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Abstract. There has been lots of research in the field of fuzzy spatial
data and the topology of fuzzy spatial objects. In this contribution, an
extension to the 9-intersection model is presented, to allow for the relative
position of overlapping fuzzy regions to be determined. The topology
will be determined by means of a new intersection matrix, and a set
of numbers, expressing the similarity between the topology of the given
regions and a number of predefined cases. The approach is not merely a
conceptual idea, but has been built on our representation model and can
as such be immediately applied.

1 Preliminaries

1.1 Introduction

A common problem in spatial reasoning, is describing the position of one object
or feature in relative to another object or feature. ” ‘Do both overlap, is one con-
tained within the other, or do they touch?”’ are some examples. For crisp regions,
it is fairly easy to see that the different possibilities are mutually exclusive: if
two regions touch, then one does not contain the other. The concept of a broad
or undetermined boundary ([1], [2]), in which the boundary was considered to
be a region delimited by an inner and an outer boundary, rather than a thin
line was a first extension. The topology of such regions is similar in approach to
crisp topology; all intersection cases are mutually exclusive. Allowing for truly
fuzzy regions however, implies that there is no certainty or precision regarding
the points of to the regions. As such, statements about topology are prone to
similar uncertainty and imprecision, resulting in the fact that two regions can
resemble multiple intersection cases at once (regions can for instance touch and
overlap). It is important to first find the cases that match, and then to gener-
ate quantitative measures to indicate how well each matches. In this paper, we
will first describe the fuzzy topology model, list some of cases, and illustrate by
means of an example.
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1.2 9-intersection model

One approach to model crisp topology, is the 9-intersection model [5]. It uses
the concepts of interior (points inside the region, denoted -°), exterior (points
the region, denoted -~) and boundary (denoted 9-), then considers every pos-
sible intersection between them. This yields a total of 9 possible intersections,
commonly grouped in the matrix shown below:

A°NB° A°NOB A°N B~
OANB° OANOB OAN B~ (1)
ATNB°A " NOB A NB~

By assigning each matrix element 0 if the intersection is empty, and 1 if the
intersection is not empty, 2° = 512 matrices are possible. Depending on imposed
restrictions (e.g. presence of holes), only a subset of the 512 relations is possible.
For crisp regions without holes and no disconnected parts in a two-dimensional
space R?, only eight intersection matrices are meaningful, yielding the relations:
disjoint, contains, inside, equal, meet, covers, coveredBy and overlap; illustrated
on fig. 1. An alternative way of describing topology is the RCC calculus, but the
nine-intersection model lends itself easier toward qualitative approach.

001 111 100 100
001 OO 001 @ 100 @ 010 Q
111 001 111 001

(a) (b) (©) (d)
001 111 100 111
011 % 011 @ 110 @ 111 Q)
111 001 111 111
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Fig. 1. Topological relations for crisp regions: disjoint (a), contains (b), inside (c),
equal (d), meet (e), covers (f), coveredBy (g) and overlap (h), with their intersection
matrices.

2 Fuzzy region model

2.1 Concept

Regions are often represented by means of an outline, represented by a curve.
The region is defined as all the points located inside this curve '. For our defini-
tion of fuzzy regions, a different point of view is necessary: a region is considered
mathematically as a set of locations (all the locations inside the curve). It then
is a small step to extend it to a fuzzy set [10] of locations, where each location

! Possibly, the region can have holes, but in this contribution only regions without
holes are considered.
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is represented by a point and each location has a membership grade associ-
ated?. The membership grades for regions are interpreted in a veristic way [4]:
all locations belong to the region, but some more than others. A possibilistic
interpretation can be used to represent fuzzy points, and although a similar ap-
proach can be applied, this contribution focusses on fuzzy regions. On fig. 2, an
example of a fuzzy region is shown.

Definition 1 (fuzzy region A)

O
o

A = {(p,uz(p) | p € Uupuzlp) > 0}

where
u,;(q)\
1
paiU = [0,1] 0
P 1i(p) o) >
Here U is the universe (commonly R?). palpr) = 1pg(p2) = 08 p5(ps) =
O.I,MA(]M) = O7

Fig. 2. A fuzzy region, for illustration purposes the fuzzy region is delimited by a grey
line. The membership grades for points belonging to the region are shaded, ranging
from black (membership grade 1) to white (membership grade 0). A cross section shows
how the membership grades along the dotted line evolve.

