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From r-dual sets to uniform contractions
∗

Károly Bezdek†

Abstract

Let M
d denote the d-dimensional Euclidean, hyperbolic, or spherical space. The r-dual set of given

set in M
d is the intersection of balls of radii r centered at the points of the given set. In this paper

we prove that for any set of given volume in M
d the volume of the r-dual set becomes maximal if the

set is a ball. As an application we prove the following. The Kneser–Poulsen Conjecture states that if
the centers of a family of N congruent balls in Euclidean d-space is contracted, then the volume of the
intersection does not decrease. A uniform contraction is a contraction where all the pairwise distances
in the first set of centers are larger than all the pairwise distances in the second set of centers. We prove
the Kneser–Poulsen conjecture for uniform contractions (with N sufficiently large) in M

d.

1 Introduction

Let M
d, d > 1 denote the d-dimensional Euclidean, hyperbolic, or spherical space, i.e., one of the simply

connected complete Riemannian manifolds of constant sectional curvature. Since simply connected complete
space forms, the sectional curvature of which have the same sign are similar, we may assume without loss of
generality that the sectional curvature κ of Md is 0,−1, or 1. Let R+ denote the set of positive real numbers
for κ ≤ 0 and the half-open interval (0, π

2
] for κ = 1. Let distMd(x,y) stand for the geodesic distance between

the points x ∈ M
d and y ∈ M

d. Furthermore, let BMd [x, r] denote the closed d-dimensional ball with center
x ∈ M

d and radius r ∈ R+ in M
d, i.e., let BMd [x, r] := {y ∈ M

d |distMd(x,y) ≤ r}. Now, we are ready to
introduce the central notion of this paper.

Definition 1. For a set X ⊆ M
d, d > 1 and r ∈ R+ let the r-dual set Xr of X be defined by Xr :=

⋂

x∈X BMd [x, r]. If the interior int(Xr) 6= ∅, then we call Xr the r-dual body of X.

We note that either Xr = ∅, or Xr is a point in M
d, or int(Xr) 6= ∅. Perhaps not surprisingly, r-

dual sets of Ed have already been investigated in a number of papers however, under various names such
as ”überkonvexe Menge” ([13]), ”r-convex domain” ([8]), ”spindle convex set” ([2], [11]), ”ball convex set”
([12]), and ”hyperconvex set” ([9]). r-dual sets satisfy some basic identities such as

((Xr)r))r = Xr and (X ∪ Y )r = Xr ∩ Y r,

which hold for any X ⊆ M
d and Y ⊆ M

d. Clearly, also monotonicity holds namely, X ⊆ Y ⊆ M
d implies

Y r ⊆ Xr. Thus, there is a good deal of similarity between r-dual sets and polar sets (resp., spherical polar
sets) in E

d (resp., Sd). In this paper we explore further this similarity by investigating a volumetric relation
between Xr and X in M

d. For this reason let VMd(·) denote the Lebesgue measure in M
d, to which we are

going to refer as volume in M
d. Now, recall the recent theorem of Gao, Hug, and Schneider [10] stating that

for any convex body of given volume in S
d the volume of the spherical polar body becomes maximal if the

convex body is a ball. We prove the following extension of their theorem.

∗Keywords and phrases: Kneser–Poulsen conjecture, volume of intersections of balls, Blaschke–Santaló inequality, r-dual

set, uniform contraction, Euclidean, hyperbolic, and spherical space.

2010 Mathematics Subject Classification: 52A20, 52A22.
†Partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

1

http://arxiv.org/abs/1704.08290v1


Theorem 1. Let A ⊆ M
d, d > 1 be a compact set of volume VMd(A) > 0 and r ∈ R+. If B ⊆ M

d is a ball
with VMd(A) = VMd(B), then VMd(Ar) ≤ VMd(Br).

Note that the Gao–Hug–Schneider theorem is a special case of Theorem 1 namely, when M
d = S

d and
r = π

2
. As this theorem of [10] is often called a spherical counterpart of the Blaschke–Santaló inequality, one

may refer to Theorem 1 as a Blaschke–Santaló-type inequality for r-duality in M
d.

From our point view, the importance of Theorem 1 lies in the following application. For stating it in a
proper way we recall the following notion from [5].

Definition 2. We say that the (labeled) point set {q1, . . . ,qN} ⊂ M
d is a uniform contraction of the (labeled)

point set {p1, . . . ,pN} ⊂ M
d with separating value λ > 0 in M

d, d > 1 if

distMd(qi,qj) ≤ λ ≤ distMd(pi,pj)

holds for all 1 ≤ i < j ≤ N .

