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ABSTRACT
In this paper, significant improvements of a previously de-
veloped key and chord extraction system are proposed. The
major improvement is the introduction of a separate acous-
tic model, designed to verify local key hypotheses. The con-
ducted experimental evaluation shows that the presented sys-
tem improves the state of the art in local key estimation. Our
experimental study further demonstrates that the chord esti-
mation performance is already quite robust, whereas the key
estimation performance still happens to be sensitive to a num-
ber of factors. In particular, we present figures that illustrate
the significant impact of the embedded musicological model
and the duration of the processed excerpt on the key estima-
tion accuracy.

Index Terms— Key extraction, chord extraction, music
signal processing, music information retrieval

1. INTRODUCTION

The concepts of chords and keys form the basic building
blocks of tonal harmony in Western polyphonic music. A
chord is defined as a collection of simultaneously sounding
notes. It is characterized by a reference note (the root) and
tonal distances to this root. A key indicates the properties of
a set of notes, played concurrently (forming a chord) as well
as sequentially (forming a melody) over a longer period of
time. A key is characterized by a tonal center (the tonic) and
a distribution of tonal distances in relation to this tonic.

The time frame over which to determine a key is not
clearly defined, but it is common to make a distinction be-
tween a global key and local keys. The former is based on the
musical piece as a whole whereas the latter is defined for suc-
cessive segments of unequal lengths. Both global key extrac-
tion methods [1, 2, 3, 4, 5] and local key extraction methods
[6, 7, 8, 9] have been covered in the literature.

From their definitions it follows that the concepts of
chords and keys are heavily intertwined with each other. Each
played chord raises expectations about the key whereas the
key raises expectations about the chords that can be played.

This actually was our main motivation (see [10]) for trying
to extract them simultaneously and for factorizing the musi-
cological model into maximally independent key and chord
transition components. We argue that such a musicological
modelling approach first of all complies with the way schol-
ars study harmony, and secondly, that it is bound tot general-
ize better to unseen data. The latter is actually supported by
objective data showing that chord transition models formu-
lated independently of the tonic have a lower perplexity [11].

Although we are not the only ones opting for a simultane-
ous key and chord extraction (see [5, 6, 7] for example), the
majority of systems are designed for either key extraction or
chord extraction, and do not explicitly take the relations be-
tween both into account. Examples of such approaches to key
estimation can be found in [3, 4, 9] and for chord estimation
in [12, 13, 14, 15]. Others, like [1, 8], first extract chords and
subsequently derive the key from the estimated chords. In one
system [2], this cascaded approach is embedded in an iterative
system where a first estimation of the chords is refined by the
results of a subsequent key analysis step. The reverse also ex-
ists, where first the key is determined which is then used as
additional feature to extract the chords [16].

The remainder of this paper is constructed as follows. A
detailed description of our system is provided in Section 2.
During the discussion, the emphasis is on the changes that
were made with respect to the baseline described in [10].
In Section 3, we present an experimental study in which we
compare our key estimation results with that of other state of
the art systems and in which we assess the impact of some
factors on these results. In particular, we investigate the im-
pact of the musicological model that guides the estimation
process and the influence of the duration of the processed ex-
cerpt and its location in the song. We end the paper with some
conclusions and ideas for future work.

2. SYSTEM DESCRIPTION

The input audio is first resampled to 8 kHz and converted
to mono. The resulting waveform is split into 150 ms long
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frames with a step size of 20 ms, and for each frame, a chroma
profile is calculated which represents the intensity of each of
the 12 pitch classes in the frame. The subsequent chroma
profiles are then integrated over 11 frames (220 ms), and the
integrated profiles are supplied to the back-end. Due to the
smoothing, they can be supplied at a rate of one per 220 ms
which improves the processing speed.

The back-end traces the most likely state sequence
through a finite state machine with 24 * 48 states. Each state
represents a distinct key-chord pair. Two key modes — major
and minor — are considered for each of 12 possible tonics.
Four chord types — major, minor, diminished and augmented
— are distinguished for each of 12 possible roots. The search
for the best solution is performed by means of an integrated
dynamic programming algorithm.

2.1. Chroma extraction

Simply folding a logarithmic frequency spectrum into one oc-
tave produces a chroma profile [17] which contains contribu-
tions of the harmonics because a note usually contains har-
monics of its fundamental frequency. For instance, a third
harmonic would add evidence to the chroma a fifth above the
fundamental, even though that note has not necessarily been
played.

