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Abstract — Auditory attention is an essential property of human 

hearing. It is responsible for the selection of information to be 

sent to working memory and as such to be perceived consciously, 

from the abundance of auditory information that is continuously 

entering the ears. Thus, auditory attention heavily influences 

human auditory perception and systems simulating human 

auditory scene analysis would benefit from an attention model. In 

this paper, a human-mimicking model of auditory attention is 

presented, aimed to be used in environmental sound monitoring. 

It relies on a Self-Organizing Map (SOM) for learning and 

classifying sounds. Coupled to this SOM, an excitatory-inhibitory 

artificial neural network (ANN), simulating the auditory cortex, 

is defined. The activation of these neurons is calculated based on 

an interplay of various excitatory and inhibitory inputs. The 

latter simulate auditory attention mechanisms in a human-

inspired but simplified way, in order to keep the computational 

cost within bounds. The behavior of the model incorporating all 

of these mechanisms is investigated, and plausible results are 

obtained. 

Keywords – Auditory Attention Model; Computational Auditory 

Scene Analysis; Auditory Stream Segregation; SOM; Artificial 

Neural Network; Environmental Sound 

I.  INTRODUCTION 

Recent findings in psychophysics and neurophysiology 

point out that selective auditory attention is of great 

importance in human auditory perception [1][2]. Humans 

easily outperform current computer models in the process of 

perceiving and analyzing an acoustic environment, called 

auditory scene analysis (ASA). ASA involves decomposing a 

complex mixture of incoming sounds, originating from 

different sources, into individual auditory streams, using 

different auditory, but also visual and other cues [3]. Auditory 

attention is not only found to be indispensable in the process 

of auditory stream segregation itself [4], but, through 

competitive selection, it also enables listeners to select a single 

auditory stream for entrance into working memory, where it 

can be analyzed in detail. Information entering working 

memory is consciously perceived and can be used to create a 

mental image of the acoustic environment, and thus can 

influence the decision making process [5]. These findings 

make it clear that an auditory attention model is indispensable 

in computational auditory scene analysis (CASA). 

The model described in this paper uses a submodel based 

on a Self-Organizing Map (SOM) to classify, and differentiate 

between different sounds, similar to the one described in [6]. 

On top of this SOM, it places a network of neurons with a 

combination of simple excitatory and inhibitory inputs. These 

excitation and inhibition terms implement the concepts of 

saliency-driven bottom-up attention, top-down attention and 

inhibition-of-return that are found in other auditory and also 

visual attention models [5][7], but adapts them for use in the 

SOM-based neural network. Finally, a submodel for 

competitive selection and clustering of excited neurons, 

loosely based on some concepts of Locally Excitatory 

Globally Inhibitory Oscillator Networks (LEGION, see [8]), is 

employed in this paper. 

As in all models that simulate human brain functions, the 

proposed model for human auditory attention and stream 

segregation needs to make certain compromises between 

computational efficiency and biological accuracy. The present 

model is designed to be integrated into a large-scale noise 

monitoring network. One of the goals of this system will be to 

classify sound events that are potentially noticed by a listener, 

and to detect and identify conspicuous sound events, within 

the assessment of potential long-term effects of exposure to 

environmental sound on quality of life [9][10]. Consequently, 

the model is aimed to be embedded in low-cost hardware that 

has to run continuously for weeks to months. This requirement 

makes it not feasible to use similar but much more detailed 

models for auditory attention, such as the one presented in 

[11]. Nevertheless, while some of the submodels presented in 

the present work behave according to greatly simplified rules, 

the proposed model’s architecture, and the way in which its 

different submodels interact are strongly based on available 

knowledge of the human auditory system. 

This paper is structured as follows: in the next section, the 
model’s architecture is presented, and its different submodels 
are discussed. Subsequently, the behavior of the model will be 
examined and some examples illustrating its use will be given. 
Finally, our conclusions are presented. 
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II. MODEL 