Now, recall the following recent theorem of the author and Naszódi [5] : Let d ∈ Z and δ, λ ∈ R

be given such that d > 1 and 0 < λ ≤
√
2δ. If Q := {q1, . . . ,qN} ⊂ E

d is a uniform contraction of
P := {p1, . . . ,pN} ⊂ E

d with separating value λ in E
d and N ≥ (1 +

√
2)d, then VEd(P δ) ≤ VEd(Qδ). As

it is explained in [5], this proves the Kneser–Poulsen conjecture for uniform contractions. For the sake of
completeness we mention here that according to the Kneser–Poulsen conjecture if a finite set of balls in E

d

is rearranged so that the distance between each pair of centers does not increase, then the volume of the
intersection does not decrease. This is proved for d = 2 in [1] and it remains open for d > 2. For more details
on the Kneser–Poulsen conjecture we refer the interested reader to Chapter 3 in [3]. In this paper, we give a
rather short and elementary proof of the above mentioned theorem of the author and Naszódi (replacing the
Brunn–Minkowski inequality in [5] by Theorem 1) and perhaps, more importantly we extend it to hyperbolic
as well as spherical spaces as follows.

Theorem 2.

(i) Let d ∈ Z and δ, λ ∈ R be given such that d > 1 and 0 < λ ≤
√
2δ. If Q := {q1, . . . ,qN} ⊂ E

d is a
uniform contraction of P := {p1, . . . ,pN} ⊂ E

d with separating value λ in E
d and N ≥ (1 +

√
2)d, then

VEd(P δ) < VEd(Qδ).

(ii) Let d ∈ Z and δ, λ ∈ R be given such that d > 1, 0 < δ < π
2
, and 0 < λ < min

{

2
√
2

π
δ, π − 2δ

}

. If

Q := {q1, . . . ,qN} ⊂ S
d is a uniform contraction of P := {p1, . . . ,pN} ⊂ S

d with separating value λ in S
d

and N ≥ 2edπd−1

(

1

2
+ π

2
√
2

)d

, then VSd(P
δ) < VSd(Q

δ).

(iii) Let d, k ∈ Z and δ, λ ∈ R be given such d > 1, k > 0 and 0 < sinh k√
2k

λ ≤ δ < k. If Q :=

{q1, . . . ,qN} ⊂ H
d is a uniform contraction of P := {p1, . . . ,pN} ⊂ H

d with separating value λ in H
d

and N ≥ ( sinh 2k
2k

)d−1(
√
2 sinhk

k
+ 1)d, then VHd(P δ) < VHd(Qδ).

In the rest of the paper we prove the theorems stated.

2 Proof of Theorem 1

We adapt the two-point symmetrization method of the proof of the Gao-Hug-Schneider theorem from [10].
For this we need to recall the definition of two-point symmetrization, which is also known under the names
”two-point rearrangement”, ”compression”, or ”polarization”. (For more details on two-point symmetriza-
tion we refer the interested reader to the relevant section in [10] and the references mentioned there.)

Definition 3. Let H be a hyperplane in M
d with an orientation, which determines H+ and H− the two

closed halfspaces bounded by H in M
d, d > 1. Let σH denote the reflection about H in M

d. If K ⊆ M
d, then

the two-point symmetrization τH with respect to H transforms K into the set

τHK := (K ∩ σHK) ∪
(

(K ∪ σHK) ∩H+
)

.
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If KH := K ∩ σHK stands for the H-symmetric core of K, then we call

τHK = KH ∪
(

(K ∩H+) \KH

)

∪ σH

(

(K ∩H−) \KH

)

(1)

the canonical decomposition of τHK.

Remark 3. The canonical decomposition of τHK is a disjoint decomposition of τHK, which easily implies
that two-point symmetrization preserves volume.

Definition 4. Let K ⊂ M
d, d > 1 and r ∈ R+. Then the r-convex hull convrK of K is defined by

convrK :=
⋂

{BMd [x, r] | K ⊆ BMd [x, r]}.

Moreover, let the r-convex hull of M
d be M

d. Furthermore, we say that K ⊆ M
d is an r-convex set if

K = convrK.

