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Introduction 

Detailed modeling of complex kinetic networks still remains a daunting task. The 

computational cost of a single simulation rises quickly when the kinetic network becomes 

larger. The latter is in particularly true for combustion, oxidation and pyrolysis mechanisms 

where considering several thousands of species is no exception. Moreover the 

computational power of a single core has flattened out during the last years (Figure 1), and 

hence, the simulation time rises drastically with increasing network sizes. The 

computational cost of these simulations is specific to the simulation type and determined by 

a variety of factors such as properties of the flow to be simulated, types of solvers involved, 

the numerical differentiation scheme, spatial and temporal resolutions and inter-process 

communication for high-performance simulations1. The overall simulation time is often 

dominated by the evaluation and factorization of the Jacobian matrix and the evaluation of 

the reaction rates so the optimization and speedup of chemical codes mainly focusses on 

these parts2. In these schemes the Jacobian is often calculated by finite differences. This 

requires n² times the evaluation of the reaction rates per integration step which explains the 

large computational cost of the evaluation of the reaction rates as well.  

The above is mainly true for implicit solvers which are often available in different 

kinds of commercial code (e.g. CHEMKIN). Explicit solvers often do not require the 

calculation of the Jacobian matrix which reduces the computational cost of these kind of 

solvers drastically and the reaction rates only need to be evaluated a limited number of 

times per integration step. Explicit solvers require however small integration steps to 

overcome the inherent chemical stiffness of the reaction mechanism.  This chemical 

stiffness is typically induced by QSS (Quasi Steady State) species and can be reduced by 

using the QSSA (Quasi Steady State Approximation) method. The reduced chemical 

stiffness allows for larger integration steps to be taken3-6.  

The time distribution in these explicit solvers is for these reasons completely different 

than those of implicit solvers and only limited efforts have been made to optimize these 

solvers for newer computer architecture7. Moreover, when these explicit solvers are used it 

is clear that other components, that used only limited amount of time in the implicit scheme, 

will become very time consuming in an explicit scheme.  
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Figure 1: Evolution of single core clock speed over time (MIPS = Mega instructions per second)
8
 

To illustrate the possible speed-up for pyrolysis applications using explicit solvers we 

have applied these advances in parallel computing on free-radical based reaction 

mechanisms of different sizes and characteristics implemented in COILSIM1D. COILSIM1D 

combines a recently developed single event microkinetic model (CRACKSIM9) for 

simulating the steam cracking process with a 1D reactor model (Plug flow reactor). 

COILSIM1D is able to simulate the cracking of a very broad range of industrially relevant 

feedstocks, from ethane to LPG, over naphtha to gas oil and vacuum gas oils. COILSIM1D 

solves the differential equations by applying the QSSA to the total sum of radicals present 

in the mixture. This means that in each integration step the rate of formation of all the 

radicals is assumed to be equal to the rate of disappearance of all the radicals. In this way 

the concentration of the radicals can be obtained by solving a set of algebraic equations. 

This reduces the chemical stiffness of the set of differential equations and makes it possible 

to solve the differential equations using a Runge-Kutta method. The duration of a single 

simulation however drastically increases when the feedstocks become more complex due 

to the increasing size of the reaction mechanism that is considered (see Figure 1). The 

highly parallel structure of certain parts of the code make COILSIM1D the ideal candidate 

for hybrid CPU/GPU calculations. Since Coilsim1D is originally written in Fortran the 

author’s preferred using CUDA Fortran from PGI over CUDA C from NVidia. To the author’s 

knowledge this is the first time that CUDA Fortran is applied for combustion or pyrolysis 

applications.  



 
 

 

Programming approach 

Identifying time consuming subroutines 

The first step in speeding up the code is of course to identify the calculations which 

are the most time consuming, so-called profiling. Profiling of Coilsim1D is done using three 

distinct simulations. Case 1 is a simulation where both the temperature and pressure 

profiles are specified and only the continuity equation needs to be solved. The energy and 

momentum balances do not need to be solved. Case 2 is a simulation where the heat flux 

to the gas phase is specified and case 3 is a simulation were the outlet conditions and the 

shape of the heat flux profile are specified. In both case 2 and case 3 the energy and 

momentum equations need to be solved as well as the continuity equations. 

