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Abstract

The recent ascent of targeted covalent inhibitors (TCI) in drug discovery brings new

opportunities and challenges to quantum chemical reactivity calculations supporting

discovery efforts. TCIs typically form a covalent bond with the targeted nucleophilic

amino acid side chain. Their reactivity that can be both computed and experimentally

measured is therefore one of the key factors in determining inhibitory potency. Cal-

culation of relevant quantum chemical descriptors and corresponding reaction bar-

riers of model reactions represent efficient ways to predict intrinsic reactivities of

covalent ligands. A more comprehensive description of covalent ligand binding is

offered by mixed quantum mechanical/molecular mechanical (QM/MM) potentials.

Reaction mechanisms can be investigated by the exploration of the potential energy

surface as a function of suitable reaction coordinates, and free energy surfaces can

also be calculated with molecular dynamics based simulations. Here we review the

methodological aspects and discuss applications with primary focus on high-end

QM/MM simulations to illustrate the current status of quantum chemical support to

covalent inhibitor design. Available QM approaches are suitable to identify likely

reaction mechanisms and rate determining steps in the binding of covalent inhibitors.

The efficient QM/MM prediction of ligand reactivities complemented with the com-

putational description of the recognition step makes these computations highly use-

ful in covalent drug discovery.

K E YWORD S

free energy, molecular mechanics/quantum mechanics, reaction barrier, reactivity, targeted
covalent inhibitors

1 | INTRODUCTION

During the past decade, the design of targeted covalent inhibitors (TCIs) has gained increased attention. Formerly, covalent inhibitors were typi-

cally filtered out in drug discovery programs due to the risk of off-target activity attributed to their reactivity. Few compounds acting by covalent

mechanism of action were discovered serendipitously. However, a paradigm change has occurred around the millennium owing to the recognition

of distinct therapeutic advantages of covalent inhibition that include potentially full target occupancy and long-action, decoupling pharmacody-

namics from pharmacokinetics. Nowadays TCIs are well represented in a wide range of therapies, treating various pathological conditions, such as

cancer [1, 2], autoimmune diseases [3, 4], disorders of the central neural [5] and cardiovascular system [6], gastrointestinal related illnesses [7],
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infections [8] and many others. Though the most abundant indication is oncology; 10 out of the 14 FDA-approved covalent drugs between 2011

and 2019 were anticancer medicines [9].

The binding of covalent inhibitors follows a two-step mechanism (Equation 1), namely the non-covalent binding, also known as the molecular

recognition, and the covalent reaction in which the targeted nucleophilic sidechain of the enzyme reacts with the electrophilic center of the inhib-

itor molecule.

Eþ I

Ki

⇌E � I
kinact

! E� I E : enzyme; I : inhibitorð Þ ð1Þ

Typical targeted sidechains are serine, threonine, tyrosine, lysine and most importantly cysteine [10–12]. Due to the low occurrence of cyste-

ine in the human proteome [13, 14] and its elevated nucleophilicity, cysteine targeting inhibitors possess lower chance of selectivity and toxicity

issues [15], however, cysteine targeting is not an available or feasible option in some enzymes. Drug design attempts usually aims to improve both

binding steps by optimizing the secondary non-covalent interactions between the molecule and the protein environment and fine tuning the war-

head to achieve optimal covalent reactivity toward the targeted sidechain.

Computational methods traditionally support drug discovery campaigns primarily by predicting and/or evaluating non-covalent binding events

and to guide optimization efforts. The exploding increase in computer performance and method developments have allowed researchers to per-

form more precise and computationally extensive calculations, which made computational studies highly effective in the field of non-covalent

drug discovery [16–18]. Nevertheless, quantum mechanical (QM) approaches were not typical among the computational schemes used in non-

covalent drug discovery programs owing to the size and complexity of the systems involved, and also to the primary importance of non-covalent

interactions that are treated sufficiently at molecular mechanics level. However, the proper treatment of the chemical bond formation by covalent

inhibitors requires the use of quantum chemical methods and the purpose of the present contribution is to review the diverse set of quantum

chemical tools applied in the design of covalent inhibitors, in particular, the estimation of kinact (Equation 1), the rate constant of the covalent bond

formation. We first give a methodological overview of the various quantum chemistry approaches ranging from descriptor calculations in model

systems to the evaluation of free energy changes of the chemical bond formation in extended systems. Then applications identifying covalent

inhibition mechanisms and calculating rate constants for covalent bond formation are reviewed.

The comparison of computed and experimental potencies of inhibitors requires special considerations for covalent ligands. Reversible inhibi-

tors are commonly characterized by Ki and IC50 values [19]. The Ki inhibition constant is the dissociation constant of the protein-ligand complex

of competitive inhibitors, while IC50 expresses the ligand concentration that produces 50% inhibition of the biological activity [20]. However, in

the case of irreversible covalent inhibition, Ki is associated with the first non-covalent step (cf. Equation 1) and IC50 values are time-dependent

owing to the significant barrier of the chemical bond formation. Nevertheless, the dissociation constants of reversible covalent inhibitors are suit-

able measures of inhibitor potency as far as their slow binding equilibrium is considered. In contrast, irreversible covalent ligands are appropriately

characterized by Ki and kinact [21, 22]. In the forthcoming discussion we primarily consider kinact, the rate constant of the chemical reaction, as the

target of the computational investigations.

Studies of covalent inhibition relate to and benefit from investigations in two closely related fields. Toxicity predictions (see, e.g., References

[23, 24]) often use descriptors, model reactions and experimental models that are relevant for cysteine TCIs. Theoretical studies of enzymatic

reaction mechanisms [25, 26] use methodological tools common with computational covalent inhibitor studies, but they are not considered in the

current review unless the mechanism of covalent inhibition is discussed.

2 | METHODS

2.1 | Descriptors

Comprehensive treatments of reactions in highly complex systems, like in solvated protein-ligand complexes are highly demanding, however, sim-

plified models are useful in describing relevant aspects. Following the idea of ligand based drug design, reactivity studies can focus solely on the

structure and properties of the inhibitor molecules, which can be investigated by quantum mechanics based molecular descriptors [27]. There is a

large variety of descriptors, like HOMO-LUMO energies, net atomic charges, pKa proton dissociation constants, NMR chemical shifts, polarizabil-

ity, electron affinity, and so forth [28–31], which can be calculated by quantum mechanics and give information on molecular properties. Investi-

gations on the relationship between QM descriptors and reactivity have a long history and are particularly widespread in the field of toxicology

[32–34]. Typically, descriptors correlate with reactivity for compounds with a limited structural variability. Descriptor calculations are performed

with effective quantum chemical methods (e.g., density functional theory [DFT] with hybrid functional and medium-sized basis set, or at semi-

empirical level) [35], which allow obtaining the required quantities at a limited computational cost and with limited accuracy. This is, however,
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most often a satisfactory compromise between reproducing modest differences in properties of similar compounds and the approximate nature

of the relationship between descriptors and reactivities.