Lemma 4. If K ⊆ M
d, d > 1 and r ∈ R+, then

Kr = (convrK)r. (2)

Proof. Clearly, K ⊆ convrK and therefore (convrK)r ⊆ Kr. On the other hand, we show that Kr ⊆
(convrK)r. As this holds trivially for Kr = ∅, we may assume that Kr 6= ∅. So let y ∈ Kr. Then it is clear
that K ⊆ BMd [y, r] and so, convrK ⊆ BMd [y, r] implying that y ∈ (convrK)r. Thus, (2) follows.

The core part of our proof of Theorem 1 is

Lemma 5. If K ⊆ M
d, d > 1 and r ∈ R+, then

τH(Kr) ⊆ (convr(τHK))
r
.

Proof. Lemma 4 implies that (convr(τHK))r = (τHK)r and so, it is sufficient to prove that τH(Kr) ⊆
(τHK)

r
. For this we need to show that if x ∈ τH(Kr), then x ∈ (τHK)

r
, i.e.,

τHK ⊆ BMd [x, r]. (3)

Remark 3 implies that

τH(Kr) = (Kr)H ∪
(

(Kr ∩H+) \ (Kr)H
)

∪ σH

(

(Kr ∩H−) \ (Kr)H
)

is a disjoint decomposition of τH(Kr) with (Kr)H = Kr ∩ σH(Kr). Thus, either x ∈ (Kr)H (Case 1), or
x ∈ (Kr ∩ H+) \ (Kr)H (Case 2), or x ∈ σH ((Kr ∩H−) \ (Kr)H) (Case 3). In all three cases we use (1)
for the proof of (3).

Case 1: As (Kr)H = Kr ∩ σH(Kr) therefore x, σHx ∈ (Kr)H . As x ∈ (Kr)H ⊆ Kr threrefore KH ∪
((K ∩H+) \KH) ⊆ K ⊆ BMd [x, r]. On the other hand, as σHx ∈ (Kr)H ⊆ Kr therefore (K ∩H−) \KH ⊆
K ⊆ BMd [σHx, r] and so, σH ((K ∩H−) \KH) ⊆ BMd [x, r], finishing the proof of (3).

Case 2: As x ∈ (Kr ∩ H+) \ (Kr)H ⊆ Kr therefore KH ∪ ((K ∩H+) \KH) ⊆ K ⊆ BMd [x, r]. So, we
are left to show that

σH

(

(K ∩H−) \KH

)

⊆ BMd [x, r]. (4)

On the one hand, x ∈ (Kr ∩ H+) \ (Kr)H ⊆ Kr implies that (K ∩ H−) \ KH ⊆ K ⊆ BMd [x, r]. On the
other hand, for any y ∈ (K∩H−)\KH we have σHy ∈ σH ((K ∩H−) \KH). As x, σHy ∈ H+ and y ∈ H−

therefore distMd(σHy,x) ≤ distMd(y,x) ≤ r. Thus, (4) follows.
Case 3: It follows from the assumption that σHx ∈ (Kr ∩H−) \ (Kr)H ⊆ Kr and therefore (K ∩H−) \

KH ⊆ K ⊆ BMd [σHx, r] implying that σH ((K ∩H−) \KH) ⊆ BMd [x, r]. So, we are left to show that

KH ∪
(

(K ∩H+) \KH

)

⊆ BMd [x, r]. (5)

As σHx ∈ (Kr ∩H−) \ (Kr)H ⊆ Kr therefore KH ∪ ((K ∩H+) \KH) ⊆ K ⊆ BMd [σHx, r]. Moreover, as
σHx ∈ H− and x ∈ H+ therefore for all y ∈ (K ∩H+) \KH ⊆ H+ (resp., y ∈ KH ∩H+ ⊆ H+) we have
distMd(x,y) ≤ distMd(σHx,y) ≤ r implying that (KH ∩H+) ∪ ((K ∩H+) \KH) ⊆ BMd [x, r]. Finally, for
any y ∈ KH ∩ H− we have σHy ∈ KH ∩ H+ ⊆ KH with distMd(x,y) = distMd(σHx, σHy) ≤ r implying
that KH ∩H− ⊆ BMd [x, r]. This completes the proof of (5).
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Now, we are ready to prove Theorem 1. To avoid any trivial case we may assume that VMd(Ar) > 0
for A ⊆ M

d with a := VMd(A) > 0. In fact, our goal is to maximize the volume VMd(Ar) for compact sets
A ⊆ M

d of given volume VMd(A) = a > 0 and for given d > 1 and r ∈ R+. As according to Lemma 4 we have
Ar = (convrA)

r with A ⊆ convrA, it follows from the monotonicity of VMd ((·)r) in a straightforward way
that for the proof of Theorem 1 it is sufficient to maximize the volume VMd(Ar) for r-convex sets A ⊆ M

d

of given volume VMd(A) = a with given d and r. Next, consider the extremal family Ea,r,d of r-convex sets
A ⊆ M

d with VMd(A) = a and maximal VMd(Ar) for given a, d and r. By standard arguments, Ea,r,d 6= ∅.

