

Applying Advances in Parallel Computing to Pyrolysis Modeling Algorithms

Thomas Dijkmans, Kevin M. Van Geem, Guy B. Marin

Laboratory for Chemical Technology, Ghent University, Ghent, Belgium

Introduction

Detailed modeling of complex kinetic networks still remains a daunting task. The

computational cost of a single simulation rises quickly when the kinetic network becomes

larger. The latter is in particularly true for combustion, oxidation and pyrolysis mechanisms

where considering several thousands of species is no exception. Moreover the

computational power of a single core has flattened out during the last years (Figure 1), and

hence, the simulation time rises drastically with increasing network sizes. The

computational cost of these simulations is specific to the simulation type and determined by

a variety of factors such as properties of the flow to be simulated, types of solvers involved,

the numerical differentiation scheme, spatial and temporal resolutions and inter-process

communication for high-performance simulations1. The overall simulation time is often

dominated by the evaluation and factorization of the Jacobian matrix and the evaluation of

the reaction rates so the optimization and speedup of chemical codes mainly focusses on

these parts2. In these schemes the Jacobian is often calculated by finite differences. This

requires n² times the evaluation of the reaction rates per integration step which explains the

large computational cost of the evaluation of the reaction rates as well.

The above is mainly true for implicit solvers which are often available in different

kinds of commercial code (e.g. CHEMKIN). Explicit solvers often do not require the

calculation of the Jacobian matrix which reduces the computational cost of these kind of

solvers drastically and the reaction rates only need to be evaluated a limited number of

times per integration step. Explicit solvers require however small integration steps to

overcome the inherent chemical stiffness of the reaction mechanism. This chemical

stiffness is typically induced by QSS (Quasi Steady State) species and can be reduced by

using the QSSA (Quasi Steady State Approximation) method. The reduced chemical

stiffness allows for larger integration steps to be taken3-6.

The time distribution in these explicit solvers is for these reasons completely different

than those of implicit solvers and only limited efforts have been made to optimize these

solvers for newer computer architecture7. Moreover, when these explicit solvers are used it

is clear that other components, that used only limited amount of time in the implicit scheme,

will become very time consuming in an explicit scheme.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55871698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Evolution of single core clock speed over time (MIPS = Mega instructions per second)
8

To illustrate the possible speed-up for pyrolysis applications using explicit solvers we

have applied these advances in parallel computing on free-radical based reaction

mechanisms of different sizes and characteristics implemented in COILSIM1D. COILSIM1D

combines a recently developed single event microkinetic model (CRACKSIM9) for

simulating the steam cracking process with a 1D reactor model (Plug flow reactor).

COILSIM1D is able to simulate the cracking of a very broad range of industrially relevant

feedstocks, from ethane to LPG, over naphtha to gas oil and vacuum gas oils. COILSIM1D

solves the differential equations by applying the QSSA to the total sum of radicals present

in the mixture. This means that in each integration step the rate of formation of all the

radicals is assumed to be equal to the rate of disappearance of all the radicals. In this way

the concentration of the radicals can be obtained by solving a set of algebraic equations.

This reduces the chemical stiffness of the set of differential equations and makes it possible

to solve the differential equations using a Runge-Kutta method. The duration of a single

simulation however drastically increases when the feedstocks become more complex due

to the increasing size of the reaction mechanism that is considered (see Figure 1). The

highly parallel structure of certain parts of the code make COILSIM1D the ideal candidate

for hybrid CPU/GPU calculations. Since Coilsim1D is originally written in Fortran the

author’s preferred using CUDA Fortran from PGI over CUDA C from NVidia. To the author’s

knowledge this is the first time that CUDA Fortran is applied for combustion or pyrolysis

applications.

Programming approach

Identifying time consuming subroutines

The first step in speeding up the code is of course to identify the calculations which

are the most time consuming, so-called profiling. Profiling of Coilsim1D is done using three

distinct simulations. Case 1 is a simulation where both the temperature and pressure

profiles are specified and only the continuity equation needs to be solved. The energy and

momentum balances do not need to be solved. Case 2 is a simulation where the heat flux

to the gas phase is specified and case 3 is a simulation were the outlet conditions and the

shape of the heat flux profile are specified. In both case 2 and case 3 the energy and

momentum equations need to be solved as well as the continuity equations.