2.2 | Calculations on model system

A more demanding approach to estimate the reactivity of a ligand toward a protein sidechain is to perform QM calculations on model systems

mimicking the labeling reaction. The selection of a model requires a judicious choice to ensure chemical relevance and computational tractability,

and models typically include the ligand, or a truncated ligand containing the warhead, that is, the reactive electrophilic moiety, and a surrogate

molecule representing the chemically relevant region of the reacting side-chain [29, 31]. A cysteine sidechain is usually modeled by a methyl-thiol

or thiolate, while a serine sidechain by a methanol molecule, and further nucleophilic sidechains are modeled in a similar manner. The quantities of

interest are the transition state (TS) barrier and the reaction energy of the model system. The former is directly related to the rate constant, while

the latter is used to assess reversibility, although it may also correlate with reaction rates. Low barrier and highly negative reaction energy indicate

potentially toxic compounds with off-target potency, while high barrier and positive reaction energy indicate inactivity (Figure 1).

Reaction barriers are obtained as the energy difference between the TS and the reactant state. Multiple choices are available in the computa-

tional toolbox to identify TSs and to calculate their energy. An estimation of the TS structure can be obtained by adiabatic scanning that includes

constrained geometry optimizations with fixed values of the reaction coordinate. Scanning along the reaction coordinate that is typically an inter-

atomic distance or a combination of several distances allows us to construct the potential energy curve, or surface in case of 2D scanning, and the

approximate TS and its energy can be obtained [37]. An approximate TS can be used to initiate the search of a first order saddle point on

the potential energy surface (PES). The Synchronous Transit guided Quasi Newton Method [38] takes into account the reactant and product

structures, as well. The validation of the TS can be performed by frequency analysis and also by intrinsic reaction coordinate (IRC) calculations,

confirming that the found TS connects the reactant and product states [39, 40]. The optimized geometry of the reactant state is a model for the

non-covalent enzyme-ligand complex, while the product state is a model for the chemically bound ligand-enzyme complex.

Good quality reaction barriers can be obtained with DFT methods. B3LYP [41, 42] is extensively used for organic molecules, and is often

extended with dispersion correction [43]. Depending on the system, precision requirement and available resources ωB97XD [44] and Minnesota

type functionals [31, 45] are also used. The choice of the basis set also depends on the nature of the calculation and the applied theory. Pople

F IGURE 1 Typical energy profiles of the methyl-thiolate model reaction (top) and the mechanism of actions (bottom); inactive (red, 25), highly
reactive (green, 46), potentially reversible (blue, 28) compound. Calculated energies and experimental GSH half-lifes were taken from Scarpino
et al. [36]
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type basis sets with diffuse and polarization functions are highly common [29], just as the use of Dunning type correlation consistent basis sets

[46]. The application of implicit or explicit solvent models is also a crucial feature of model QM calculations, as they represent a better approxima-

tion to the protein environment than do vacuum calculations. Commonly used implicit water models include the polarizable continuum model

(PCM) [47] and the universal solvation model (solvation model based on density [SMD]) [48]. The use of explicit water molecules may be neces-

sary when they are directly involved in the electron reorganization or the implicit models are not sufficiently accurate owing to high charge con-

centration in the presence of ions [49].

Once the parameters of the model reaction have been determined, they can be compared to experimental values if the latter are avail-

able, or predictions can be made. It is notable that experimental reactivity data are often measured with a surrogate and this is typically gluta-

thione (GSH) for cysteine nucleophiles. The half-life in adduct formation with GSH [30, 31, 50, 51] estimates the ligand reactivity against

cysteine sidechains. Another option is comparing with experimental values obtained in the biological assay. In these cases, the considerations

discussed in the introduction apply, and measured kinact values are the most suitable to compare with the calculated rate constants. Neverthe-

less, IC50 values with constant incubation time may also be used with the assumption that the variation in inhibition is primarily affected by

the barrier of the covalent reaction rather than by the equilibrium of the non-covalent binding, and the measured IC50 values well correlate

with kinact.

Although the inhibitory mechanism may include several steps, it is customary to consider the rate determining step only. The identification of

the rate determining step can be based on analogy, chemical intuition, or rigorous quantum chemical calculations. The bond formation with cyste-

ine residues typically includes negatively charged thiolate, but the deprotonation step is not necessarily included in the investigation that is justi-

fied for low-barrier, ligand independent proton transfers, for example, in cysteine proteases.

2.3 | Quantum mechanical/molecular mechanical approaches

Although QM model calculations are valuable tools in estimating ligand reactivities they are unable to take full account of the protein environ-

ment. A more sophisticated approach is to treat the solvated protein-ligand complex by quantum mechanical/molecular mechanical (QM/MM) cal-

culations [52, 53]. QM/MM methods are hybrid technics that treat different parts of the system at different levels of complexity. They allow

reducing the number of QM atoms into a computationally manageable level, while treating the rest of the system with a more affordable force-

field based method. The QM/MM approaches can be categorized in various ways as it is shown in Table 1.

The total energy of the system can be evaluated either by the additive or the subtractive approach [54]. The former sums up the energy of

the QM and MM region's energy and adds the interaction energy (Equation 2), while the subtractive approach estimates the whole system energy

by MM, and corrects it with the difference between the QM and MM energies of the QM subsystem (Equation 3). Interestingly, energy conver-

gence as a function of the size of the QM subsystem proved to be independent of the choice of the energy calculation scheme as long as electro-

static embedding (see later) is applied for the interactions between the two subsystems [55]. Convergence in terms of the number of sampled

configurations [56] and the size of the QM region [57] was investigated by Ryde and coworkers.

Etotal ¼ EQM QMð Þ þEMM MMð Þ þEQM�MM interaction ð2Þ

Etotal ¼ EMM,totalþEQM QMð Þ �EMM QMð Þ ð3Þ

The QM region usually consists of the ligand or a truncated ligand including the warhead, and the targeted sidechain, or a relevant part of it,

and may contain further pieces of the protein together with water molecules. The rest of the atoms are parts of the MM subsystem. It is often

inevitable to cut chemical bonds when separating the QM and MM subsystems, and this leads to fragments with dangling bonds. The main

approaches to fill missing valences are the link atom [58], the frozen localized orbital [59–61] and the boundary atom [62, 63] schemes. The posi-

tion of the subsystem boundary requires special attention, since cutting a polarized covalent bond or disrupting a delocalized electron system

might result in serious distortions in the calculated energies and geometries. The optimal choice for separating chemically bound subsystems is to

cut an apolar, aliphatic C C bond. Concerning protein sidechains Cα Cβ bonds are suitable candidates for bond cutting yielding CH3-SH QM frag-

ments when cysteines are treated with the link atom approach.