A. General 

The general structure of the model is given in Fig. 1. The 

central element in the model is the Self-Organizing Map or 

SOM. A grid of neurons connected to the SOM is used as a 

greatly simplified model for the auditory cortex, each neuron 

encoding a prototypical sound. The same groups of neurons on 

the grid will be excited by similar input sounds, and as such, 

the SOM classifies different types of sounds. In a first phase 

(see section II.B and the upper right part in Fig. 1), the SOM is 

trained in an unsupervised way, using features that describe 

the sound’s characteristics (intensity, time contrast, frequency 

contrast), calculated for a long training sound fragment. Next 

(see section II.C and the upper left part in Fig. 1), the same 

features, now calculated for the test sounds, are used as input 

for the grid of neurons coupled to the SOM. The neurons of 

this grid will be excited to a certain degree, depending on the 

type of sound they represent, and the type of input sound. The 

third part of the model (see section II.D and the lower left part 

of Fig. 1) is the core attention model. It implements bottom-up 

attention as an enhancement of excitation for SOM neurons 

representing salient sounds, inhibition-of-return as a decrease 

of excitation of highly and frequently excited nodes and top-

down attention as a modulator of inhibition-of-return. Finally 

(see section II.E and central right part in Fig. 1), local 

excitation and global inhibition mechanisms are used for 

clustering of excited neurons, and for competitive selection to 

decide which neurons deliver input to the working memory. 

 
 

Figure 1.  Overview of the model structure, with all of its submodels. The 

attention submodel in the lower left part is displayed in red, and the clustering 

and competitive selection submodel in the central right part is displayed in 
blue. 

The latter may trigger further processing of the environmental 

sound. For example, if the model is incorporated into a 

measurement network, it may trigger recording of sound, 

transmission to a central database for automated and more 

detailed sound source recognition etc. 

B. Learning 

The learning phase of the model is very similar to the one 

presented in [6]. For reference, a short overview is given. A 

first step in the processing of incoming sound is the 

calculation of features describing it. The model starts from the 

1/3-octave band spectrum, calculated with a temporal 

resolution of 0.125s. Next, a simplified cochleagram is 

calculated, taking into account energetic masking, using the 

Zwicker loudness model [12]. This cochleagram covers the 

complete range of hearable frequencies (0-24 Bark) with a 

resolution of 0.5 Bark. Thus, 48 spectral values are obtained at 

a rate of 8 times per second. Inspired by more detailed models 

for calculating an auditory saliency map [13], features 

encoding absolute intensity and spectro-temporal variations 

are calculated, by convoluting resp. Gaussian and difference-

of-Gaussian filters with different scales to the cochleagram. 

Using 4 scales for intensity, 6 for spectral contrast and 6 for 

temporal contrast, 16 values are obtained for each frequency 

band in the cochleagram, and thus a 48 x 16 = 768 

dimensional feature vector, describing the incoming sound, is 

calculated at each timestep. 

Next, the obtained feature vectors of the training sequence 

are used as inputs to a Self-Organizing Map (SOM) or 

Kohonen map [14]. A SOM is a mathematical model often 

used as an unsupervised technique for nonlinear dimension 

reduction.  It consists of nodes placed in a 2D grid, usually 

forming a hexagonal lattice, with each node corresponding to a 

reference vector in a multi-dimensional vector space. After 

training with the feature vectors of the training sequence, the 

SOM nodes encode the range of sounds contained in the 

training sequence by means of their corresponding reference 

feature vectors. 

It should be noted that in order to obtain a well-trained 

SOM, a large training sequence is required. In light of the 

application of the model presented in this paper in outdoor 

sound monitoring, a SOM that is able to recognize most of the 

daily environmental sounds at a particular fixed outdoor 

microphone location will require training on several days of 

consecutive acoustic data. For this purpose standard SOM 

training techniques are extended with a continuous training 

algorithm that selects not well-matched and salient new data 

for further training. For each incoming feature vector a 

saliency value is calculated, using the same method as in 

section II.D, and only when this saliency value exceeds a 

certain threshold the feature vector is taken into account for 

further learning. Similarly, only incoming feature vectors with 

a Euclidian distance to the best matching unit exceeding a 

certain threshold are taken into account. 



C. Excitation 

With each SOM node, a neuron, sensitive to input sounds 

represented by that node, can be associated. The SOM thus 

can be viewed as an abstract model for the auditory cortex. 

When a specific sound (e.g. caused by a car passing by, people 

talking …) is used as input, the neurons corresponding to 

nodes in the SOM with a feature vector most similar to the 

incoming sound should be excited. In what follows, both the 

terms ‘SOM node’ and ‘SOM neuron’ will be used for the 

SOM node itself as well as for the neuron of the excitatory-

inhibitory neural network associated to it. 

