
Computing Green’s Functions for Bianisotropic

Materials

I. Bogaert∗

Abstract — A storage data structure and strategy is
proposed for the storage of Gegenbauer polynomial
expansions, used in the numerical computation and
storage of the bianisotropic scalar Green’s function
and its partial derivatives. The data structure al-
lows the error to be controlled and keeps in check
the computational complexity of the evaluation pro-
cedure.

1 INTRODUCTION

Boundary Integral Equations (BIEs) are ideal tools
for the solution of scattering problems involving
structures with large piecewise homogeneous ar-
eas. For such problems, boundary integral equa-
tions avoid the need for a volumetric mesh of the
solution domain, which is an advantage over for ex-
ample the Finite Element Method (FEM). Because
of this, BIEs are often used in the scientific litera-
ture and even in commercial software.

However, it should be pointed out that the ap-
plicability of these implementations is usually lim-
ited to isotropic materials (except in [1], in which
the analytical expression of the Green’s dyadic in
a uniaxial material is used), which is only a very
small subset of the set of possible bianisotropic ma-
terials. The underlying reason for this is the fact
that BIEs require a Green’s function, for which no
analytical formulas exist in the more general bian-
isotropic materials. This is in stark contrast to the
FEM, which is quite naturally and easily extended
to general bianisotropic materials.

In this contribution, a numerical scheme is pre-
sented for the computation and storage of the
Green’s function in lossy Bianisotropic materials.
The storage scheme makes use of the polynomial
expansion introduced in [2] and enhances it us-
ing a multilevel adaptive subdivision of R3 \ {0},
such that it can be evaluated in all points except
the origin. By leveraging the polynomial expan-
sion from [2], the scheme also allows the accurate
evaluation of the derivatives of the Green’s func-
tion, which in turn enables the computation of the
Green’s dyadics in any lossy bianisotropic material.
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2 POLYNOMIAL EXPANSION

First, the bianisotropic Green function and its poly-
nomial expansion will be briefly discussed. The
bianisotropic scalar Green’s function (BSGF) is de-
fined as

G(r) =
1

8π3

∫
R3

ejs·r

D(s)
ds, (1)

with D(s) the so-called Helmholtz determinant [3]

D(s) = Det [P(s)] , (2)

which is defined by means of the 6× 6 matrix

P(s) =

[
¯̄ε ¯̄ξ − s× 1

¯̄ζ + s× 1 ¯̄µ

]
. (3)

The symbol 1 denotes the 3 × 3 unit matrix, such
that

s× 1 =

 0 −sz sy
sz 0 −sx
−sy sx 0

 . (4)

It can be shown that the components of the Green’s
dyadics, which relate electric and magnetic currents
with the electric and magnetic fields they gener-
ate, are linear combinations of partial derivatives
of this BSGF [2]. In this linear combination, par-
tial derivatives up to fourth order occur. Hence, the
numerical computation of the Green’s dyadics can
be accomplished if the BSGF and its derivatives
(up to fourth order) can be numerically computed
in a stable and efficient way.

In [2], a first step towards this goal was made by
expanding the BSGF into Gegenbauer polynomials
[4]

G(r + c) =

∞∑
px,py,pz=0
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z

az

)
,

(5)

for all r in the range �c,a. The range �c,a is a
cuboidal region with center c and sides 2ax, 2ay and
2az along the three coordinate axes. The Gegen-
bauer polynomials with a fixed index ν form a set of
orthogonal polynomials with respect to the weight
function (1 − x2)ν−

1
2 . Therefore, setting ν = 0
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yields the Chebyshev polynomials and ν = 1
2 leads

to the Legendre polynomials. The orthogonality
property, together with (1) can be used to find in-
tegral expressions for the expansion coefficients

Qp = (ν + px)(ν + py)(ν + pz)i
px+py+pz×

×
∫
R3

ejs·c

D(s)
F νpx(sxax)F νpy (syay)F νpz (szaz)ds.

(6)

with the function F given by

F νn (u) =
Jν+n (u)

uν
. (7)

Integral representation (6) can be accurately eval-
uated by means of numerical integration strategies.
The main advantages of this Gegenbauer expansion
approach are that

• the expansion is exponentially converging if
�c,a does not contain or touch the origin,
meaning that only a moderate number of terms
are needed to get an acceptable approximation
of the BSGF and its derivatives.