Lemma 6. The extremal family Ea,r,d is closed under two-point symmetrization.

Proof. Let A ∈ Ea,r,d be an arbitrary extremal set and consider τHA for an arbitrary hyperplane H in M
d.

Lemmas 4 and 5 imply that τH(Ar) ⊆ (convr(τHA))r = (τHA)r and therefore

VMd(Ar) = VMd (τH(Ar)) ≤ VMd ((convr(τHA))
r
) = VMd((τHA)r). (6)

Here τHA ⊆ convr(τHA) implying that

a = VMd(A) = VMd(τHA) ≤ VMd (convr(τHA)) . (7)

We are left to show that τHA ∈ Ea,r,d. Based on (6) and (7) we need to prove only that τHA is r-
convex, i.e., τHA = convr(τHA). We prove this in indirect way, i.e., assume that τHA 6= convr(τHA). As
τHA ⊆ convr(τHA), this means that τHA ⊂ convr(τHA). Then there exists an r-convex set A′ ⊂ convr(τHA)
with VMd(A′) = a. Thus, (convr(τHA))

r ⊂ (A′)r implying that VMd ((convr(τHA))
r
) < VMd ((A′)r), a

contradiction via (6).

We finish the proof of Theorem 1 by adapting an argument from [10]. Namely, we are going to show that
B ∈ Ea,r,d, where B ⊆ M

d is a ball with a = VMd(A) = VMd(B). By a standard argument there exists an
r-convex set C ∈ Ea,r,d for which VMd(B ∩ C) is maximal. Suppose that B 6= C. As a = VMd(B) = VMd(C)
therefore there are congruent balls C1 ⊆ C \ B and C2 ⊆ B \ C. Let H be the hyperplane in M

d with
an orientation, which determines H+ and H− the two closed halfspaces bounded by H in M

d, d > 1 such
that σHB1 = B2 with B1 ⊂ H−. Clearly, VMd(B ∩ τHC) > VMd(B ∩ C) moreover, Lemma 6 implies that
τHC ∈ Ea,r,d, a contradiction. Thus, B = C ∈ Ea,r,d, finishing the proof of Theorem 1.

3 Proof of Theorem 2

Following [5], our proof is based on estimates of the following functionals.

Definition 5. Let

fMd(N, λ, δ) := min{VMd(Qδ) | Q := {q1, . . . ,qN} ⊂ M
d, distMd(qi,qj) ≤ λ for all 1 ≤ i < j ≤ N} (8)

and

gMd(N, λ, δ) := max{VMd(P δ) | P := {p1, . . . ,pN} ⊂ M
d, λ ≤ distMd(pi,pj) for all 1 ≤ i < j ≤ N} (9)

(We note that in this paper the maximum of the empty set is zero.) We need also

Definition 6. The circumradius crX of the set X ⊆ M
d, d > 1 is defined by

crX := inf{r | X ⊆ BMd [x, r]}.
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3.1 Proof of (i) in Theorem 2

First, we give a lower bound for (8). Jung’s theorem ([7]) implies in a straightforward way that crQ ≤
√

2d
d+1

λ
2
< 1√

2
λ and so, BEd

[

x, δ − 1√
2
λ
]

⊂ Qδ for some x ∈ E
d. (We note that by assumption δ− 1√

2
λ ≥ 0.)

As a result we get that

fEd(N, λ, δ) > VEd

(

BEd

[

x, δ − 1√
2
λ

])

. (10)

Second, we give an upper bound for (9). It follows in a straightforward way that

P δ =

(

N
⋃

i=1

BEd

[

pi,
λ

2

]

)δ+ λ

2

, (11)

where the balls BEd [p1,
λ
2
], . . . ,BEd [pN , λ

2
] are pairwise non-overlapping in E

d. Thus,

VEd

(

N
⋃

i=1

BEd

[

pi,
λ

2

]

)

= NVEd

(

BEd

[

p1,
λ

2

])

. (12)

Let µ > 0 be chosen such that NVEd

(

BEd

[

p1,
λ
2

])