The interaction between the QM and MM subsystems requires further considerations. There are two main embedding schemes applied in

QM/MM calculations on enzymatic systems. The mechanical embedding (ME) performs the QM calculations in the absence of the MM region,

and the interaction between the two subsystems is treated at MM level. The ONIOM method [64] developed by Morokuma and coworkers is

originally an ME method, and later it was extended to use more than two layers and to treat QM-MM interactions beyond the mechanical embed-

ding. Electrostatic embedding (EE) calculates electrostatic interactions between the QM and MM regions by the inclusion of MM charges in the

QM Hamiltonian. As force fields contain an extensive set of point charges for the estimation of electrostatic interactions at the MM level, it is a

typical scenario to use the atom centered point charges in the effective QM Hamiltonian.
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A large variety of MM force fields and QM theory can be applied to QM/MM calculations of covalent enzyme inhibition. MM force fields

designed to describe proteins and their interactions with small molecules include AMBER (FF14SB) [65], OPLS3 [66], CHARMM (CGenFF) [67],

and GROMOS [68]. Some of these have alternative versions to better describe specific systems such as membranes, nucleic acids, lipids or carbo-

hydrates [69]. The choice of the optimal QM theory depends on the reaction studied and the details of the computational approach. The applica-

tion of DFT methods is the most common, although the use of the sophisticated long range corrected hybrid functionals with large basis sets is

restricted by their high computational demand. While single point calculations and adiabatic scans can be performed with involved functionals,

the large number of evaluations required in molecular dynamics (MD) simulations is compatible with computationally more efficient methods (see

later).

2.3.1 | QM/MM potential energy

Reaction mechanism studies can be performed by calculating QM/MM PESs [70–74]. They explore the reaction path similarly to calcula-

tions for model systems, but the inclusion of the solvated protein-ligand complex creates a realistic environment. This ensures the struc-

tural integrity of the active site, not always straightforward to guarantee in model systems, and takes into account long range

interactions, primarily electrostatics, which are known to play a substantial role in enzyme catalysis [75], and might also affect the mecha-

nism of covalent inhibition.

QM/MM potential energy calculations require a limited number of evaluations of the QM energy and the gradient for a system with a few

tens of atoms. A series of optimizations can be performed to construct a potential energy profile or minimum energy profile (MEP), analogously to

the pure QM adiabatic scan. With the help of the MEP, binding events and binding mechanisms can be modeled by estimating geometries, energy

barriers, reaction energies and reaction paths. These calculations are feasible with fairly involved QM methods. DFT hybrid functionals with dou-

ble or triple zeta basis set, or post Hartree–Fock methods can be used that can eventually be complemented by zero-point vibrational energy and

thermal corrections for stationary points. These calculations, however, miss entropic contributions that can be recovered in QM/MM MD simula-

tions discussed in the next section.

TABLE 1 Aspects of the QM/MM calculations

Technical detail Possibilities, examples

Energy calculation scheme Additive

Subtractive

Definition of the QM region Atoms of the inhibitor molecule + atoms of the reactive sidechain

Adding a buffer region (ONIOM)

Subsystem separation Link atom approach

Frozen orbitals

Boundary atoms

QM level DFT functionals (DFTB3, B3LYP, ωB97XD, PBE)

Ab initio (MP2)

Semi-empirical (DFTB3, PM3, AM1)

Force-field AMBER (FF14SB, GLYCAM, GAFF)

OPLS3

CharMM

Interaction scheme Mechanical embedding (ME)

Electrostatic embedding (EE)

Type of calculation Geometry optimization

Single point calculation

Adiabatic scan

Molecular dynamics

MD methods None

Steered MD

Umbrella sampling

Metadynamics

FEP

Note: Examples are focusing on reactivity calculations.

Abbreviations: MM, molecular mechanical; QM, quantum mechanical.
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2.3.2 | QM/MM approaches for free energy calculations

The QM/MM potential coupled with MD [76, 77] or Monte Carlo (MC) [78] methods offers the opportunity to calculate the free energy of the

formation of covalent enzyme-ligand complexes. Unbiased MD is an efficient tool to investigate low energy structures and their geometries, how-

ever, the energy profiles of covalent reactions usually contain high energy regions whose structures are not well represented in unbiased MD sim-

ulations. The sampling of the region of the reaction barrier becomes feasible with the introduction of biasing potentials. There is a plethora of

such methods, most notably steered molecular dynamics (SMD), umbrella sampling (US), and metadynamics, which are widely used in the simula-

tions of biochemical systems [77] and are well suited to the investigations of the chemical bond formation of covalent inhibitors.

Steered MD [79, 80] introduces a time dependent biasing potential, which forces the reaction to proceed and enables the sampling along a

reaction coordinate. SMD simulations yield work curves that can be used to generate potential of mean force (PMF) profiles according to the

Jarzynski equation [81, 82]. It is more customary to use SMD simulations to generate starting structures for US calculations, the latter providing

PMF curves. The key parameters for SMDs are the velocity of the pulling and the associated force constant. Fast pulling results in highly

non-equilibrium processes and corresponding work curves due to the lack of relaxation during the simulation, while slow pulling requires large

computational resources. High force constants obstruct the desired level of sampling and may lead to high energy structures that are subject to

undesired structural changes and chemical reactions. In contrast, too low bias might cause the system unable to climb up energy barriers and stuck

in a local minimum.

US [83–85] simulations use a series of differently positioned biasing potentials along the examined reaction coordinates to ensure proper

sampling of high energy regions, in particular transitions states and their proximity. The weighted histogram analysis method (WHAM) [86] is per-

haps the most widely used post-processing method to construct the PMF from the biased distribution of states, but other strategies, like umbrella

integration [87] can also be applied. The key parameters for US are the force constant of the biasing potential and the distance between the mid-

dle of the potentials in neighboring windows. Sampling should overlap in neighboring windows to obtain reliable PMF curves and free energies.

Metadynamics [88–90] apply history dependent repulsive potentials along the discovered reaction coordinate space to aid the sampling of

rare events. The valleys in the free energy surface are filled with Gaussians until a barrier free energy surface is constructed. The PMF is

reconstructed from the accumulated bias potential. Essential parameters for metadynamics are the height and width of the Gaussians and the

deposition time. Too frequent Gaussian addition spoils the resolution of the PMF, while too high Gaussian functions distorts the calculated barrier

heights [91].

MD simulation based QM/MM methods require a large number of evaluations of the QM energy and its gradient. This represents a restric-

tion to the computational demand and quality of the QM method. Approximate, most often semiempirical QM methods, like AM1, PM6 or DFTB3

are commonly applied [45, 92–94]. It should be noted, however, that these methods are subject to errors that are system and reaction type

dependent. Smith [95] and coworkers performed benchmark calculations for model thio-Michael additions in gas phase with different DFT

methods, and the results showed that a large number of functionals, including B3LYP are failing to find the correct minima of the enolate interme-

diate, due to the delocalization error [96, 97]. Their suggestion was to use range separated functional, such as ωB97XD which gave similar results

to ab initio methods when modeling Michael-additions. A similar investigation [98] of the gas phase Michael addition reaction of selected small

molecules with methyl thiolate also showed that several functionals and semiempirical Hamiltonians fail to predict stable enolate intermediates

observed with sophisticated DFT functionals. However, it was also shown that the PMF curve in water as obtained with high quality DFT is signif-

icantly different from the gas phase potential energy calculated with the same method. The PMF in water was qualitatively reproduced by DFTB3

[99] suggesting that DFTB3 performs reasonably in describing Michael additions in condensed phase, a situation relevant to covalent inhibition of

enzymes. Nevertheless, low level QM methods have to be validated for the system actually investigated and occasionally corrections have to be

applied.