• the expansion coefficients can be accurately
computed, even if they are much smaller than
the machine precision. This is possible thanks
to the availability of excellent libraries for the
computation of Bessel functions [5].

• the Gegenbauer polynomial expansion allows
for an easy and stable computation of the
derivatives of the BSGF.

It is clear, however, that an algorithm to com-
pute the BSGF in cuboidal regions is not sufficient
on its own. Indeed, supposing that the BSGF needs
to be computed in the point r, one can choose in-
finitely many c and a such that r is inside �c,a. A
rationale for making this choice is needed and will
be developed in the next section.

3 STORAGE DATA STRUCTURE

When computing Method of Moment (MoM)
impedance integrals, it is important that the
Green’s dyadics can be evaluated rapidly. Simply
evaluating (1) every time the BSGF needs to be
evaluated is way too slow to be practical. There-
fore, an appropriate storage scheme needs to be de-
vised. This can be accomplished by means of the
Gegenbauer expansion introduced in the previous
section. Indeed, assuming that the BSGF needs to
be evaluated in the point r, the Gegenbauer expan-
sion for a cuboidal region containing r can be com-
puted. It is clear, however, that this expansion is

valid in a full cuboidal region, not just in the point
r. Therefore, the same expansion can be reused for
the evaluation of the BSGF in many other locations
inside the same cuboid.

In this contribution, a storage scheme is pro-
posed that allows the computation and reuse of
Gegenbauer expansions, while providing a covering
of R3 \ {0}, i.e. any r except the origin can be
handled. The following two guiding principles will
be used:

• none of the cuboidal regions may contain or
touch the origin, since the singularity of the
Green’s dyadics is located there. If the origin
would be included, the Gegenbauer expansion
would converge only very slowly (or would not
converge), thereby jeopardizing the computa-
tional complexity.

• the computational complexity of evaluating
the Gegenbauer expansion (5) is O

(
P 3
)
, with

P being the truncation bound for the three
summations. This cubic complexity is too ex-
pensive for large P , which means that P has
to be kept smaller than a fixed value P0.

From these principles, it is clear that it is im-
possible to just take a certain fixed size a for all
cuboidal regions and fill space with translated ver-
sions. Indeed, at least one of the regions would
contain the origin, which violates the above guid-
ing principles.

A way around this problem is to use a multilevel
grid: let each cuboid have a level l ∈ Z and an
index vector n ∈ Z3. Now define the location of the
center of a cuboid as cl,n = 3ln, and its side al =
1
23l[1, 1, 1]. Clearly, the cuboids with n = 0 contain
the origin, whereas the other cuboids do not even
touch the origin. Therefore, to avoid violating the
first guiding principle, it suffices to never compute
the Gegenbauer expansion for the n = 0 cuboids.
When the BSGF needs to be evaluated in a point
near the origin, this will simply result in computing
the Gegenbauer expansion for a cuboid with a very
low level l.

The second guiding principle bounds the expan-
sion order P from above. This can have the un-
wanted side-effect that the accuracy of the Gegen-
bauer expansion is not good enough. This problem
is solved by using an adaptive subdivision strategy:
starting on a certain level, the Gegenbauer expan-
sion is computed. Then, it is checked whether the
accuracy of the expansion is good enough and, if
this is not the case, the level is decreased by one.
This means that the Gegenbauer expansion is now
computed for a cuboid that has only half the linear



size of the original cuboid. Therefore, the Gegen-
bauer series will converge much quicker. Of course,
it may happen that the required accuracy is still not
obtained, in which case the procedure is repeated.
After a finite number of level decrements, the re-
quired accuracy is achieved. Figure 1 illustrates
the adaptive lowering of the level and the fact that
the origin need not be included in the cuboids.

Figure 1: An example configuration for the cuboids
selected by the adaptive subdivision strategy.

CONCLUSION

A novel data structure and computation strategy
was proposed for the storage of the BSGF. Gegen-
bauer expansions are leveraged in such a way that
the evaluation of the BSGF is error-controllable and
has constant O

(
P 3
0

)
computational complexity.
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