A possible way to gather information about the similarity 

between the incoming feature vector and the reference vectors 

of the SOM is to calculate the Euclidian distances between 

both. This method however fails to take into account that 

certain features tend to have larger values, and to display 

bigger variations than others. Thus, in order to calculate the 

excitation of a certain node, first the incoming features are 

scaled, by dividing them by the maximum value, taken over all 

nodes’ reference vectors, of the corresponding feature. This 

value gives a good estimation of the maximum value that can 

be expected for this feature, and thus gives an idea of the 

range of values that the feature can assume. The reference 

vectors are then scaled in the same way and the Euclidian 

distance between the two scaled vectors is calculated. 

           
           

      
 
 

    
     

Here,     is the value of the j-th element of the feature vector 

representing the i-th node,       is the j-th element of the input 

feature vector in the n-th timestep and            
  

     . 

In order to convert this distance to a measure of similarity, i.e. 

displaying higher values for similar vectors and lower values 

for dissimilar vectors, a Gaussian-type function is used. 

              
      

    
    

The standard deviation    used in this Gaussian-type function 

is a parameter that can be chosen depending on the desired 

sensitivity of the neurons. 

It should be clear that not all of the 768 features are 

equally important in the process of recognizing a certain sound 

source, and some features can even contain confusing 

information. Take, for example, a neuron sensitive to bird 

sounds. If the model would give features encoding information 

at low audio frequencies the same amount of importance as 

features encoding information at high audio frequencies, in 

which the bird sound is dominant, a disturbing background 

sound containing mainly low frequencies would cause the 

incoming feature vector to have a large (scaled) Euclidian 

distance from the reference vector representing bird sound, 

even though the high frequency features are very clear and 

recognizable. In order to solve this problem, only the 76 

features (10% of the total) with the highest values in the scaled 

reference vector of a node are taken into account when 

calculating the distance to that node, so (1) becomes: 

           
           

      
 
 

    
  

with    the set of 76 feature vector indices with the highest 

scaled value in the reference vector of the i-th SOM node. In 

the bird sounds example, the features with the highest values 

in the scaled reference vector will be features encoding 

information at higher audio frequencies, and thus the presence 

of lower frequencies won’t disturb the recognition of the bird 

sound anymore. 

In order to account for non-instantaneous excitation of 

neurons, the excitatory mechanism is modeled as a leaky 

integrator, approaching its goal     in an exponential way, 

with different time constants for increase and decrease. Thus, 

excitation is given by: 

                     
 

  
    

 
       

    
    

or, in a recursive form: 

                
 

  
               

 
  
    

with    the length of the timestep between consecutive input 

vectors (0.125s in this paper) and    the time constant of the 

leaky integrator, with different values for increasing and 

decreasing excitation. The factor      
 

  
     is needed to 

make the leaky integrator converge towards its goal value     . 

D. Attention 

The next step in the construction of the model is the 

inclusion of attention mechanisms. Auditory attention can be 

described as “the cognitive process underlying our ability to 

focus on specific aspects of the acoustic environment, while 

ignoring others” [2]. The proposed attention submodel is 

inspired by the model described by Knudsen [5], involving 

bottom-up and top-down attention mechanisms, and an 

inhibition-of-return (IOR) mechanism preventing attention 

from permanently staying focused on the same sound source. 

These combined effects interplay and influence the decision 

about which auditory stream is selected to enter working 

memory. 

Bottom-up attention is a rapidly operating mechanism, 

independent of any particular tasks the listener might be 

performing. It facilitates the detection of conspicuous, 

potentially interesting or dangerous sounds. For example, 

regardless of the activity in which a listener is engaged, the 



sound of a gunshot will almost certainly draw his attention. In 

the proposed model, this is implemented as a factor that 

increases the excitation of nodes representing salient sounds, 

compared to those representing non-salient sounds. This way, 

nodes representing salient sounds will more easily be excited 

to higher levels, and thus the detection of salient sounds will 

be facilitated. In order to calculate a measure of saliency for 

each node, the method described in [15] is largely followed, 

with the major adjustment that spectro-temporal orientation 

and pitch are not considered. Thus, only the features also used 

by the SOM are needed in order to calculate a saliency map as 

a function of frequency for each node. In order to obtain a 

single value for saliency of a node, the values for the different 

frequencies are simply added together. Next, the saliency 

values corresponding to the SOM nodes are linearly rescaled, 

and an offset value can be added in order for the minimum and 

maximum to reach predefined values. These rescaled and 

offset saliency values    can then be used as an enhancing 

factor for the excitations of the SOM nodes. 