Instead of accounting for harmonics in the templates, like
in [15], we chose to deal with this phenomenon in the chroma
extraction step. We therefore adopt multiple pitch tracking
techniques to resolve partials. A comb filter is used on a peak-
picked spectrum to discover harmonic relations between the
peaks such that their energy can be assigned to one of the
candidate fundamental frequencies once there is enough har-
monic evidence to support this hypothesised F0. More details
can be found in [18]. Recently, another chroma profile extrac-
tor with the same objective has been proposed [6], but here a
non-negative least squares algorithm with an idealised note
dictionary is utilized to provide an approximate transcription.
The advantage of the chosen approach is that it enables the
use of binary chord templates in the back-end, and these tem-
plates can be directly derived from music theory.

2.2. Probabilistic framework

The back-end implements a unified probabilistic framework
for the simultaneous recognition of chords and keys. Its ob-
jective is to retrieve the most likely state sequence Q̂ for the
acoustic observation sequence X. Each state qn = (kn, cn)
represents the key and chord combination assigned to a vector
xn. Using Bayes’s rule and a first-order Markov assumption,
the desired state sequence Q̂ follows from

Q̂ = argmax
Q

N∏
n=1

P (qn|qn−1) P (xn|qn)

with P (xn|qn) representing an acoustic model for estimating
the likelihood that chroma profile xn is observed when chord
cn is played in a part characterized by key kn. Because of the
scarcity of training data (in comparison with other fields such
as speech processing), we did not attempt to train any acoustic
models (e.g. Gaussian mixture models that incorporate a lot
of free parameters). Instead, we opted for a model that just
penalizes the dissimilarities between xn and a template vector
representing qn.

In the original system, the acoustic likelihood was sim-
plified to P (xn|cn). We now propose an extension to this
and argue that the key and the chord labels can be consid-
ered as independent means of testing whether an observa-
tion vector complies with a certain state, i.e. P (xn|qn) =
P (xn|cn)P (xn|kn). Note that we use the same observations
for both key and chord acoustic likelihoods, as opposed to [7]
where the observations for the key acoustic likelihoods are
integrated over a much longer time than those for the chord
likelihoods.

For the chord acoustic model P (xn|cn), the templates
consist of binary components: 1 for a chroma that is present
in the chord and 0 for one that is not. In [10] two measures
for quantifying the similarity between a template and an ob-
servation vector were tested: a normalized cosine similarity
measure and a product of 12 probabilities for the 12 elements
of xn, derived from two Gaussian models (for templates ele-
ments equal to 1 and 0 respectively). The latter gave slightly
better results, so we only use that measure as the chord acous-
tic model.

The key acoustic model P (xn|kn) uses non-binary tem-
plates defined by Temperley. These are vectors represent-
ing the stability of the 12 pitch classes relative to a given
key. They are based on the Krumhansl–Schmuckler profiles,
but specifically adjusted for computational key-finding [19].
The measure used here is the normalized cosine similarity be-
tween the key templates and the observation vector.

The transition probabilities P (qn|qn−1) are implemented
by a compound of three models: a state duration, a key tran-
sition and a chord transition model. The state duration model
is a simple geometric model that is fully characterized by
the chance of staying in the same state. We assume that
P (qn = qn−1) = Ps for all states. The state transition model
P (qn 6= qn−1) is decomposed into a key and a chord transi-
tion model. Key changes without chord change are prohibited
and self-transitions are modelled by the duration model, so the
state transition model models effectively P (cn 6= cn−1).

The contribution of the chords to the key transition model
is ignored such that we end up with probabilities which are
only dependent on the previous key P (kn|kn−1). Our model
is based on Lerdahl’s regional distance [20, p.68], which ex-
presses numerically the distance between two keys. We make
the assumption that keys which are close to each other ac-
cording to this distance are also likely to appear in sequence
and will thus receive a high transition probability. One of the



weaknesses in this assumption is that this gives inadequate
probabilities for some key changes such as the “gear change”
or “one up” which are common in pop music, but not in music
of the Common Practice period on which Lerdahl’s theory is
based. The distances are converted to probabilities by taking
the normalized inverse of the exponential of the distance.

The chord transition model is expressed in terms of rela-
tive chords (c′n, c

′
n−1) in key kn−1. By doing so, the paral-

lelism between keys differing in tonic but not in mode can be
exploited, and key kn−1 can be replaced by its modemn−1 in
the conditional part of the transition probabilities. This leads
to relative chord transition probabilities P (c′n|mn−1, c

′
n−1).

These probabilities can be derived from a set of annotations
simply by counting occurrences.

