
A time-domain discretisation of Maxwell’s
equations in nontrivial media using collocated fields

Wouter Tierens*
Ghent University

Department of Information Technology
Email: wouter.tierens@intec.ugent.be
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Abstract—In this paper we present an unconditionally stable
time-domain discretisation of Maxwell’s equations where the
discretized fields are collocated. This allows us to combine
Maxwell’s equations, which are usually discretized on a staggered
grid, with constitutive differential equations which may not be
well-suited for staggered grids. This approach guarantees that
the numerical dispersion relation always closely mimics the exact
one.

I. I NTRODUCTION

In magnetized plasmas, constitutive differential equations
occur which use all three components of the electric field at
a certain position. This is difficult to combine with Maxwell’s
equations, which, for each of their scalar components, involve
only derivatives of two electric/magnetic field componentsat
a certain position, and are therefore ideally discretized on
Yee-cell-like grids. Conditionally stable solutions to this prob-
lem based on interpolation between collocated and staggered
positions have been proposed [1]. Here we will present an
alternative approach.

FDTD does not work very well on collocated grids, because
central-difference approximations of the derivatives never con-
tain a term corresponding to the field at the position where the
derivative is calculated. Naively using FDTD on a collocated
grid simply results in several independent solutions.

II. A FULLY IMPLICIT APPROACH

Our approach is fully implicit, both in space and in time.
The electric fields, magnetic fields, and other degrees of
freedom which may be necessary for a time-domain con-
stitutive equation, are discretized on a collocated cartesian
grid. The distance between neighbouring points in space is
∆x = ∆y = ∆z = ∆ and in time is∆t.

Each cartesian component of Maxwell’s equations is dis-
cretized independently. Each of these components is a scalar
partial differential equation containing one temporal derivative
and zero, one or two spatial derivatives (depending on the
amount of spatial dimensions used). The terms in the equation
are interpolated (in space and in time) to the center of a
line/square/cube whose edges are along the directions along
which the equation contains derivatives. Now suppose the
equation contains thex-derivative ∂

∂x
of a certain field, and

other term(s) which do not containx-derivatives. Then, the
x-derivative becomes a central difference and introduces a

factor sin(k∆/2)2/∆ in the discrete dispersion relation. The
other term(s) are all interpolated to the same position and thus
introduce a factorcos(k∆/2). The total result is thatk in the
exact dispersion relation is replaced bytan(k∆/2)2/∆ in the
discrete dispersion relation. Similarly,ω in the exact dispersion
relation becomestan(ω∆t/2)2/∆t. Figure 1 illustrates this
for the y-component of Faraday’s law in 2D.
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Fig. 1. Discretisation of the 1D equation
∂By

∂t
=

∂Ex

∂z
. The discrete

equation expresses equality between a time-averaged space-derivative and a
space-averaged time-derivative.

III. T IME STEPPING

This method is implicit, and thus, every time step a sparse
set of equations must be solved. For linear materials, the
system to be solved is the same every time step, and a direct
solver based on sparse LU decomposition can be used. In
our experience, such a direct solver is significantly faster
than an iterative solver and the space needed to store the LU
factors appears to increase only linearly with the amount of
discretisation points.

The system to be solved is always of the form

(SA − SD∆t/2)Vt+1 = (SA + SD∆t/2)Vt (1)

where Vt+1 are the fields at the next time step,Vt are the
fields at this time step,SA is a spatial interpolation operator,
andSD is a spatial central difference operator.

The eigenvalues of(SA − SD∆t/2)
−1(SA + SD∆t/2) lie

on the unit circle for all∆t, i.e. our method is unconditionally
stable. A detailed stability proof is outside of the scope ofthis
paper.



IV. COLD MAGNETIZED PLASMA

The main motivation for this approach is its ability to
faithfully reproduce complicated dispersion relations, such as
the one for magnetized cold plasma. The equation describing
currents in this medium is [1]

∂ ~Js
∂t

= ǫ0ω
2
s
~E −

~Ωs ×
~Js (2)

wheres refers to the different particle species present in the
plasma,ωs is a characteristic plasma frequency related to the
density, and~Ωs = qs ~B0/ms is the cyclotron frequency due
to the background magnetic field. Note that the direction of
~Ωs is arbitrary: unless the coordinate system is such that~B0

lies along a coordinate axis,∂
~Js

∂t
will depend on all three

components of~Js. This is why this equation is best discretized
on a collocated grid.

V. NUMERICAL EXAMPLES

A. Mode conversion

As a first example, we simulate 1D wave propagation in
a cold plasma with position-dependent background magnetic
field. The dispersion relation is shown in figure 2. Note how
the long-wavelength fast wave connects to the much shorter
ion-cyclotron wave (ICW). In figure 3, we see the appearance
of this short wave in time-domain.

Fig. 2. Space-dependent dispersion relation describing mode conversion in
a cold magnetized plasma.

B. Numerical reproduction of the exact dispersion relation of
uniform cold plasma

In Fig. 4, the numerical dispersion relation for a plasma
like that to the left of Fig. 2 is shown. We used periodic
boundary conditions and calculated all eigenvectors and eigen-
values of the time-stepping operator. Thanks to uniformityand
periodicity, the eigenvectors are pure complex exponentials,
all with real kx (imaginary or complexkx cannot obey the
periodic boundary conditions). The real roots of the exact
continuous dispersion relation in infinite space are also shown,
as well as the modified roots obtained by replacingkx by
tan(kx∆x/2)2/∆x andω by tan(ω∆t/2)2/∆t.

This shows quite convincingly that this method is in fact
capable of faithfully reproducing rather complex dispersion
relations.

Fig. 3. Ex after1000 (top),2000, . . . , 10000 (bottom) time steps, atc∆t =

100∆x.

Fig. 4. Green : Numerical value of|kx| versusω obtained by calculating
the eigenvectors of the system matrix and Fourier transforming them in
space. The obtainedkx is always real. Black: Analytically determined|kx|
for propagating (realkx) solutions of the exact dispersion relation. Orange:
Analytically predicted discrete dispersion relation by replacingω andkx by
the relevant tangent functions in the continuous dispersion relation.

VI. CONCLUSION

We have described an unconditionally stable discretisation
of Maxwell’s equations on collocated grids. This discretisation
is especially usefull for the time-domain simulation of magne-
tized cold plasmas, whose constitutive equations are not well-
suited for staggered grids. In the future, we will attempt to
simulate far larger problems and/or different materials (such
as “warm” plasmas).
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