                
      

    
    

The predefined minimum and maximum saliency factor values 

then control for the influence of saliency, as they determine 

the portion of the node’s excitation due to saliency. 

Inhibition-of-return is a mechanism that causes attention to 

attenuate or switch to another sound source after a certain 

period of time. Because of this, a listener is able to 

continuously shift attention and scan the acoustic environment. 

For example, when a listener stands next to a busy road, at 

first his attention will be drawn to the sound of the cars 

passing by. After a while, his attention to the car sound will 

weaken, and other environmental sounds, such as bird sounds, 

will be paid attention to. As in the case for the activation 

mechanism, the inhibition-of-return mechanism is modeled as 

a leaky integrator. As soon as a neuron is activated, inhibition-

of-return will rise towards its current excitation. When the 

neuron is not activated, inhibition-of-return will decrease 

towards zero: 

            
                  

                      
   

      is the activation of the i-th SOM neuron in the n-th 
timestep. It will be defined in (11) (see below). Inhibition-of-
return is thus given by: 

                        
 

  
      

 
       

      
    

or, in a recursive form: 

                   
 

  
                   

 
  

      

with parameters defined in analogy with (5). Again, the time 

constant has different values for increasing and decreasing 

inhibition-of-return. 

Top-down attention is operating more slowly than bottom-

up attention. When a noticed sound is considered to be 

interesting, based on information already held in working 

memory, the top-down attention mechanism tries to focus 

sustained attention on this sound source. In the above example 

where a listener listens to car sounds on a busy road, attention 

will stay focused on the car sounds if the listener is given the 

task to try and detect when a particular car is passing by. In the 

model, this effect can be implemented as a determining factor 

for the time constant of the inhibition-of-return. When top-

down attention needs to be focused on a certain area of the 

SOM, the inhibition-of-return time constants associated with 

these SOM nodes can be adapted in such a way that the 

scanning of the acoustic environment, caused by the 

inhibition-of-return, will be delayed, or even halted when 

attention is focused on the area of interest in the SOM. 

  

Finally, competitive selection is needed, in order to decide 

what information is selected to enter working memory. A 

simple, but plausible way to achieve this, is to select the most 

strongly excited neurons, taking into account the external 

neural excitation and the inhibition-of-return. An issue that 

arises in this system is the fact that sometimes the most 

strongly excited neurons are scattered over the SOM, and do 

not represent one single stream to enter working memory. This 

issue is addressed by a clustering mechanism explained in the 

next section. 

E. Clustering 

In order to achieve clustering and competitive selection, 

the model uses some concepts of a Locally Excitatory 

Globally Inhibitory Oscillator Network (LEGION), which has 

earlier been used for a similar purpose [16]. In contrast to the 

original LEGION model [8], in the present model, no 

oscillators are involved, but the concepts of local excitation 

and global inhibition are implemented to achieve the same 

goal of clustering and segregation. Global inhibition is used as 

a simple way to select the information to enter the working 

memory: only a selection of SOM neurons that are sufficiently 

excited will be activated when taking into account the global 

inhibition effect. As only the activated neurons hold 

meaningful information, these are the only ones sending 

information to the working memory. Local excitation 

interplays with this effect, by achieving simultaneous 

activation of neighboring neurons, which represent similar 

sounds, and which are thus likely to represent the same 

auditory stream. 

In the implementation, global inhibition is assumed to 

depend on the total activation of all SOM neurons. When the 

sum of the activations of all neurons is above a certain 

predefined value, global inhibition will increase, and vice 

versa. By calculating the global inhibition as explained above, 

total activation will always approach the same value. Taking 



into account external excitation, inhibition-of-return and 

global inhibition, activation is calculated as follows. 

                                    

     is the global inhibition in the n-th timestep, calculated 

as explained above.The maximum makes sure that neurons 

for which total inhibition is higher than excitation have zero 

activation instead of a non-realistic negative value. 