Figure 2 shows the results of the profiling study. Profiling of Coilsim1D has shown

that both the solver and the evaluation of the reaction rates are still among the most costly

subroutines even though the model has been simplified to reduce simulation times (see

Figure 2). When both temperature and pressure profile are given and only the material

balances need to be solved this part of the calculations takes about 85% of the total time

(Case 1). However when both energy and momentum balances need to be solved

additionally it only uses between 10 and 30% of the total time (Case 2 and 3). In these

cases the evaluation of the viscosity of the gas phase becomes the most time consuming

calculation taking between 75 and 85% of the total time. The increasing complexity when

going from case 1 to case 3 is also clearly visible in the total simulation time which goes

from only 0.48s to 23.03s.

Figure 2: Relative time consumption of different subroutines for CPU calculations using 170 species

Analyzing the viscosity calculations

In case of Coilsim1D the method of Wilke 10 is used to calculate the viscosity of the

gas mixture. In the method of Wilke following coefficients needs to be calculated:

 (⁄)

 ⁄
 ⁄ ⁄

 ⁄ ⁄ [Eq. 1]

These coefficients are dependent on the temperature and the concentrations of the

species in the gas phase and need to be re-evaluated for changes in either one of these

variables. This coefficient matrix consists of nspecies×nspecies elements. Each element

requires a single evaluation of equation 1. It is clear that the calculation of this coefficient

matrix is of second-order. Figure 3 shows the total time spent doing viscosity calculations

for different network sizes. The curve shows a clear quadratic trend which corresponds to

the fact that the algorithm is of second-order.

Figure 3: Cumulative duration of viscosity calculations in Coilsim1D for different network sizes

For the evaluation of the coefficients both the molar flow rates and the viscosity of

the pure components are needed. The calculation of the viscosity of a pure gas is

calculated using the method of Stiel and Thodos 11 while the molar flow rate can easily be

derived from the composition of the gas phase. Both calculations are of first-order and will

have a limited influence when the size of the reaction network increases.

Based on the relative time consumption of the viscosity calculations a theoretical

maximum speedup can be calculated using the following equation

y = 0.0002x2 - 0.0292x
R² = 0.9978

0

10

20

30

40

50

60

0 200 400 600 800

Ti
m

e
o

f
vi

sc
o

si
ty

 c
al

cu
la

ti
o

n
s

(s
)

Network time (-)

With tvisc,rel the relative time consumption of the viscosity calculations. This maximum

speedup goes from only 0.9 for smaller networks (170 species) to 3.5 for the larger

networks (681 species) in COILSIM1D.

Exploiting GPU for viscosity calculations

Equation 1 shows that the evaluation of a single Wilke coefficient is not dependent

on previously evaluated Wilke coefficients. This independence make them ideal to be

calculated on a GPU. In Figure 5 a comparison is made between the original CPU algorithm

of the viscosity subroutine and the modified CPU/GPU version. The main idea behind the

calculations remains essentially the same. Several do loops in the original code have been

replaced with GPU kernels and since the GPU doesn’t have access to the global memory of

the machine transfer operations have been added to the new subroutine.

Results

Figure 4 shows the speedup at different network sizes when Coilsim1D is calculated

on a hybrid CPU/GPU system. The system is equipped with an Intel Xeon E5620 processor

with 6 Gb of memory. It is extended with a Nvidia Tesla C2075 card for the CPU/GPU

hybrid calculations. The highest speedup is obtained at the larger network sizes. For

example the simulation time for a network with 681 species is reduced from 72.4s to 20.8s

when the hybrid CPU/GPU version is used. For smaller network sizes the speedup is

negligible or even lower than one. This is caused by an increased relative importance of the

copy operation from the CPU memory to the GPU memory and vice versa. Figure 4 also

shows the theoretical maximum speedup of the program. At large network sizes our

algorithm closely approximates this maximum so additional speedup of the program by

further optimizing the viscosity calculations will be difficult if not impossible to obtain.