Figure 2 shows the results of the profiling study. Profiling of Coilsim1D has shown 

that both the solver and the evaluation of the reaction rates are still among the most costly 

subroutines even though the model has been simplified to reduce simulation times (see 

Figure 2). When both temperature and pressure profile are given and only the material 

balances need to be solved this part of the calculations takes about 85% of the total time 

(Case 1). However when both energy and momentum balances need to be solved 

additionally it only uses between 10 and 30% of the total time (Case 2 and 3). In these 

cases the evaluation of the viscosity of the gas phase becomes the most time consuming 

calculation taking between 75 and 85% of the total time. The increasing complexity when 

going from case 1 to case 3 is also clearly visible in the total simulation time which goes 

from only 0.48s to 23.03s. 

 

Figure 2: Relative time consumption of different subroutines for CPU calculations using 170 species 



 
 

 

 

Analyzing the viscosity calculations 

In case of Coilsim1D the method of Wilke 10 is used to calculate the viscosity of the 

gas mixture. In the method of Wilke following coefficients needs to be calculated: 
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These coefficients are dependent on the temperature and the concentrations of the 

species in the gas phase and need to be re-evaluated for changes in either one of these 

variables. This coefficient matrix consists of nspecies×nspecies elements. Each element 

requires a single evaluation of equation 1. It is clear that the calculation of this coefficient 

matrix is of second-order. Figure 3 shows the total time spent doing viscosity calculations 

for different network sizes. The curve shows a clear quadratic trend which corresponds to 

the fact that the algorithm is of second-order. 

 

Figure 3:  Cumulative duration of viscosity calculations in Coilsim1D for different network sizes 

For the evaluation of the coefficients both the molar flow rates and the viscosity of 

the pure components are needed. The calculation of the viscosity of a pure gas is 

calculated using the method of Stiel and Thodos 11 while the molar flow rate can easily be 

derived from the composition of the gas phase. Both calculations are of first-order and will 

have a limited influence when the size of the reaction network increases. 

Based on the relative time consumption of the viscosity calculations a theoretical 

maximum speedup can be calculated using the following equation 
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With tvisc,rel the relative time consumption of the viscosity calculations. This maximum 

speedup goes from only 0.9 for smaller networks (170 species) to 3.5 for the larger 

networks (681 species) in COILSIM1D. 

Exploiting GPU for viscosity calculations 

Equation 1 shows that the evaluation of a single Wilke coefficient is not dependent 

on previously evaluated Wilke coefficients. This independence make them ideal to be 

calculated on a GPU. In Figure 5 a comparison is made between the original CPU algorithm 

of the viscosity subroutine and the modified CPU/GPU version. The main idea behind the 

calculations remains essentially the same. Several do loops in the original code have been 

replaced with GPU kernels and since the GPU doesn’t have access to the global memory of 

the machine transfer operations have been added to the new subroutine. 

Results 

Figure 4 shows the speedup at different network sizes when Coilsim1D is calculated 

on a hybrid CPU/GPU system. The system is equipped with an Intel Xeon E5620 processor 

with 6 Gb of memory. It is extended with a Nvidia Tesla C2075 card for the CPU/GPU 

hybrid calculations. The highest speedup is obtained at the larger network sizes. For 

example the simulation time for a network with 681 species is reduced from 72.4s to 20.8s 

when the hybrid CPU/GPU version is used. For smaller network sizes the speedup is 

negligible or even lower than one. This is caused by an increased relative importance of the 

copy operation from the CPU memory to the GPU memory and vice versa. Figure 4 also 

shows the theoretical maximum speedup of the program. At large network sizes our 

algorithm closely approximates this maximum so additional speedup of the program by 

further optimizing the viscosity calculations will be difficult if not impossible to obtain. 

 

Figure 4: Speedup of Coilsim1D when comparing a CPU simulation with a CPU/GPU hybrid simulation  
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Figure 5: Flow sheet of the calculations in the physical property subroutine. Left: CPU version. Right: CPU/GPU 

version 
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Conclusions 

Depending on the type of solver used to solve the differential and algebraic 

equations, different routines inside the simulation code can play a major role in the 

simulation cost. In case of implicit solver a lot of time is consumed to evaluate the Jacobian 

matrix by finite differences. Each evaluation of the Jacobian requires that the reaction rates  

are calculated n² times. Explicit solvers often do not require the evaluation of the Jacobian 

and the simulation time of these solvers is drastically lower than that of implicit solvers. This 

article showed that even for this explicit solvers significant speedup can be obtained by 

using a GPU to do part of the calculations. This is because other subroutines become 

relatively more time consuming than the evaluation of the Jacobian and the rates. A 

speedup of 3.5 was obtained for the larger networks which contain 681 species by adapting 

the viscosity calculations so that the viscosity can be calculated on a GPU. 
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