= VEd (BEd [p1, µ]). Clearly,

µ =
1

2
N

1

dλ (13)

Now Theorem 1, (11), (12), and (13) imply in a straightforward way that

VEd

(

P δ
)

= VEd





(

N
⋃

i=1

BEd

[

pi,
λ

2

]

)δ+λ

2



 ≤ VEd

(

(

BEd

[

p1,
1

2
N

1

dλ

])δ+ λ

2

)

(14)

Clearly,
(

BEd

[

p1,
1

2
N

1

dλ
])δ+ λ

2

= BEd

[

p1, δ − N
1

d −1

2
λ

]

with the convention that if δ − N
1

d −1

2
λ < 0, then

BEd

[

p1, δ − N
1

d −1

2
λ

]

= ∅. Hence (14) yields

gEd(N, λ, δ) ≤ VEd

(

BEd

[

p1, δ −
N

1

d − 1

2
λ

])

(15)

(with the convention that VEd(∅) = 0). Finally, as N ≥ (1 +
√
2)d therefore N

1

d −1

2
λ ≥ 1√

2
λ and so, (10) and

(15) yield gEd(N, λ, δ) < fEd(N, λ, δ), finishing the proof of (i) in Theorem 2.

3.2 Proof of (ii) in Theorem 2

First, we lower bound (8). Let R := crQ. Then Jung’s theorem ([7]) yields sinR ≤
√

2d
d+1

sin λ
2
. By

assumption 0 < λ < π
2
and so,

0 ≤ 2

π
R < sinR ≤

√

2d

d+ 1
sin

λ

2
<

√

2d

d+ 1

λ

2
<

1√
2
λ

implying that 0 ≤ R < π

2
√
2
λ. Thus, BSd

[

x, δ − π

2
√
2
λ
]

⊂ Qδ for some x ∈ S
d. (We note that by assumption

δ − π

2
√
2
λ > 0.) As a result we get that

fSd(N, λ, δ) > VSd

(

BSd

[

x, δ − π

2
√
2
λ

])

. (16)
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Second, we upper bound (9). It follows in a straightforward way that

P δ =

(

N
⋃

i=1

BSd

[

pi,
λ

2

]

)δ+λ

2

, (17)

where the balls BSd [p1,
λ
2
], . . . ,BSd [pN , λ

2
] are pairwise non-overlapping in S

d. Thus,

VSd

(

N
⋃

i=1

BSd

[

pi,
λ

2

]

)

= NVSd

(

BSd

[

p1,
λ

2

])

. (18)

Let µ > 0 be chosen such that

NVSd

(

BSd

[

p1,
λ

2

])

= VSd (BSd [p1, µ]) . (19)

Proposition 7. If 0 < µ < π
2
, then

(

1

2edπd−1

)
1

d N
1

dλ < µ.

Proof. One can rewrite (19) using the integral representation of volume of balls in S
d ([6]) as follows:

Ndωd

∫ π

2

π

2
−λ

2

(cos t)d−1dt = dωd

∫ π

2

π

2
−µ

(cos t)d−1dt,

where ωd := VEd(BEd [x, 1]), x ∈ E
d. Then Lemma 4.7 of [4] yields the following chain of inequalities in a

rather straightforward way:

N

2edπd−1
λd <

N

ed

λ

2

(

sin
λ

2

)d−1

≤ N

∫ π

2

π

2
−λ

2

(cos t)d−1dt =

∫ π

2

π

2
−µ

(cos t)d−1dt ≤ µ(sinµ)d−1 ≤ µd.

From this the claim follows.

Now Theorem 1, (17), (18), and (19) imply in a straightforward way that

VSd

(

P δ
)

= VSd





(

N
⋃

i=1

BSd

[

pi,
λ

2

]

)δ+λ

2



 ≤ VSd

(

(BSd [p1, µ])
δ+λ

2

)

(20)

Clearly, (BSd [p1, µ])
δ+λ

2 = BSd

[

p1, δ +
λ
2
− µ

]

(with the convention that if δ + λ
2
− µ < 0, then of course,

BSd

[

p1, δ +
λ
2
− µ

]

= ∅). By assumption 0 < δ+ λ
2
< π

2
and so, if δ+ λ

2
−µ ≥ 0, then necessarily 0 < µ < π

2
.