3 Topology

3.1 Fuzzy concepts

To extend the 9-intersection model, appropriate definitions for interior, exterior
and boundary are needed. The approach is similar to the extension in [1] for
regions with broad boundaries. The definitions bear resemblance to the work of
Du [3], where a fuzzy border around a crisp region was defined to create a fuzzy
region. This is similar to our work in [7], but with such regions it is impossible to
make a closed calculus: the intersection for instance cannot always be represented
by a new such region. For the fuzzy boundary, several consideration are in place:
as the region itself is fuzzy, it is logical that its boundary will be a fuzzy entity. It
should be defined such that it remains compatible with the crisp topology. First,
consider the case of a fuzzy region which has a membership grade 1 in some
central part, and has continuously, decreasing membership grades away from this
central part outward. Points p with membership grade p;(p) =0 or pz(p) =1
in the original region can be considered not to belong to the boundary, as they
are completely outside, respectively completely inside the region. Points with a

2 Note that the membership grade are not derived from coordinates of the point, but
assigned which each point individually.
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membership grade that is closer to 0 or 1 belong less to the boundary than points
with a membership grade closer to 0.5. Because of this 0.5 will play a crucial part:
points p for which 1 ;(p) = 0.5 will be said to completely belong to the boundary
(and thus p 4 1(p) = 1). The more u 5 (p) differs from 0.5, the lower p , 5 (p) should
be. This can be accomplished with e.g. the function: 2(0.5—10.5—z]), Va € [0, 1];
illustrated on fig. 3a, the resulting boundary is shown on fig. 3b and fig. 3c. The
particular function was chosen as it it keeps some properties of the original
function when only considering the values in [0, 0.5] or [0.5, 1] (e.g. linearity). As
crisp regions (and broad boundary regions) are special cases of fuzzy regions,
the definition must be such that remains compatible (this is also required if for
instance a fuzzy region’s has a sudden transition of membership grade at some
part). This is achieved by considering the boundaries A, at every a-level a.
The definition of the boundary of a fuzzy region A is given in fig. 3. In general,
it is not mandatory to have points with a membership grade 0.5. For a region
it may therefore be possible that at some sides there exists a path from the
core to the outside which does not cross points for which p, ;(p) = 1 (the
current definition guarantees there always will be points for which 4 5(p) > 0
that will be crossed). The full impact of this is currently under investigation.
For the interior, first consider the points that are completely part of the region

Definition 2 (boundary AA). 1A M AR e AR .

AA = {(p, max(sup{a|p € A, os 03

2005105 — s (p)))} . .

Definition 3 (interior A°).

A° = {(po 1150 () where - 5
A

Htio : U —[0,1] 0 A
pr {O 1i(p) <05 UINT

1 — pa4(p) elsewhere

Definition 4 (exterior A™).

A™ ={(p,ps-(p)} where . .
pi- U —[0,1] LU
pﬁ{o wilp) > 0.5 T~

1 —ppz(p) elsewhere

> >
©\?1 @31
> >

Fig. 3. lllustration of the fuzzy boundary, interior and exterior; for each, the definition,
a plot of the membership function (with the membership function for A) and a graphical
representation of the resulting regions using grey scales.

(e 1(p) = 1); this will also be the core of the interior. Points p just outside this
core, but still belonging to a substantial extent to the region (i.e. 1 5(p) > 0.5)
are also considered to be part of the interior to a lesser extent. Points p with a
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membership grade p ;(p) < 0.5, are considered not to belong to the interior, fig.
3. The exterior is defined analogously, fig. 3.

3.2 Intersection matrices

Description Once the concepts of interior, boundary and exterior are known,
the 9-intersection matrix for fuzzy regions is:

h(A°AB°) h(A°NAB) h(A°NB™) d e el
h(AAAB®) h(AAAAB) h(AAAB™) | = [ 2 b @ (2)
h(A~AB°) h(A~AAB) h(A~AB™) ez az 1

Here h(X) is the notation for the height(X) of a fuzzy set X, i.e. the highest

membership grade in the set [6]. The intersection is the fuzzy intersection, by
means of a t-norm (e.g. minimum). The matrix elements can have any value
in the range [0, 1], which impacts how the matrices will be interpreted; and
are named (apart from the bottom right element, which is always 1). A full
case study has been made, yielding a large number of cases; but as there are
similarities there are ways of grouping them. We opted for groups more or less
resembling the 44 cases Clementini listed for the broad boundary model ([1]).
Two cases are illustrated below, their numbers referring to their number in the
44 cases.

— Case 1: The first case is when both regions A and B are completely disjoint.