Various correction schemes have been proposed to improve the results of QM/MM MD simulations obtained for enzymatic reactions with

low level QM methods. These correction schemes can be straightforwardly applied in covalent inhibition studies. The difference between the high

and low level single point energies evaluated with various QM or QM/MM models has been shown to provide sensible corrections to free energy

profiles [100–103].

MD based QM/MM methods are effective tools to calculate free energies profiles of covalent inhibitor binding on one hand, and to analyze

the interactions and the dynamics in the system, on the other hand. These pieces of information are highly valuable to design inhibitors with

improved reactivity profile. We note that the full characterization of inhibitors requires both the rate constant of the covalent step and the disso-

ciation constant of the non-covalent complex formation (Equation 1). The dissociation constant can be obtained from the free energy change

accompanying the non-covalent complex formation (Equation 4), and the rate constant is related to the free energy barrier of the chemical reac-

tion of the covalent bond formation (Equation 5). While the latter can be calculated with the quantum chemical methods discussed above, the for-

mer can be obtained with MD based free energy perturbation (FEP) or thermodynamic integration calculations with classical force fields.

ΔG¼RTln Kið Þ ð4Þ
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ΔG‡ ¼�RTln
kinact
kbT=h

� �
ð5Þ

In Equations (4) and (5), R is the universal gas constant, T is the absolute temperature, kb is the Boltzmann constant and h is the Planck con-

stant. Both Ki and kinact can be experimentally measured [22, 104] and can be obtained from calculated ΔG and ΔG‡ values, respectively. This

makes it possible to compare calculated and experimental values and to validate computational methods as far as corresponding measured values

are available.

The separate experimental evaluation of Ki and kinact is not always feasible and then the inhibitory activity of a TCI can be characterized by

kinact/Ki [105, 106], or log(kinact/Ki) [94] values. Larger kinact means a lower transition barrier, therefore higher reactivity, while lower Ki means

stronger non-covalent binding to the enzyme. Compounds with high kinact/Ki ratios are not only show high potency, but are expected to have bet-

ter selectivity, therefore drug designing efforts are typically made to enhance the kinact/Ki ratio. The simultaneous prediction of kinact and Ki, or

alternatively, the kinact/Ki ratio by computational chemistry is an emerging topic [94, 99, 107, 108] and the efficient computation of these quanti-

ties can significantly contribute to the success of developing covalent drug candidates.

3 | CASE STUDIES

In the present section computational studies on covalent inhibition are reviewed separately for QM (Table 2) and QM/MM (Table 3)

investigations.

3.1 | QM calculations on model systems

Predictions of the reactivity between covalent ligands and their protein targets have been made using model systems both in the calculations and

in the experiments, the latter generate data to validate the calculations. Flanagan and coworkers [41] measured the reaction rate between a set of

acrylamide derivatives and GSH, and evaluated the half-life of the selected molecules. In the next step, the barriers (ΔG‡) of methyl-thiolate addi-

tion on the β-carbons of the examined compounds were evaluated by DFT B3LYP/6-311+G(d,p) calculations using SMD implicit solvent model

[48] and scaled zero-point vibrational energy correction [143]. The comparison of the experimental t1/2 and calculated ΔG‡ values showed excep-

tionally good correlation (R2 = .915). N-arylacrylamide reactivities were studied experimentally and computationally by Cee [29] and coworkers.

The effect of aryl substitution was investigated by comparing experimental log(k) values measured against GSH with the activation energies and

activation free energies against methyl-thiolate as calculated by DFT B3LYP/6-311+G(d,p) with SMD solvation model. Krenske and coworkers

examined [109] the substitution effects on the reactivity of α,β-unsaturated ketones. CBS-QB3 used as reference and several commonly applied

density functional methods (B3LYP, MPW1PW91, B1B95, PBE1PBE (PBE0), M06-2X, B2PLYP and B2PLYP-D), and also MP2 and SCS-MP2

methods were evaluated. M06-2X, B2PLYP-d and SCS-MP2 were found to perform best by giving results within 1 kcal/mol of the reference. Sig-

nificant differences reported for the barrier free energies obtained in gas-phase and in CPCM water model [110, 111]. Lonsdale et al. [31] com-

pared various calculated quantities, like reaction barriers, reaction energies, pKa values and LUMO energies with experimental reactivities toward

GSH for several cysteine targeting compound series containing acrylamide, vinyl-sulfonamide, chloroacetamide or propargylamide warheads. Fair

correlations between GSH reactivities and the above quantities calculated at the M06-2X/6-31+G(d,p)-IEF-PCM level were observed for acryl-

amides. The correlation between reaction energies and experimental reactivities is particularly notable as this provides a computationally efficient

way to predict reactivities. When investigations were extended to other warhead types then reaction energy still proved to be a useful predictor

of reactivity, however, LUMO energy showed no correlation with experimental reactivity beyond aromatic compounds. Although experimental
13C chemical shifts of acrylamides were found to well describe reactivities toward GSH, calculated values showed poor agreement with the exper-

imental data. In contrast, calculated and experimental pKa values exhibited good correlation for acrylamides when aromatic and nonaromatic com-

pounds were treated separately. Encouraging correlation was also reported between the calculated pKa and experimental GSH half-life. Matched

molecular pair analysis (MMPA) was shown to reproduce reactivity trends upon warhead exchange, and pKa calculation for acrylamides combined

with MMPA was proposed to be useful in warhead selection.

The authors of this paper applied similar model calculations on the reaction of potential covalent inhibitors against methyl-thiolate, and the

relation between the calculated reaction barriers and experimental GSH half-life was investigated. Reactant, transition and product state geome-

tries were optimized at the B3LYP/6-311+G(d,p) level with PCM solvation model. Good correlation between the GSH half-life and calculated

reaction barriers was found for compounds with the same warhead, but the correlation significantly dropped when compounds with different

warheads were involved (Figure 2). Similar observation was made when a set of heterocyclic fragment like electrophilic compounds was investi-

gated. Various QM descriptors were calculated and correlated with experimental reactivities toward GSH, but useful trends observed only for the
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TABLE 2 QM case studies for covalent inhibition

Nucleophile Ligands QM method Calculated quantity Comments Ref.