An alternative theoretical model has also been con-
structed. The transitions that both start and end in a diatonic
chord get a probability assigned that is based on Lerdahl’s
chord distance within a key [20, p.55], which gives a numer-
ical expression for the distance between two chords in the
same key. A similar assumption as for the key transition is
made in that a small distance between two chords is converted
into a high probability of transition by taking the normalized
inverse of the exponential of the distance. Transitions that
start or end in a non-diatonic chord (or both) receive a prob-
ability that is uniformly distributed. For a deeper explanation
of this model, we refer to [10].

For computational reasons, log-probabilities are used and
in order to have control over the relative importances of the
different sub-models, multiplicative balance parameters α, δ,
µ and κ are introduced. Ultimately, a search is performed to
find the state sequence which emerges from

Q̂ = argmax
Q

N∑
n=1

[
logP (xn|cn) + αP (xn|kn)

+ δLD + µLM

]

LD = logPs (qn = qn−1)

= log(1− Ps) (qn 6= qn−1)

LM =
[
κ logP (kn|kn−1) (cn 6= cn−1)

+ (1− κ) logP (c′n|mn−1, c
′
n−1)

]
=0 (cn = cn−1)

The balancing of the state duration model and the musico-
logical model differs from the balancing approach proposed
in [10]. Nevertheless, the baseline system of [10] roughly
corresponds to the case of α = 0.

3. EXPERIMENTAL RESULTS

In order to assess the performance of our system, we need
data with accompanying ground truth labels, as well as an

chord trans. without P (xn|kn) with P (xn|kn)
model chord local key chord local key
SEMA 73.08 67.44 73.03 70.71
MIREX 72.44 48.97 72.69 58.58

theoretical 72.75 40.17 72.72 51.00

Table 1. Chord and local key performance on SEMA data for
3 different relative chord transition models without and with
key acoustic model

evaluation measure. We have two data sets at our disposal.
The first one is the same collection of 142 manually anno-
tated 30 s excerpts of music pieces in a variety of genres and
tempi that was used to determine the optimal parameters of
the original system, hereafter called the SEMA set. We will
also use it here as the development set to optimize the newly
introduced parameter α. The second set consists of the 210
songs that were used in the MIREX 20091 chord estimation
contest. It is composed of full albums by the Beatles (174
songs), Queen (18 songs) and Zweieck (18 songs). The per-
formance is measured as the percentage of time the extracted
key or chord equals the annotated key or chord. To avoid a
disputable ranking of multiple possible mappings from com-
plex chords to triads, we restrict chord evaluation to segments
where one of the basic triads (maj–min–dim–aug, including
inversions) was annotated. This leaves us with 62.56% of the
data for the SEMA set and 77.44% for the MIREX set. Key
extraction performance is measured over the whole data set.
Only perfect matches are considered correct, extraction of re-
lated keys or chords does not add to the score. We first opti-
mize the free parameters of our system, and then compare it
for these optimal settings to other systems that are anticipated
to present the current state of the art.

3.1. Impact of the key acoustic model

By varying the balance parameter α between 0 and the op-
timum found in an exhaustive search, we can evaluate the
impact of introducing a key acoustic model. We do this for
multiple relative chord change models: two trained models
(one for each data set) and the aforementioned theoretically
derived model. The other free parameters are set to the opti-
mum found in [10].

Tables 1 and 2 show that the key acoustic model causes
a substantial improvement of the key estimation performance
for both data sets. According to Wilcoxon’s signed rank test,
the difference is significant in 5 of the 6 cases (p < 0.05 for
the MIREX and theoretical chord transition model with the
SEMA set and p < 0.01 for all chord transition models with
the MIREX data). Since improvements on one aspect (key
estimation) often results in a degradation on another aspect
(chord estimation), we were happy to observe that the chord

1http://www.music-ir.org/mirex/wiki/2009:Audio Chord Detection



chord trans. without P (xn|kn) with P (xn|kn)
model chord local key chord local key
SEMA 76.43 59.29 76.38 64.31
MIREX 78.37 73.68 78.40 77.82

theoretical 76.18 59.01 76.11 65.56

Table 2. Chord and local key performance on MIREX data
for 3 different relative chord transition models without and
with key acoustic model

estimation was not affected2. However, we had actually ex-
pected an improvement of the chord estimation as well, due to
the more reliable key context in which to interpret them. We
explain this by arguing that a chord usually fits into multiple
keys, and that errors between related keys (adjacent, relative
or parallel) will not necessarily induce chord estimation er-
rors. More than 60% of the wrongly estimated keys actually
happen to be related keys.