In order to determine the strength of the local excitation, 

first, in a similar way to the LEGION model, connection 

weights between the SOM nodes have to be calculated. A first 

property of the local excitation model is that, like in [16], there 

are only connections between neighboring SOM nodes, 

modeling hardwired connections in the network. A second 

property is that nodes with similar reference vectors have high 

connection weights, whereas nodes with very dissimilar 

reference vectors are only weakly connected. To calculate 

similarity between reference vectors, the distance is taken 

between the two vectors, scaled as described in section II.C. 

Also in the same way as in section II.C, a Gaussian-type 

function is used to convert this distance to a measure for 

similarity, again with the standard deviation of the Gaussian-

type function as a parameter determining sensitivity. This 

measure for similarity is then used as connection weight 

between the two SOM nodes. These connection weights are 

fixed, and have to be calculated only once, as soon as the 

trained SOM is known. Now, neurons with non-zero 

activation, according to (10), will provide an extra excitation 

for their neighboring neurons. This extra excitation term is 

calculated as the activation of the neighboring neuron, 

multiplied by the calculated connection weight between the 

neurons. Thus, each node in the hexagonal SOM lattice, 

except for the border neurons, will receive 6 additional 

excitation inputs. As total excitation is altered by these new 

excitations, global inhibition will increase to obtain the same 

total activation as before. With the addition of the local 

excitation and the recalculation of global inhibition, the 

activation pattern of the SOM neurons has changed, and can 

now be used again as input for local excitation as explained 

above, and again, global inhibition will adapt to the added 

excitation. Repeating this process a predefined number of 

times for each timestep leads to clustering and only one, or a 

few, clusters of SOM neurons will finally be activated. Thus, 

the final formula for the calculation of the node activation 

becomes: 

                                         

where        is the total local excitation of the i-th node, 

calculated as explained above, and       is the total global 

inhibition adapted to the situation with local excitation, both at 

the n-th timestep. 

III. RESULTS 

In this section, an illustration of the above described 

auditory attention model is given. A SOM consisting of a 

75x50 grid of nodes is trained on 768-dimensional feature 

vectors, calculated with time intervals of 0.125s, based on 10 

days of continuously recorded ambient sound. The sound was 

recorded by a microphone, placed in the city of Ghent, next to 

a quiet road and a river. The recordings contain mainly urban 

background noise, as well as some distinct cars driving by, 

ducks in the river, birds singing occasionally, the humming 

noise produced by some machinery in a neighboring 

laboratory, people talking, … To illustrate the model, the 

SOM neurons are externally excited by an incoming sound 

fragment with a duration of one minute. For each timestep, an 

activation pattern is calculated as described in section II. Time 

constants for external excitation are taken to be 0.01s when 

increasing, and 0.05s when decreasing. Inhibition-of-return 

time constants are taken to be 0.2s and 10s for increasing and 

decreasing values respectively. Experiments with the time 

constants indicate that these values yield reasonable results, 

independent of the SOM used, but, depending on the desired 

behavior of the model, the constants can be adjusted. For 

instance, in order to simulate a nervous person, the inhibition-

of-return time constants can be decreased so the model will 

switch attention and scan the acoustic environment at a faster 

rate. 

Firstly, to demonstrate the basic mechanisms of the model, 

excitation is not saliency weighted, eliminating bottom-up 

attention, and conscious top-down attention is also not taken 

into account. In Fig. 2, the average activation of the SOM 

neurons during the one-minute testing fragment is shown. The 

region on the SOM map around the node indicated by A in 

Fig. 2 is found to represent silent and non-salient city 

background noise (as determined by an expert listener). The 

zone around node B represents similar sounds, but including a 

humming machinery sound. The region around node C in the 

map represents the sound of ducks, and finally, the region 

around node D represents the sound of cars passing by. Fig. 3 

shows the evolution, during 15 seconds of the one-minute 

testing fragment, of the different terms in (11), each behaving 

according to the model described in section II. Most of the 

time, the external excitation equals the total excitation, as local 

excitation only exceeds zero in certain timesteps where the 

iterative clustering mechanism rises this term to noticeable 

values. It can be seen that in the first few seconds, neuron D 

displays much activity, after which inhibition-of-return has 

grown to such levels that no further activation occurs. After a 

few seconds neurons A and B become active, indicating non-

salient background sounds and machinery noise. 