MeSH Acrylamides,

acrylesters, α-Cl-

acetamides

B3LYP/6-311+G(d,p) ΔG, ΔG‡ Correlation with GSH reactivity Present

paper

MeSH and Cys α,β-unsaturated

carbonyl, carboxyl

B3LYP/6-31G**/TZVP ΔG‡ ΔE‡, Hammett

parameters

Keto-enol tautomerization is not

rate-limiting

[23]

MeSH Acrylamides B3LYP/6-311+G(d,p) ΔG‡ Effect of aryl substitution [29]

- Heterocyclic

electrophiles

B3LYP/6-311++(2d,2p) QM descriptor Correlation with GSH reactivity [30]

MeSH Several warhead

types

B3LYP,M06-2X/6-31G(d,p) ΔG‡ ΔE‡, HOMO, LUMO,

NMR shift, pKa,

Hammett parameter

Matched molecular pair analysis [31]

GSH α,β-unsaturated

carbonyl, carboxyl

B3LYP/6-31G** Molecular descriptors log kGSH predictions [32]

MeSH Acrylamides, non-

acrylamides

B3LYP/6311+G(d,p), 6311

+G(3df,3pd)

ΔG‡ Correlation with GSH reactivity [41]

MeSH Fragments and drug-

like Michael

acceptors

B3LYP-D3/6-311+G** Proton affinity, ΔG‡, ΔGr Proton affinity is not correlating with

GSH reactivity of drug like

molecules

[42]

MeSH Michael acceptors Series of DFT functionals,

CCSD(T), MP2

ΔEnet Large number of functionals are

failing to find correct minima for

enolate intermediate

[95]

MeSH α,β-unsaturated

ketones

Several commonly applied

density functional, MP2,

SCS-MP2

ΔG, ΔG‡, GSH and PhSH

addition rate constant

Michael acceptor substituent effect [109]

- Neutral small

molecules

HF, MP2, B3LYP/6-31G(d),

6-311+G(d,p)

Molecular energies [110]

- Small molecules HF, B3LYP/6-31G(d), 6-311

+G(d,p)

Molecular free energies [111]

- Serine and cysteine

protease inhibitors

PM6 Descriptors derived from

ΔHf

Substituent effects in a QSAR type

equation

[112]

β-mercaptoethanol Acrylnitriles B3LYP/6-311+G(d,p) Proton affinity,

β-elimination rates

[113]

MeSH Michael acceptors B3LYP, M06-2X, ωB97XD/

6-311+G(d,P), ωB97XD/

aug-cc-pVTZ

Free energy profile Reversibility calculations [114]

SARS-CoV-2 Mpro

inhibition model

α-ketoamide ONIOM-B3LYP/6-31G(d):

PM6, ωB97X-D/6-31G

(d,p):PM6

Energy profiles, electron

density

[115]

Cysteine protease

model

α,β-unsaturated

carbonyl

compounds

B3LYP/TZVP//BLYP/TZVP Potential energy surface

calculations

[116]

MeSH Michael acceptors ωB97XD/aug-cc-pVTZ ΔGint, ΔGprod, ΔGtotal Automated screening of thiol

reactivity

[117]

MeSH Acrylamides,

chloroacetamides

ωB97XD/cc-pVDZ ΔG‡ Machine learning algorithm for the

prediction of thiol reactivity

[118]

- Acrylamides B3LYP/6-31+G(d,p) Eletrophilicity index,

HOMO, LUMO

[119]

Cysteamine Nitril based

compounds

B3LYP/6-311++G(d,p) ΔG‡ Strong correlation with GSH,

cysteine and cysteamine reactivity

[120]

MeSH Cyanamides, aryl

nitriles,

aminoacetonitriles

B3LYP/6-311G(d,p) ΔGr, electrophilicity Reaction energy versus cysteine

adduct formation

[121]

MeSH Aryl nitriles B3LYP/6-311G ΔHr Structure activity relationships [122]

Abbreviation: QM, quantum mechanical.
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electronic chemical potential and the natural charge on the reacting carbon atom within subsets of compounds reacting with the same mecha-

nism [30].

Descriptors derived from semiempirical PM6 heat of formation of the first intermediate of the covalent bond formation were proposed [112]

for serine and cysteine protease inhibitors. Substituent effects were described in a QSAR type equation and the different relationship observed

for serine and cysteine proteases were explained.

It is worth noting that not all cysteine reactivity studies contain methyl-thiolate as a probe, and GSH is not used exclusively in reactivity

assays [51]. Krishnan and coworkers [113] used β-mercaptoethanol as a model for the cysteine sidechain and calculated the proton affinity of a

set of acrylonitrile-mercaptoethanol adducts at the B3LYP/6-311+G (d) level of theory with PCM water model. Experimental β-elimination rates

exhibited excellent correlation with calculated proton affinities, and this was suggested to enabling the tuning of the reversibility of the reaction

in a predictable manner. The effect of α-substitution on a set of acrylonitrile-based Michael acceptors was investigated [114] by calculating the

free energy profile in model reactions with various DFT methods including B3LYP/6-31+G(d), M06-2X/6-31+G(d) and ωB97X-D5/aug-cc-pVTZ

using CPCM continuum solvent model. Electron withdrawing groups were shown to affect reversibility by destabilizing the neutral adduct, on one

hand, and stabilizing the anionic TS and the intermediate of the Michael addition, on the other hand.

Inhibition of cysteine proteases by α-ketoamide compounds was investigated [115] by reaction mechanism calculations on model systems

using ONIOM-B3LYP/6-31G(d):PM6 geometry optimizations and single point ωB97X-D/6-31G(d,p):PM6 energy evaluations. It was found that

the deprotonation of the cysteine thiol and the nucleophilic attack of sulfur onto the α-ketoamide warhead can proceed both with stepwise and

concerted mechanisms. Paasche and coworkers [116] examined the reaction of α,β-unsaturated carbonyl compound with cysteine protease

models. B3LYP/TZVP//BLYP/TZVP calculations with the COSMO continuum model were performed. Results emphasize the importance of base

catalysis for thiol reactivity and computed data explained substituent effect on reactivity.

Smith [117] and coworkers developed an automated computational screening method of the thiol reactivity of substituted alkenes. The pro-

posed workflow contains the generation, modeling, and analysis of the reactants, intermediate and products of the thiol addition using ωB97XD/

aug-cc-pVTZ level of theory. They performed multiple linear regression for the calculated intermediate and product stability based on the reactant

properties. Recently, Palazzesi and coworkers [118] implemented a machine learning algorithm for the prediction of the thiol reactivity. A large

amount of barrier calculations (ωB97XD/cc-pVDZ) against methyl-thiolate was carried out using a warhead aligning scheme to lower the compu-

tational time. The calculated barriers were used to train the machine learning model. The ab initio and model calculated barriers showed good cor-

relations with an R2 of .85 for acrylamides and .69 for chloroacetamides.

The electrophilicity index based on HOMO and LUMO energies was calculated [119] at the B3LYP/6-31+G(d,p) level with CPCM water

model for acrylamides and was correlated with experimental reactivity toward GSH. It was found that the reactivity of small molecules

(MW < 250 Da) can be directly estimated by calculated electrophilicities, while for larger molecules a truncation algorithm is introduced to ensure

orbital localization on the warhead.

Berteotti [120] calculated activation energies of the reactions between nitril based compounds and zwitterionic cysteamine. Strong correla-

tion was found between B3LYP/6-311++G(d,p) activation energies obtained with CPCM water model and experimental half-life in reactions

against cysteine, cysteamine and GSH. A reactivity index of nitril-containing compounds was calculated [121] by evaluating the energy difference

between the thioimidate adduct and the precursor methanethiol and the nitrile molecule at the B3LYP/6-311G(d,p) level with PCM water model.

