

(i) For $g_{C}(x)=0$, inequality (2) is equivalent to the convexity of f (see Lemma 1) and hence, the class of conic copulas (when the upper boundary curve of the zero-set is piecewise linear) is retrieved [18].
(ii) For $f(x)=1-x$, inequality (2) is equivalent to the concavity of g_{C} (see Lemma 2) and hence, the class of biconic copulas with a given opposite diagonal section (when the opposite diagonal section is piecewise linear) is retrieved [16].

5. Conclusions

We have introduced biconic semi-copulas with a given section. We have also characterized the class of biconic quasi-copulas with a given section. Under some assumptions, we have characterized biconic copulas with a given section. Some known classes of semi-copulas, such as binary conic semi-copulas and biconic semi-copulas with a given opposite diagonal section, turn out to be special cases of biconic semi-copulas with a given section.

Acknowledgement

The first author was supported by the Ministry of Higher Education of the Syrian Government. R. Mesiar was supported by the grant APVV-007310.

References

[1] C. Alsina, M.J. Frank and B. Schweizer, Associative Functions: Triangular Norms and Copulas, World Scientific, Singapore, 2006.
[2] B. De Baets, H. De Meyer and M. ÚbedaFlores, Opposite diagonal sections of quasicopulas and copulas, Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems, 17:481-490, 2009.
[3] B. De Baets and J. Fodor, Additive fuzzy preference structures: the next generation, in: Principles of Fuzzy Preference Modelling and Decision Making (B. De Baets and J. Fodor, eds.), Academia Press, 2003, pp. 15-25.
[4] B. De Baets, S. Janssens and H. De Meyer, On the transitivity of a parametric family of cardinality-based similarity measures, Internat. J. Approximate Reasoning, 50:104-116, 2009.
[5] S. Díaz, S. Montes and B. De Baets, Transitivity bounds in additive fuzzy preference structures, IEEE Trans. Fuzzy Systems, 15:275-286, 2007.
[6] F. Durante, E.P. Klement, R. Mesiar and C. Sempi, Conjunctors and their residual implicators: characterizations and construction methods, Mediterranean Journal of Mathematics 4:343-356, 2007.
[7] F. Durante, A. Kolesárová, R. Mesiar and C. Sempi, Copulas with given values on a horizontal and a vertical section, Kybernetika, 43:209220, 2008.
[8] F. Durante, J.J. Quesada Molina and C. Sempi, Semicopulas: characterizations and applicability, Kybernetika, 42:287-302, 2006.
[9] F. Durante and C. Sempi, Semicopulae, Kybernetika, 41:315-328, 2005.
[10] F. Durante and F. Spizzichino, Semi-copulas, capacities and families of level sets, Fuzzy Sets and Systems, 161:269-276, 2010.
[11] C. Genest, J.J. Quesada Molina, J.A. Rodríguez Lallena and C. Sempi, A characterization of quasi-copulas, Journal of Multivariate Analysis, 69:193-205, 1999.
[12] P. Hájek and R. Mesiar, On copulas, quasicopulas and fuzzy logic, Soft Computing, 12:12391243, 2008.
[13] S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for quasi-copulas, Fuzzy Sets and Systems, 148:263-278, 2004.
[14] H. Joe, Multivariate Models and Dependence Concepts, Chapman \& Hall, London, 1997.
[15] T. Jwaid, B. De Baets and H. De Meyer, Orbital semilinear copulas, Kybernetika, 45:10121029, 2009.
[16] T. Jwaid, B. De Baets and H. De Meyer, Biconic aggregation functions, Information Sciences, 187:129-150, 2012.
[17] T. Jwaid, B. De Baets and H. De Meyer, Lower
semiquadratic copulas with a given diagonal section, Journal of Statistical Planning and Inference, 143:1355-1370, 2013.
[18] T. Jwaid, B. De Baets, J. Kalická and R. Mesiar, Conic aggregation functions, Fuzzy Sets and Systems, 167:3-20, 2011.
[19] E. Klement, A. Kolesárová and R. Mesiar, Copulas constructed from horizontal sections, Communications in Statistics: Theory and Methods, 36:2901-2911, 2007.
[20] A. Kolesárová, 1-Lipschitz aggregation operators and quasi-copulas, Kybernetika, 39:615629, 2003.
[21] R. Nelsen, An Introduction to Copulas, Springer, New York, 2006.
[22] J. Rodríguez-Lallena, A class of copulas with piecewise linear horizontal sections, Journal of Statistal Planning and Inference, 139:39083920, 2009.
[23] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8:229-231, 1959.