Comparatively large zones of the SOM represent very similar 

non-salient sounds, causing a large amount of neurons to be 

excited externally, in turn causing the global inhibition to rise, 

according to the process described in section II.E. Finally, in 

the last few seconds of the analyzed fragment, the neurons 

describing duck sound are slightly activated. This activation 

would be expected to be stronger, as in the sound fragment 

duck sound is clearly present here. This is found to be due to 

the training of the SOM, as in the training set duck sound is 

only sparsely available.  



 
Figure 2.  Average SOM-neuron activation during one-minute testing 

fragment, without bottom-up or top-down attention. Indicated nodes A, B, C 

and D represent a selection of different prototypical sounds. 

 
Figure 3.  Evolution of different excitation and inhibition terms, as well as 

total activation of the nodes A, B, C and D as shown in Fig. 2, without 

bottom-up or top-down attention. 

Secondly, the same procedure is repeated, including 

bottom-up attention by weighing external excitation with 

node-dependent saliency coefficients as described in section 

II.D. Fig. 4 shows the average activation and Fig. 5 shows the 

dynamics of the same four selected nodes as in Fig. 3. It can 

be seen that some of the activation of the SOM zone around 

node A moves to the zone around node B. This makes sense, 

as these two zones are often excited together, and the most 

salient of them, B, should be the one that is consciously 

perceived. In the zones around C and D, hardly anything 

changes. This was also to be expected, as when these sounds 

occur, they usually dominate the incoming sound, and 

therefore no other zones of the SOM map are excited 

simultaneously and saliency weighing cannot influence the 

node activation to a significant extent.  

Finally, top-down attention is included in the simulation. 

For the neurons in the zone around D, inhibition-of-return time 

constants are changed to 1s for both increasing and decreasing 

values. Thus, inhibition-of-return increase is slower and 

decrease is faster in this zone than in the rest of the ANN, 

facilitating sustained attention on this zone. The average node 

activation in this case is given in Fig. 6 and the dynamics of 

the same nodes A, B, C and D are given in Fig. 7. It can be 

seen that now, during the whole period that a car is driving by, 

neuron D is activated, as inhibition-of-return does not switch 

attention to other zones on the map any more. Also, attention 

is drawn from the already weakly activated duck sound to a 

car driving by on a more distant road. Experiments with top-

down attention focused on other zones of the map similarly 

yields plausible results. 

IV. CONCLUSIONS 

In this paper, a human-mimicking computational model of 

auditory attention is presented. It consists of a series of 

submodels that are inspired by existing models, but are 

adapted in order to be combined in one global model, to 

simulate different features of the human auditory attention 

focusing process. Common to all submodels is a balance 

between biological plausibility and computational complexity, 

as the model is aimed to be run on low-cost hardware for 

environmental sound monitoring during prolonged periods of 

time. The aim of the model is to detect and classify sound 

events of interest in a versatile way. Potential applications of 

the model are e.g. monitoring traffic noise, habitat monitoring 

or the computational analysis of urban soundscapes. 

Application of the model consists of two phases. In a first 

phase, the model is trained on the sound at a particular 

location for a predefined period of time, e.g. a couple of weeks 

for urban outdoor environments. During this (unsupervised) 

training process, the model learns to classify the sounds that 

are present at the location of the microphone on the basis of 

co-occurrence of features. In the second phase, the model is 

employed to quickly detect and classify particular sound 

events of interest. An important feature of the model is that, on 

top of a bottom-up attention mechanism, it provides the 

possibility to focus (top-down) attention on those sounds that  



 
Figure 4.  Average SOM-neuron activation during one-minute testing 

fragment, with only bottom-up attention. Indicated nodes A, B, C and D 

represent a selection of different prototypical sounds. 

 
Figure 5.  Evolution of different excitation and inhibition terms, as well as 

total activation of the nodes A, B, C and D as shown in Fig. 4, with only 

bottom-up attention. 

 

 
Figure 6.  Average SOM-neuron activation during one-minute testing 

fragment, with bottom-up attention and top-down attention focussed on the 
zone around node D. Indicated nodes A, B, C and D represent a selection of 

different prototypical sounds. 

 
Figure 7.  Evolution of different excitation and inhibition terms, as well as 

total activation of the nodes A, B, C and D as shown in Fig. 2, with bottom-up 

attention and top-down attention focussed on the zone around node D. 



are of interest for the user. An implementation of the 

integrated model is tested on an actual urban soundscape, and 

it is shown that the model displays sensible, human-like 

behavior. 
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