The calculated index reproduced the trend of cysteine adduct formation. Similarly, the reaction enthalpy of aryl nitrile compounds with meth-

anethiol was calculated [122] and enthalpies obtained were correlated with inhibition constants measured against two cysteine proteases, rho-

desain and human cathepsin L, and also with cytotoxicity, and clear structure activity relationships were reported.

Voice [42] and coworkers investigated how compound size affects the correlation between GSH reactivity and either proton affinity or reac-

tion energy of α,β-unsaturated carbonyl compounds. The latter quantities were calculated with the density functional B3LYP-D3/6-311+G**//

B3LYP-D3/6-31G* method using the Poisson�Boltzmann Finite Element implicit water solvation model. It was found that the strong correlation

between the calculated quantities and GSH reactivity observed for small compounds seriously deteriorates for drug-like compounds. The authors

suggest that the inadequate description of available conformations and their variation during the reaction contribute to the failure of ligand-only

approaches for larger molecules.

3.2 | QM/MM calculations

Quantum chemical calculations for model systems are able to provide useful estimations of various molecular properties including reactivity. How-

ever, they cannot account for several important aspects of the reactions in extended systems. A more complete description of covalent inhibition

of proteins requires the inclusion of the protein environment in the computational studies. Multiscale methodologies allow the modeling of chem-

ical reactions in the active site at reasonable computational cost. In particular, QM/MM schemes calculate the electron reorganization at QM

level, while the effect of the protein environment is taken into account by molecular mechanics. There is a diverse set of QM/MM approaches

applied in covalent inhibitor studies. In the following section, we first discuss applications that produce energies without generating
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TABLE 3 QM/MM case studies for covalent inhibition

Biomolecule Ligand(s) QM method

MM

method Calculation type Comments Ref.

MAO-B Serotonin M06-2x:PM6 Structure optimizations ONIOM (QM:QM) [70]

Cysteine protease Epoxides RI-BLYP CHARMM PES with HDLC optimizer Stereoselectivity study [71]

Rhodesain Vinyl-sulfones BLYP, B3LYP AMBER Model with methylthiol, PES

calculation, Docking, MD

Four steps workflow [72]

HIV1 protease Aziridine,

epoxide

BLYP CHARMM Aiding covalent docking Workflow for docking [73]

Human

cyclooxigenase-1

Aspirin HF, B3LYP, MP2,

b97D

AMBER PES calculation. ONIOM [74]

Rhodesain Nitriles PM6 CHARMM PMF US Correlation between reaction

free energy and experimental

binding affinity

[92]

EGFR Acrylamides DFTB3 AMBER US Path collective variables were

applied

[93]

Multiple targets Multiple set of

compounds

B3LYP-D3 OPLS3 FEP+, FEP Predicting log (kinact/Ki) [94]

Multiple targets Multiple set of

compounds

DFTB3 AMBER US, TI Complete description of the

covalent inhibition

[99]

BTK Cyanoacrylamide ωB97XD CHARMM FEP, US, Opt Complete free energy profile,

ONIOM

[107]

SARS-CoV-2 Mpro α-ketoamide M06-2X AMBER FEP, US, Opt. Complete free energy profile,

ONIOM

[108]

TAK1 kinase Acrylesters M06-2X AMBER MD Opt. ONIOM [45]

Cysteine protease Epoxides and

aziridines

RI-BLYP CHARMM PES calculation. Regioselectivity study [123]

FAAH Carbamates SCC-DFTB CHARMM PES calculation QM correction with B3LYP/6-31

+G(d)

[124]

Cysteine protease Nitriles B3LYP AMBER Geometry optimizations ONIOM [125]

Multiple targets Multiple set of

compounds

SCC-DFTB CHARMM Docking, QM/MM

minimization

New scoring function, attracting

cavities

[126]

Schistosoma

mansoni

cathepsin B1

Vinyl-sulfones DFT-S/PM6-D3HX4 AMBER Restrained optimizations Quantum mechanics based

scoring function

[127]

EGFR (L718Q

mutant)

Osimertinib SCC-DFTB AMBER US, RETI, Waterswap [128]

MurA Multiple set of

compounds

DFTB3 AMBER 1D and 2D US, MD QM correction with ωB97XD [100]

Aspartic protease Epoxide SCC-DFTB AMBER 2D US QM correction with M06-2X [129]

Glycoside

hydrolase

Carbasugars AM1 OPLS-AA 2D PES calculation, 1D PMF

calculation, Electrostatic

potential mapping

QM Correction with M06-2X [130]

SARS-CoV-2 Mpro N3 peptidyl

Michael-

acceptors

AM1 AMBER US QM correction with M06-2X [131]

Cruzain Peptidyl

halomethyl-

ketones

AM1d OPLS-AA PES calculation, US QM correction with M06-2X [132]

Cruzain Vinyl sulfones,

nitriles

DFTB3 AMBER 2D-FES US, adiabatic mapping QM correction with MP2 [133]

Cruzain Dipeptidyl

nitriles

AM1/d-Phot CHARMM 2D US QM correction with M06-2X [134]

β-lactamase Carbapenem SCC-DFTB AMBER 2D US, MEP analysis [135]

β-lactamase Clavulanate SCC-DFTB AMBER 2D PMF US, MEP [136]
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conformational ensembles. Next, we focused to applications producing free energies by MD based sampling. Finally, studies are presented with

the combined evaluations of the binding free energy of the non-covalent binding and the reaction barrier of the covalent complex formation.

3.2.1 | Potential energy based studies

PES based studies attempts to evaluate reaction mechanisms in a basically static protein environment, although the energy calculations are occa-

sionally complemented with thermal corrections to generate Gibbs free energies. ONIOM [64] is often applied for QM/MM energy calculations

as it allows the characterization of the stationary points, a feature not widely available in QM/MM codes. T�oth and coworkers examined [74] the

mechanism of the irreversible inhibition of human cyclooxygenase-1 (COX-1) by the well-known drug aspirin (ASA). They performed a series of

ONIOM-type QM/MM calculations at HF, B3LYP, MP2 and B97-D level of theories while treating the MM part with the AMBER force field. All

methods applied predict the same one step reaction mechanism for the ASA-COX-1 trans-esterification reaction but with significant differences

in the activation energies. The mechanism of catalysis and covalent inhibition of monoamine oxidase B (MAO-B) was investigated [70] by ONIOM

(QM:QM) calculations at the M06-2X/6-31+G(d,p):PM6 and PM6 levels. A new catalytic pathway and a FAD binding mechanism of reversible

covalent inhibitors was proposed for both MAO-A and MAO-B isozymes. The full free energy profile was calculated for the binding of two SARS-

CoV-2 main protease (Mpro) inhibitors. The covalent reaction was evaluated by ONIOM at M06-2X/def2-TZVP:FF99SB-ILDNP level of theory

with thermal corrections [108]. Significant differences were found between the two inhibitors both in their non-covalent and covalent binding

free energies. Toviwek and co-workers investigated [45] the covalent inhibition of TAK1 kinase. Michael addition mechanism to a reactive

TABLE 3 (Continued)

Biomolecule Ligand(s) QM method

MM

method Calculation type Comments Ref.

