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~ Abstract—In this paper we present an unconditionally stable factor sin(kA/2)2/A in the discrete dispersion relation. The
time-domain discretisation of Maxwell's equations where the other term(s) are all interpolated to the same position hod t

discretized fields are collocated. This allows us to combine jnyoqce a factoros(kA/2). The total result is that in the
Maxwell's equations, which are usually discretized on a staggered

grid, with constitutive differential equations which may not be e?(aCt disp_ersion relation is re_pla_lced WU{A/@Q/A in th_e
well-suited for staggered grids. This approach guarantees that discrete dispersion relation. Similarly,in the exact dispersion
the numerical dispersion relation always closely mimics the exact relation becomesan(wA;/2)2/A,. Figure 1 illustrates this

one. for the y-component of Faraday’s law in 2D.
I. INTRODUCTION t t o o
o 8]
In magnetized plasmas, constitutive differential equegtio |Derivative centraldifference 8 5
occur which use all three components of the electric field at £ @
a certain position. This is difficult to combine with Maxwsl| % _ %
equations, which, for each of their scalar components evo o] Averaging £y Averaging y 2
only derivatives of two electric/magnetic field componeats o ° o
a certain position, and are therefore ideally discretized o % %
Yee-cell-like grids. Conditionally stable solutions tastiprob- Derivative centraldifference g g
lem based on interpolation between collocated and stadgere; z e e, .,
positions have been proposed [1]. Here we will present an Eq By

alternative approach.
FDTD does not work very well on collocated grids, becauseg. 1. Discretisation of the 1D equatioR2: — 98:  The discrete

central-difference approximations of the derivativesareson- equation expresses equality between a time-averaged dpéivative and a

tain a term corresponding to the field at the position wheee tRP3ce-3veraged time-derivative.

derivative is calculated. Naively using FDTD on a collochate

grid simply results in several independent solutions.

II1. TIME STEPPING

1. A FULLY IMPLICIT APPROACH This method is implicit, and thus, every time step a sparse

Our approach is fully implicit, both in space and in timeSet of equations must be solved. For linear materials, the

The electric fields, magnetic fields, and other degrees D¥Stem to be solved is the same every time step, and a direct

freedom which may be necessary for a time-domain cofi?!Ver based on sparse LU decomposition can be used. In

stitutive equation, are discretized on a collocated ciames OUr €xperience, such a direct solver is significantly faster

grid. The distance between neighbouring points in spaceﬂi?n an iterative sol_ver and the space need_ed to store the LU

A, =A, = A, =A and in time isA,. fgctors_ appears to increase only linearly with the amount of
Each cartesian component of Maxwell's equations is didiScretisation points. _

cretized independently. Each of these components is arscalal '€ System to be solved is always of the form

partial differential equation c.ontaini'ng one temporali_wjﬁive (Sa — SpA/2)Visr = (Sa + SpA/2)V, 1)

and zero, one or two spatial derivatives (depending on the

amount of spatial dimensions used). The terms in the equatishere V,,; are the fields at the next time step, are the

are interpolated (in space and in time) to the center offi@lds at this time step$, is a spatial interpolation operator,

line/square/cube whose edges are along the directiong alamd Sy, is a spatial central difference operator.

which the equation contains derivatives. Now suppose theThe eigenvalues ofS4 — SpA/2)~1(S4 + SpA,/2) lie

equation contains the-derivative% of a certain field, and on the unit circle for allA,, i.e. our method is unconditionally

other term(s) which do not contaip-derivatives. Then, the stable. A detailed stability proof is outside of the scopéhid

z-derivative becomes a central difference and introducespaper.



V. COLD MAGNETIZED PLASMA W
The main motivation for this approach is its ability to
faithfully reproduce complicated dispersion relationscts as W
the one for magnetized cold plasma. The equation describing
currents in this medium is [1] /\/\/W/\F\J
a7, Lo
81&( = eqwiE — Q, x J, 2 /_’\M\/\N\/\
where s refers to the different particle species present in the W
plasmaws; is a characteristic plasma frequency related to the
density, andQ, = ¢,B,/m, is the cyclotron frequency due WWW/\/\N
to the background magnetic field. Note that the direction of
€, is arbitrary: unless the coordinate system is such hat I/\/\N\M/M
lies along a coordinate axi% will depend on all three
components of/;. This is why this equation is best discretized /\A/\/V\/\AW
on a collocated grid.
V. NUMERICAL EXAMPLES \/V\N\/\/W\W

A. Mode conversion MAN\MM

As a first example, we simulate 1D wave propagation in
a.l cold plasma WiFh positi(_)n-d_ependent_ ba_Ckground mag”elliug. 3. E; after1000 (top).2000, ..., 10000 (bottom) time steps, atA; =
field. The dispersion relation is shown in figure 2. Note howyoa,.
the long-wavelength fast wave connects to the much shorter
ion-cyclotron wave (ICW). In figure 3, we see the appearance
of this short wave in time-domain.

1200

1000

$00
500+ —_
£
= 600
= Fast wave %
E 0 — - 400
=
= 200
—500r
__._e——e———"“‘*r-Jk__—
% - 2108 4109 6x10° 8x10° 1% 10°
—1000} 1 w (Hz)
0 50 100 150 200

Fig. 4. Green : Numerical value df| versusw obtained by calculating
na, the eigenvectors of the system matrix and Fourier transfagntirem in
space. The obtainekl,. is always real. Black: Analytically determingd.|
Fig. 2. Space-dependent dispersion relation describingensodversion in for propagating (reak.) solutions of the exact dispersion relation. Orange:
a cold magnetized plasma. Analytically predicted discrete dispersion relation byplezingw and k;, by
the relevant tangent functions in the continuous dispersitation.

B. Numerical reproduction of the exact dispersion relation of
uniform cold plasma VI. CONCLUSION

In Fig. 4, the numerical dispersion relation for a plasma we have described an unconditionally stable discretisatio
like that to the left of Fig. 2 is shown. We used periodigf Maxwell's equations on collocated grids. This discratiisn
boundary conditions and calculated all eigenvectors agerei s especially usefull for the time-domain simulation of mag
values of the time-stepping operator. Thanks to uniforraiy tjzed cold plasmas, whose constitutive equations are nist we
periodicity, the eigenvectors are pure complex expontsitiagyited for staggered grids. In the future, we will attempt to

all with real &, (imaginary or complext, cannot obey the simulate far larger problems and/or different materialscks
periodic boundary conditions). The real roots of the exagk “warm” plasmas).

continuous dispersion relation in infinite space are alsovsh

as well as the modified roots obtained by replacig by REFERENCES

tan(k,A,/2)2/A, andw by tan(wA;/2)2/A;. [1] D. N. Smithe, “Finite-difference time-domain simulation ffsion plas-
This shows quite convincingly that this method is in fact mas at radiofrequency time scaleBfysics of Plasmas, vol. 14, no. 14,

capable of faithfully reproducing rather complex dispemnsi Pp. 2537-2549, Apr. 2007.

relations.