3.2. Impact of the musicological model

Tables 1 and 2 show that a musicological model trained on
the test data substantially outperforms a model that is either
trained on another dataset or a model relying on dissimilari-
ties derived from music theory: the key estimation accuracy is
at least 12% higher and p < 0.01 for all cases. Also after the
introduction of the key acoustic model, the chord estimation
accuracies are not very sensitive to the choice of the musico-
logical model.

3.3. Data set dependency

Although we used parameters that are optimal for the SEMA
data set (α found above, the others in [10]), the figures in Ta-
ble 2 reveal that chord and key estimation is inherently easier
on the MIREX set. This does not come as a surprise, since
the Beatles are known for their harmony based compositions,
while our set was not assembled particularly for chord and
key extraction and thus contains a number of more rhythmi-
cally oriented songs.

Besides their inherent difference in composition, the two
collections differ in another way. The SEMA set consists of
30 seconds excerpts whereas the MIREX set consists of com-
plete songs. In the next section, we describe an experiment
we conducted to verify whether this difference could be re-
sponsible for part of the observed performance differences.

2Because of the differences in our evaluation, the chord performance val-
ues for the MIREX data should not be compared to the figures from the
MIREX chord extraction contest.

3.4. Influence of excerpt duration and position

To test the hypothesis that the duration and the position of
the processed excerpt could possibly affect the key estimation
accuracy, we extracted keys and chords from 30 s and 60 s
excerpts of each song of the MIREX set. Furthermore, the
test was repeated with excerpts taken from the beginning, the
middle and the end of a song. The algorithm settings were
not altered. The results of our experiments are summarized
in Table 4. They should be compared to the full song results
summarized in the right half of Table 2.

The first conclusion we can draw is that neither duration
nor position of the excerpt has a noticeable influence on the
chord extraction performance.

The local key extraction results confirm the musical in-
tuition that the key is harder to detect if the analysed part is
shorter. Nevertheless, the performance for 60 s excerpts is al-
ready close to the one for complete songs. The degradation
observed for shorter excerpts (30 s) is especially significant in
combination with trained musicological models: from around
78 to around 68% when the MIREX model is used and from
around 64 to around 57% when the SEMA model is used.
That the degradation is larger in combination with the MIREX
model may be owed to the fact that excerpts at different po-
sitions might exhibit different bigram statistics, meaning that
the model trained on full songs is not optimally adapted to the
statistics observed in a much shorter excerpt at a particular
positions. However, the local key performances for 30 s and
60 s excerpts do not demonstrate any consistent dependency
of results on the position of the excerpt: the spread is similar
for both excerpt durations, but the tendencies are different.

In combination with a theoretical, distance-based musico-
logical model, the key extraction results do not degrade as
much as with the trained models: performance goes from
around 66% for full songs to something in between 62 and
67% for 30 s excerpts, even causing an increase in perfor-
mance for excerpts at the start. We hypothesize that a compo-
sition will usually start with rather predictable diatonic chord
progressions whereas the less predictable chord progressions
only come later, to create tension and ultimately, to assure the
continued interest of the listener. If this is true, the theoreti-
cal model which clearly favours diatonic chord progressions
will comply better with the progressions observed in a song
initial excerpt, and the effect will become less apparent if that
excerpt becomes longer. Both facts are fully supported by the
data. The percentage of diatonic chords can also be directly
measured from the annotations. The figures in Table 3 show
that there indeed is a higher chance of encountering a diatonic
chord in the beginning of a song. The overall ratio of diatonic
chords in the MIREX set is 78.27%.

We can now take another look at the results for the two
data sets, namely, by comparing the key and chord extraction
accuracies obtained with the 30 s excerpts of the MIREX and
the SEMA data sets. Since the SEMA excerpts were unfortu-



chord 30 seconds excerpts 60 seconds excerpts
transition chord local key chord local key

model start middle end start middle end start middle end start middle end
SEMA 76.21 76.95 75.79 59.03 53.72 59.72 77.02 76.65 76.69 64.07 61.65 61.97
MIREX 77.90 77.95 77.85 70.19 69.01 67.04 78.59 78.16 78.58 73.44 74.21 77.16

theoretical 76.26 76.05 75.17 66.67 61.88 62.21 77.0 75.98 76.25 66.69 65.31 65.84