Human tissue

transglutaminase

(TG2)

Acrylamides PM3, SCC-DFTB AMBER US, charge analysis [137]

AChE Soman B3LYP AMBER Ab-initio Born Oppenheimer

US (frozen QM region)

Reaction coordinate driving

method

[138]

GH43 xylanolytic

enzyme

Own substrate PBE and Troullier-

Martins ab initio

pseudopotential

AMBER Metadynamics [139]

WT and mouse

AChE

Acetophenones B3LYP AMBER Scan, FEP (frozen QM), TI Pseudobond ab initio QM/MM

approach

[140]

Proteasome Epoxomycin B3LYP AMBER MEP calculation, FEP [141]

Proteasome Syringolin A B3LYP AMBER MEP calculation, FEP [142]

Abbreviations: MM, molecular mechanical; QM, quantum mechanical.

F IGURE 2 Experimental GSH half-life [36] versus calculated activation free energies against methyl-thiolate for compound sets with
acrylamide (red), acrylester (blue) and α-Cl-acetamide (green) warheads. For further information about data points please refer to Table S1
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cysteine was studied at QM/MM ONIOM(M06-2X/6-31G(d):FF99SB) level with vibrational correction. The nucleophilic attack by the thiolate on

the Michael acceptor was found to be the rate determining step that is preceded by a lower barrier cysteine deprotonation. Mladenovic and

coworkers evaluated [71, 123] the stereoselectivity and regiospecificity of epoxide based cysteine protease inhibitors by applying the BLYP/

TZVP//CHARMM methodology for the potential energy scan. Their results show that the different hydrogen-bonding network of the stereo-

isomers is responsible for the observed selectivity differences. Fatty acid amide hydrolase (FAAH) inhibition mechanism by two covalent

inhibitors was studied [124] by SCC-DTFB/CHARMM27 potential with B3LYP/6-31+G(d) corrections. The inhibitors react with Ser241 and

form carbamoylated intermediates. Calculated relative reaction barriers of the decarbamoylation of the inhibitor complexes are in line with

the observed reversibility of one of them and the irreversibility of the other. Moreover, both barriers exceed that of the substrate bound

deacylation owing to an impaired stabilization of the TS in the presence of inhibitors. Quesne et al. investigated [125] the mechanism of cys-

teine protease inhibition by nitril-based compounds both by DFT model calculations and by QM/MM. Concerted nucleophilic addition by

thiolate, and proton transfer from histidine was found by all methods applied. DFT model calculations using B3LYP with 6-31G* and 311+

+G** basis sets with and without continuum solvent model led to important geometry distortions incompatible with the enzymatic environ-

ment. QM/MM studies with mechanical versus electrostatic embedding resulted in large geometric and thermodynamic differences. The

authors emphasized the importance of the model in investigating this biochemical reaction mechanism. Chaskar and coworkers proposed

[126] a docking protocol using their attractive cavities algorithm [144] and the SCC-DFTB/CHARMM optimization of the docking poses. The

docking protocol is designed for non-covalent complexes, but it is claimed to well describe ligand-iron binding with covalent character. Fan-

frlík and coworkers proposed [127] the extension of their formerly introduced QM-based scoring function with QM/SQM restrained optimi-

zations to treat covalent inhibitor binding in docking and scoring. A multiple step design protocol of covalent inhibitors was proposed, which

includes QM and QM/MM optimizations, docking, and MD simulations to evaluate reaction barriers and reaction energies of designed com-

pounds [72, 73].

3.2.2 | QM/MM coupled with MD

Callegari [128] and coworkers investigated the deprotonation mechanism of Cys797 of the L718Q mutant EGFR tyrosine kinase, and the

alkylation step by osimertinib by constructing PMF using US simulations at the SCC-DFTB/FF99SB level of theory. Their study proved that

the mutation of L718Q does not affect the affinity of osimertinib toward EGFR. Capoferri [93] and coworkers simulated the inhibition of

EGFR by an acrylamide derivative at the DFTB3/FF99SB level using path collective variables [145, 146]. The simulation protocol consisted of

a series of iterative reaction path optimizations by SMD. After the path was converged US was performed starting from the structures

extracted from the converged SMD trajectory. The results of the calculations identified the desolvation of Cys797 as a key step during the

inhibition process.

Studies [100] on MurA covalent inhibitors using simulations at the DFTB3/FF14SB level suggested a deprotonation mechanism for the

targeted Cys115 by His394, and produced reaction free energy profiles for nine potential covalent inhibitors. Active and inactive compounds

were successfully distinguished based on the activation free energy of the covalent reaction. A QM correction at ωB97XD/cc-aug-pVTZ level was

necessary to improve DFTB3 based simulation results.

Inhibition of aspartic proteases by epoxide-based irreversible covalent inhibitors was proposed to proceed with a two-step mechanism, where

the oxyanion intermediate and the corresponding TS are stabilized by a group of water molecules. HIV protease and pepsin were studied with

DFTB/FF14SB simulations corrected by M06-2X/631G(d,p) single point calculations [129].

The covalent labeling of glycoside hydrolase by carbasugar inhibitors was investigated [130] by experimental and theoretical methods includ-

ing the calculation of the free energy profile of the reaction by AM1/OPLS-AA potential with M06-2X/6-31+G(d,p) correction. SN2 TS was

predicted, and a new direction of inhibitor design is proposed based on the location of charge development of the TS structure.

Most recently, Arafet [131] and coworkers constructed the PMF of the inhibition reaction of SARS-CoV-2 Mpro by a peptidyl Michael-

acceptor. The AM1/FF03 level free energies were corrected by M06-2X/6-31+G(d,p) level optimizations and energy calculations. QM/MM

modeling was also used to propose new compounds with potential inhibitory effect via covalent mechanism. Free energy surface by

PM6/CHARMM potential was generated [92] for a set of heteroaryl nitrile reversible covalent inhibitors of rhodesain, a cysteine protease.

Strong correlation between calculated reaction free energies and experimental binding affinity was reported. The covalent inhibition of

cruzain, a cysteine protease by peptidyl halomethyl ketones was investigated [132] by PMF calculations with AM1d/OPLS-AA potential

corrected by M06-2X functional with 6-31+G(d,p) basis set. Concerted attack of the deprotonated cysteine and the leaving of the halogen

ion was observed. Both reaction barriers and reaction energies favor inhibition by peptidyl chloro-methyl ketones over fluoro analogs. Another

QM/MM study of covalent cruzain inhibitors [133] using DFTB3/FF14SB potential with adiabatic mapping MP2/FF14SB corrections found

that the nucleophilic attack by cysteine and the proton transfer from histidine occur in a single step for a reversible inhibitor and in consecu-

tive steps for an irreversible inhibitor. Moreover, calculated reaction free energy was significantly more exothermic for an irreversible inhibitor

than for a reversible inhibitor acting with the same covalent mechanism. Nitrile-based covalent cruzain inhibitors were also investigated [134]
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with AM1/d-PhoT Hamiltonian combined with CHARMM force field to produce reaction free energy profiles. The mechanism of reversible

inhibitors included a single step of cysteine attack and proton transfer from histidine in accordance with the previously cited study [133]. Cal-

culated reaction free energy was found to be in agreement with experimental binding affinities.