~ R § (00 1 ay,az €]0,1]
A disjoint B Cé) 00 a1 | with € b,d,c1,c2 =0
- 1 az 1 €1,€2 = 1

This matrix is similar to the nine-intersection matrix of disjoint crisp regions, and
to the nine-intersection matrix of disjoint regions with broad boundaries. The main
difference is that the elements a1 and a2 are both in the range 0, 1], rather than
1. We can only be sure that it they equal 1 if there are elements in the region with
membership grade 0.5 (membership grade in the boundary is then 1). While this
is the case in this assumption, we cannot be sure of this in general.

— (ase 3 occurs when the boundary AA intersects with the boundary AB and when
the interior A° also intersects with the boundary AB (or vice versa: case 6). An
intersection between the boundaries implies that h(AflﬁAB) > 0. It is possible for
this matrix element to equal 1, when there are points for which pz(p) = pg(p) =
0.5. Second, it is possible for AA to intersect with B°. Even further, if the interior of
A intersects with the boundary of B, this means that h(A°NAB) > 0. It is possible
for this element to equal 1, if there are points p such that p;(p) = 1Apgz(p) = 0.5;
but it is not possible for this element to equal 0 (as this would yield a different

case).
P X x (0c 1
AANB° =0 A B
ox mo 0b ar with {a17a2,b, c1 E]O, 1]
A°NB° =10 las 1
o= X B 0c 1
4;4?5) 70 c2 b ap | with {ahaQ’b’cl €10, 1]
A°AB°® =) Las 1 c2 €]0,1]
1~ Do K E d C1 1
A~(§4~Q~B; 0 e b oay | with a1, az,b,c1 E]O,l}
A°NB® #£ 0 c2,d €]0,1]

10,21
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de 1 al,ag,b,q G]O,H
The above matrices can be combined: c2 b a; | with { co 6}07 1[
lasx 1 d € [0,1]

Other cases Due to lack of space, we cannot list all the cases in this contribution.
To help with the example, we will only list the conditions on the matrix elements
for cases 4,5,10 and 11.

— case 4: the boundary AA intersects with the boundary AB and the interior A° is
entirely located inside the broad boundary AB (case 7 is the symmetrical case);
a1 €]0,1], a2 €]0,1], b €]0,1], ¢1 €]0,1], c2 € [0,1], d € [0,1], €1 € [0,1],e2 = 1.

— case 5: the boundary AA and a fortiori the interior A° are completely inside the
boundary AB (case 8 is the symmetrical case); a1 € [0,1[, az €]0,1], b €]0,1],
c1 6]07 1]7 Cc2 € [0, 1[7 de [O, 1[, e € [0, 1[, ex = 1.

— case 10: the boundary AA intersects with the interior BO, the boundary AB and
the exterior B™. The interior A° can intersect with either AB (to a degree of up to
1) and with B, B~ (to a degree strictly less than 1); a; €]0,1], a2 €]0, 1], b €0, 1],
c1 6}07 1]7 Cc2 G]O, 1]7 de [0, 1[7 e € [071[, ex = 1.

— case 11: the boundary AA intersects with the interior B° and the boundary AB.
An intersection with the exterior B~ is possible, but only to a degree strictly less
than 1. The interior A° can intersect with either B°, AB and B~; a1 € [0,1],
az €]0,1], b €]0,1], c1 €]0,1], c2 €]0,1], d € [0,1[, e1 € [0,1], e2 € [0, 1]

In the conceptual neighbourhood graph (a graph where two cases are considered
neighbours and thus connected when the changes between them are as small as
possible), cases 4 and 11 are connected with cases 5 and 10.

Interpretation When grouped in 44 cases, each matrix element is restricted to
one of the following intervals: [0], [0, 1], ]0, 1], [1]. These can be said to have an
intuitive order: [0, 1] can said to be smaller than |0, 1] because the largest possible
value is smaller; |0, 1] smaller than 1 as smaller values are possible, and similarly
0 is smaller than [0,1[. The case matrices can be grouped according to each
element restriction, and a conceptual neighbourhood graph can be constructed.
For two regions, their intersection matrix will contain 9 values in the range
[0,1]; for each value the matching cases are sought: if the value satisfies the
element constraint, the case is retained. After this, the number of matching
cases will be reduced (not necessarily to 1); and they will be neighbours in the
conceptual neighbourhood graph. A number will determine how well the each
one matches with the given matrix. To find this number, we apply the rule that
values smaller than 0.5 belong more [0, 1[ than to ]0, 1]; whereas values greater
than 0.5 have the opposite property (this is an intuitive rule, the value 0.5 is
present in both intervals). Now, match values are assigned for every matrix
element x that distinguishes two groups and for every case ¢ that is in either
of the two groups. These match values represent how well each matrix element
matches; aggregating them for a case ¢ (using a t-norm), yields a single value
expressing how well the given matrix matches this case.