Table 4. Chord and local key performance on excerpts of MIREX data differing in length and position for 3 different relative
chord transition models with key acoustic model

start middle end
30 s 81.33 77.49 79.68
60 s 80.03 77.56 79.45

Table 3. Diatonic chords ratio for excerpts of MIREX data in
function of excerpt length and position

nately not taken at a consistent position in the song, we com-
pare each SEMA accuracy with the median of the three corre-
sponding MIREX accuracies. Considering the key extraction
results obtained in combination with the best musicological
model (the one trained on the test set), we conclude that the
differences between the two data sets have completely disap-
peared. A remarkable difference that persists however is that
in combination with the theoretical model, the MIREX data
exhibit a much better performance than the SEMA data. Ap-
parently the MIREX chord progressions comply much better
to the distance-based theoretical model than the SEMA chord
progressions. Considering the chord extraction results, we
observe a consistent difference of 3 to 5% in favour of the
MIREX results. The latter supports our initial observation of
the MIREX set being inherently easier to decode.

3.5. Comparison of key extraction results with the state
of the art

The widespread availability of the MIREX data permits us to
make a comparison with other algorithms, such as the ones
of Mauch & Dixon [6], Rocher et al. [7] and Noland & San-
dler [1]. The first two approaches are especially interesting
because they also perform simultaneous local key and chord
extraction. Mauch & Dixon use a Dynamic Bayesian Net-
work that can model keys and chords as well as metric po-
sitions and bass notes. Rocher et al. start from an acoustic
model based on template matching. The model is similar
to ours, but it employs a multi-scale chroma approach and
a back-end which heavily constrains the search space to just
a couple of candidate key-chord pairs selected by the acous-
tic model. Our algorithm on the other hand explores the full
search space at all times.

Noland & Sandler only estimate the global key of a song
by applying an HMM to previously extracted chords. In order
to allow for a comparison of that system with ours, we con-

theirs ours
Mauch & Dixon 75.58 80.91

Rocher et al. 62.4 80.17 (64.35)
Noland & Sandler 75 86.36

Table 5. Local (M & D, R et al.) or global (N & S) key results
in comparison with other systems

vert our local key sequence to a global key by a simple major-
ity voting. Obviously, more intelligent ways to convert local
keys to a global key could have been conceived, but with the
just mentioned simple approach, our system achieved the 2nd
place in the MIREX 2010 contest for global key extraction.
The data set used there was an unseen collection consisting of
1252 excerpts of 30 s each, taken from the beginning of clas-
sical music pieces, and synthesized from MIDI. The winning
system was a version of the one described in [4], which also
produces only global keys. So far, no MIREX competition for
local key extraction has been organized.

All three referenced papers report results for different sub-
sets of the MIREX data. Therefore, we have put the results
of our system on the same subsets next to the results retrieved
from the publications (see Table 5). The results for Mauch &
Dixon and Rocher et al. represents local key performance and
those for Noland & Sandler global key performance. Since
the other algorithms were also tweaked to the MIREX set,
we tested our system in combination with the MIREX chord
change model. We also worked with a duration model op-
timized for MIREX. The balance parameters were left un-
changed though.

The figures in Table 5 reveal that our system outperforms
the state of the art. However, fairness obliges us to say that
the algorithm of Rocher et al. was optimized for the Beatles
set, but without employing the ground truth labels to set-up
a key-chord transition model. They also define a theoretical
model instead. If we use our system with our own theoretical
model, we obtain the result between brackets in the right col-
umn of Table 5. The difference is much smaller then, but still
substantial. Noland & Sandler themselves report a result of
91% correct global key estimation when using annotated in-
stead of estimated chord labels. This illustrates the remaining
growth potential for audio based key estimation.



4. CONCLUSION AND FUTURE WORK

In this paper we have extended our formerly proposed local
key and chord estimation system with a key acoustic model.
The experimental evaluation has demonstrated that this ex-
tension causes a significant improvement of the local key es-
timation performance, while the chord estimation remains un-
changed. The observed gains are comparable irrespective of
the data set.

The integration of specific musicological knowledge in
the form of a relative chord change model has proven to have
a strong effect on the key estimation results, while it does not
alter the chord estimation quality. The latter is also insensi-
tive to the duration and location of excerpts, where the key
estimation can vary significantly between different durations
and locations. The exact behaviour differs depending on the
relative chord model though.

Until now, the musicological model was a simple bigram
model. In the future we will try to model the relative chord
sequences by means of trigrams, because certain trigrams are
known to be excellent indicators of a key. Additionally, a
larger context will reduce the perplexity of the chord estima-
tion task. However, we acknowledge the statement of [16]
that this does not necessarily lead to a large increase in chord
extraction performance.
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