DFTB/FF12SB simulations [135] of eight class A β-lactamases, although underestimated the free activation energy, were shown to well

separate enzymes with carbapenem deacylation activity from enzymes lacking this activity. Based on this finding, the simulations can serve as

an in silico assay for carbapenemase activity in class A β-lactamases. The covalent inhibition of KPC-2 and TEM-1 class A β-lactamases by

clavulanate was investigated [136] at the DFTB/FF14SB level simulations. The decarboxylated trans-enamine of the deacylation reaction was

shown to be responsible for the inhibition and the relative magnitude of calculated free energy barriers reflected the experimental inhibitor

potencies.

Acrylamide based inhibitors against human tissue transglutaminase (TG2) were studied [137] by semiempirical QM/MM simulations. DFTB

and PM3 was used as QM methods combined with FF99SB MM potential. US simulations suggested two step Michael addition reaction of acryl-

amides against TG2, and calculated activation energies exhibited good correlation with a wide range of experimental IC50 values.

The application of semiempirical QM methods during the MD simulations significantly reduces the computational time at the expense of

reduced reliability and consistency of the results. The application of more involved methods to generate the PMF of the inhibitory reaction was

also reported. Sirin and coworkers applied [138] the reaction coordinate driving method to obtain the minimum energy path of the acetylcholine

esterase (AChE) inhibition by the nerve toxin soman. Once a feasible reaction path was obtained, they performed MM relaxation, while keeping

the QM subsystem frozen. The relaxed structures were subject to ab-initio Born–Oppenheimer QM/MM US applying B3LYP/6-31G* QM and

FF99SB MM potential. The resulted free energy profile indicates an addition-elimination inhibitory mechanism in which the His440 initiates the

phosphorylation reaction by deprotonating the Ser200 residue. Recently, the full free energy profile of the covalent modification of Bruton's tyro-

sine kinase (BTK) by a cyanoacrylamide TCI was reported [107]. US simulation at the ωB97X-D/def2- level was applied for the nucleophilic attack

of the first addition reaction between Cys481 of BTK and the cyanoacrylamide compound. Finally, ONIOM-based geometry optimization for the

thioether product yielded by proton transfer were applied to recover the reaction energy of the covalent step [107]. These high level calculations

are expected to yield accurate free-energy profiles, although the increased computational demand currently hinders their comparative application

to several ligands.

Two distinct catalytic pathways for GH43 xylanolytic enzymes were identified [139] by Morais and coworkers using experimental data and

metadynamics. They used Car-Parrinello MD with PBE functional using planewave basis and Troullier�Martins ab initio pseudopotentials coupled

with FF14SB/GLYCAM06 MM potential to construct the reaction PMF. The complete hydrolysis mechanism of the GH43 enzymes was revealed

and was proposed to expand the general model of catalytic mechanism of glycosidases and to facilitate the design of TS-like inhibitors.

In the work of Cheng and coworkers, the inhibition of wild type and mutant mouse AChE by trifluoroacetophenone derivatives was modeled

[140] by first constructing the PES of the reaction. For each stationary point, the system was QM/MM minimized and QM subsystem fluctuations

to free energy change were evaluated from the frequencies using a harmonic approximation. QM/MM interaction contributions were determined

from FEP calculations along the reaction coordinate using B3LYP/6-31G*/AMBER potential. Calculations revealed barrierless nucleophilic addi-

tion of serine to the carbonyl-C of the ligand with a simultaneous serine-histidine proton transfer. Wei and coworkers also used FEP calculations

to determine [141, 142] the relative free energy changes associated with the QM/MM interactions. Similar technics were applied to study the

covalent inhibition mechanisms of immunoproteasome by epoxomicin and syringolin A. The details of the inhibitor binding mechanisms were

explored and the rate determining steps were identified. They constructed the minimum potential and free energy curves of the inhibition

reaction.

3.2.3 | Complete description of covalent inhibitor binding

As it is discussed above and shown by Equations (1), (4) and (5), the two essential parameters of the covalent inhibition are the binding con-

stant (Ki) and the kinetic rate constant (kinact). The majority of the above studies focused on the covalent reaction. However, a complete com-

putational description of irreversible inhibition requires the characterization of both binding steps. This necessitates the use of multiple

computational techniques and multiple sampling methods. A possible scheme for computing both Ki and kinact includes the treatment of the

non-covalent binding by thermodynamic integration using MM force field, while the construction of the PMF of the covalent reaction by

QM/MM US simulations. We applied this strategy for KRAS, EGFR and Tec family tyrosine kinase (ITK, BTK, BMX) inhibitors using DFTB3/

FF14SB potential, and found good correlation between experimental and calculated log(kinact/Ki) values [99]. Yu and coworkers [94] developed

a method in which the covalent reaction was calculated at QM (B3LYP-D3/6-311+G*) level for a model system, and the effect of the enzyme

environment on the TS was evaluated by FEP calculations using modified force-field parameters. This DFT + FEP method was able to pro-

duce log(kinact/Ki) giving fair correlation with the experimental values for BTK, FAAH and KRAS inhibitors [94]. The full free energy profile

was calculated for the binding of two SARS-CoV-2 inhibitors [108] and for the Michael addition of a BTK inhibitor [107]. The absolute bind-

ing free energy of the non-covalent step was evaluated by FEP. The free energy profile of the chemical reaction was obtained by ONIOM at
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the M06-2X/def2-TZVP:FF99SB-ILDNP level of theory for the SARS-CoV-2 inhibitors, while for the BTK inhibitors [107] US simulation at

the ωB97X-D/def2-TZVP level was applied to obtain the barrier of the nucleophilic attack, and ONIOM-based geometry optimization of the

product state was applied to obtain the reaction energy.

4 | CONCLUSIONS, FUTURE ASPECTS

Recently, covalent inhibition has become a hot topic in pharmaceutical research and the computational support to develop better TCIs requires

the intensive application of quantum chemical tools. Calculations of reactivity descriptors and evaluations of reaction barriers in model systems

are useful in the screening and in the optimization of covalent ligands. More involved approaches include multiscale calculations for the solvated

ligand-protein complex to predict the energy surfaces of reactions. When combined with MD based sampling, then free energy surfaces can be

obtained that give information on the mechanistic details of the inhibition reaction and on the rate determining free energy barrier. These calcula-

tions are computationally intensive owing to the sampling in extended systems and to the involved QM methods needed for reliable energies and

geometries. Further performance improvements are expected with the combined development of computer hardware and QM methodology.

Nevertheless, the reviewed applications of covalent inhibitor design well demonstrate the usefulness and perspectives of quantum chemical cal-

culations in the emerging field of covalent drug discovery.
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