Thus, Proposition 7 and (20) yield

gSd(N, λ, δ) ≤ VSd

(

BSd

[

p1, δ −
(

(

1

2edπd−1

)
1

d

N
1

d − 1

2

)

λ

])

(21)

(with the convention that VSd(∅) = 0). As N ≥ 2edπd−1

(

1

2
+ π

2
√
2

)d

therefore
(

(

1

2edπd−1

)
1

d N
1

d − 1

2

)

λ ≥
π

2
√
2
λ and so, (16) and (21) yield gSd(N, λ, δ) < fSd(N, λ, δ), finishing the proof of (ii) in Theorem 2.

3.3 Proof of (iii) in Theorem 2

Let us lower bound (8) in a way similar to the previous cases. Let R := crQ. Then Jung’s theorem ([7])

yields sinhR ≤
√

2d
d+1

sinh λ
2
. By assumption we have 0 < 1

2
λ < sinhk√

2k
λ ≤ δ < k and so,

0 ≤ R ≤ sinhR ≤
√

2d

d+ 1
sinh

λ

2
<

√
2
sinh k

k

λ

2
, (22)
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where for the last inequality we have used the simple fact that 0 < x < sinhx < sinh k
k

x holds for all

0 < x < k. From (23) it follows that 0 ≤ R < sinh k√
2k

λ. Thus, BHd

[

x, δ − sinh k√
2k

λ
]

⊂ Qδ for some x ∈ H
d.

(We note that by assumption δ − sinhk√
2k

λ ≥ 0.) As a result we get that

fHd(N, λ, δ) > VHd

(

BHd

[

x, δ − sinh k√
2k

λ

])

. (23)

Next, we upper bound (9). It follows in a straightforward way that

P δ =

(

N
⋃

i=1

BHd

[

pi,
λ

2

]

)δ+λ

2

, (24)

where the balls BHd [p1,
λ
2
], . . . ,BHd [pN , λ

2
] are pairwise non-overlapping in H

d. Thus,

VHd

(

N
⋃

i=1

BHd

[

pi,
λ

2

]

)

= NVHd

(

BHd

[

p1,
λ

2

])

. (25)

Let µ > 0 be chosen such that

NVHd

(

BHd

[

p1,
λ

2

])

= VHd (BHd [p1, µ]) . (26)

Now Theorem 1, (24), (25), and (26) imply in a straightforward way that

VHd

(

P δ
)

= VHd





(

N
⋃

i=1

BHd

[

pi,
λ

2

]

)δ+λ

2



 ≤ VHd

(

(BHd [p1, µ])
δ+ λ

2

)

= VHd

(

BHd

[

p1, δ +
λ

2
− µ

])

(27)

with the convention that if δ + λ
2
− µ < 0, then BHd

[

p1, δ +
λ
2
− µ

]

= ∅.

Proposition 8. If 0 < µ ≤ δ + λ
2
, then

(

2k
sinh 2k

)

d−1

d N
1

d
λ
2
< µ.

Proof. One can rewrite (26) using the integral representation of volume of balls in H
d ([6]) as follows:

Ndωd

∫ λ

2

0

(sinh t)d−1dt = dωd

∫ µ

0

(sinh t)d−1dt.

As 0 < µ ≤ δ + λ
2
therefore by assumption also the inequalities 0 < µ ≤ δ + λ

2
< 2δ < 2k hold. Hence the

following chain of inequalities follows in a rather straightforward way:

N

d

(

λ

2

)d

= N

∫ λ

2

0

t
d−1

dt < N

∫ λ

2

0

(sinh t)d−1
dt =

∫ µ

0

(sinh t)d−1
dt <

∫ µ

0

(

sinh 2k

2k
t

)d−1

dt =

(

sinh 2k

2k

)d−1
µd

d
,

where for the last inequality we have used 0 < x < sinhx < sinh 2k
2k

x that holds for all 0 < x < 2k. From this
the claim follows.

Thus, Proposition 8 and (27) yield

gHd(N, λ, δ) ≤ VHd

(

BHd

[

p1, δ −
(

(

2k

sinh 2k

)
d−1

d

N
1

d − 1

)

λ

2

])

(28)

(with the convention that VHd(∅) = 0). As N ≥
(

sinh 2k
2k

)d−1
(√

2 sinh k
k

+ 1
)d

therefore

(

(

2k

sinh 2k

)
d−1

d

N
1

d − 1

)

λ

2
≥ sinh k√

2k
λ

and so, (23) and (28) yield gHd(N, λ, δ) < fHd(N, λ, δ), finishing the proof of (iii) in Theorem 2.
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