Definition 5 (Match value m’ for a case i and a matrix element z).

i — x  if range of case i =]0,1]
| 1=z if range of case i = [0,1]
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3.3 Example

To illustrate, consider two regions that yield the following intersection matrix:

d C1 €1 0.60.70.4
C2 b al = 0.4 0.6 0.3
€2 a2 1 1 06 1

This example will be examined in further detail.

— a1 and az: For the element a1, there are only two groups: ]0,1] and [0, 1], and both
groups are possible for the given value. We come to the same conclusion for as.
The possible cases with these values are all intersection cases.

— b: For the value of b, there are three groups: 0, ]0,1] and [0, 1[. Obviously, the value
for b is not 0, so the cases with b = 0 (only case 1) are not possible.

— ¢1 and ca: For the value of ¢1, there are three groups: 0, |0, 1] and [0, 1[. The cases
with ¢1 = 0 (cases 1 and 39) will not match our given matrix. Similarly, cases 1
and 40 don’t match with the value of c,.

— d:For the value d, there are three groups: 0, [0,1[ and 1. In the example, d = 0.6;
only the cases with [0, 1[ remain: {2,3,4,5,6,7,8,9,10,11,12,13,14,17}

— ey and ez: For ey, there are three groups: 0, [0, 1] and 1; for e; = 0.4, only [0, 1] is ap-
plicable, leaving: {4, 5,10, 11,14, 17, 19, 20, 23, 24, 25, 26, 29, 30, 32, 35, 36, 38, 41, 42,
43,44}. For eo = 1 it is similar, but now the cases for which es = 1 is required.
This leaves: {1,2,3,4,5,6,9,10,11, 18,19, 20, 27, 28,39}

The intersection of all of the above cases results in the cases which are appro-
priate for the example: {4, 5,10, 11}. The differences between the cases 4, 5, 10
and 11 is in the elements that match with the values of a; = 0.3, ¢ = 0.7 and
co = 0.4. To find the closest match, we need the different match values.

a; = 0.3 cases 4,10: 0<a; <1= mﬁl = m}l(l’ =0.3

cases H,11: 0<a1 <1 = mil = m}li =0.7
c1 = 0.7 case 5: 0<ci<1l=md =03

cases 4,10,11: 0< c; <1=mi =m’ =ml =0.7
c2 = 0.4 cases 4,5: 0<c<l= mﬁz = m22 =0.6

cases 10,11  0<c2 <1=ml) =ml, =04

The match values for a; indicate that cases 5 and 11 are a better match for the
example than cases 4 and 10. The match values for ¢y, show that cases 4,10,11
are a better match than case 5; according to ¢y cases 4 and 5 are a better match
than cases 10 and 11. The aggregation of the match values yields:

case 4 : min{mil,mi1 , miz} = min{0.3,0.7,0.6} = 0.3
case 5 : min{m, ,m2 ,m.,} = min{0.7,0.3,0.6} = 0.3
case 10 : min{m}l?,mi?, mig} = min{0.3,0.7,0.4} = 0.3

case 11 : min{m,ﬁ,mii, mi;} = min{0.7,0.7,0.4} = 0.4

As the aggregated match value is the highest for case 11, the topology for the
example is closer to this case than to any of the other three cases. However, the
differences between the aggregated match values are very small, so the regions
in the example still resemble the other three cases quite closely.
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4 Conclusion

In this paper, we presented a qualitative approach for judging the topology of
fuzzy regions, represented by our model. The approach yields a soft classification
in which predefined cases are matched and a degree of this match is provided.
The topology is a generalization of Clementini’s broad boundary model: the
fuzzy region model can be used to represent broad regions, and if all points
inside the inner region are assigned membership grade 1, all points of the broad
boundary are assigned a membership grade 0.5, and all points outside of the outer
boundary membership grade 0, the topology cases and matrices match. It also
generalizes the topology for crisp regions: assigning points inside the region the
membership grade 1, and points outside the crisp region membership grade 0, the
fuzzy methodology results in the classical 9-intersection model. The methodology
has been illustrated using our theoretical model, but is equally applicable on the
models for implementation purposes we derived from this model ([8],[9]).
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