Figure 4: Speedup of Coilsim1D when comparing a CPU simulation with a CPU/GPU hybrid simulation

0

5

10

15

20

0 200 400 600 800

Sp
ee

d
u

p
 (

-)

Network size (-)

Viscosity Program Maximum

Figure 5: Flow sheet of the calculations in the physical property subroutine. Left: CPU version. Right: CPU/GPU

version

CPU GPU

Bulk temperature
Wall temperature

Pressure
Composition

Viscosity of pure
components

Wilke coefficients

Molar flow rates

Total viscosity

Molar flow rates

Bulk temperature
Wall temperature
Molar flow rates

Viscosity of pure
components

Wilke coefficients

Total viscosity

Total viscosity

Correlation
coefficients

 1 time

Bulk temperature
Wall temperature

Pressure
Composition

X times X times

CPU calculations

GPU kernel

Memory transfer

Conclusions

Depending on the type of solver used to solve the differential and algebraic

equations, different routines inside the simulation code can play a major role in the

simulation cost. In case of implicit solver a lot of time is consumed to evaluate the Jacobian

matrix by finite differences. Each evaluation of the Jacobian requires that the reaction rates

are calculated n² times. Explicit solvers often do not require the evaluation of the Jacobian

and the simulation time of these solvers is drastically lower than that of implicit solvers. This

article showed that even for this explicit solvers significant speedup can be obtained by

using a GPU to do part of the calculations. This is because other subroutines become

relatively more time consuming than the evaluation of the Jacobian and the rates. A

speedup of 3.5 was obtained for the larger networks which contain 681 species by adapting

the viscosity calculations so that the viscosity can be calculated on a GPU.

Aknowledgments

This work was supported by the company SABIC.

References

1. Lu T, Law CK. Toward accommodating realistic fuel chemistry in large-scale

computations. Progress in Energy and Combustion Science. 2009;35(2):192-215.

2. Shi Y, Green Jr WH, Wong H-W, Oluwole OO. Redesigning combustion modeling

algorithms for the Graphics Processing Unit (GPU): Chemical kinetic rate evaluation and

ordinary differential equation integration. Combust. Flame. 2011;158(5):836-847.

3. Odman MT, Kumar N, Russell AG. A comparison of fast chemical kinetic solvers for air

quality modeling. Atmospheric Environment. Part A. General Topics. 1992;26(9):1783-

1789.

4. Djouad R, Sportisse B. Solving reduced chemical models in air pollution modelling.

Applied Numerical Mathematics. 2003;44(1–2):49-61.

5. Kovács T, Zsély IG, Kramarics Á, Turányi T. Kinetic analysis of mechanisms of complex

pyrolytic reactions. Journal of Analytical and Applied Pyrolysis. 2007;79(1–2):252-258.

6. Clymans PJ, Froment GF. Computer-generation of reaction paths and rate-equations in

the thermal-cracking of normal and branched paraffins. Comput. Chem. Eng.

1984;8(2):137-142.

7. Shi Y, Green WH, Wong HW, Oluwole OO. Accelerating multi-dimensional combustion

simulations using GPU and hybrid explicit/implicit ODE integration. Combust. Flame.

Jul 2012;159(7):2388-2397.

8. Gillespie C. CPU and GPU trends over time. 2011. http://www.r-bloggers.com/cpu-and-

gpu-trends-over-time/. Accessed 6 september 2012.

9. Van Geem KM, Heynderickx GJ, Marin GB. Effect of radial temperature profiles on

yields in steam cracking. Aiche J. Jan 2004;50(1):173-183.

10. Reid R.C. PJM, Poling B.R. Properties of gases and liquids: McGraw-Hill; 1979.

11. Jossi JA, Stiel LI, Thodos G. The viscosity of pure substances in the dense gaseous and

liquid phases. Aiche J. 1962;8(1):59-63.

