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ABSTRACT

Fog computing extends computer networks by embedding analytics into

intermediary network devices that are closer to data sources. Fog computing processes

sensors data locally, conserves network bandwidth, improves process efficiency,

and protects information privacy. However, a fog computing node demands high

throughput, low latency, and high energy efficiency in data and packet processing.

Besides, a fog node needs high architectural flexibility to enable timely functional

updates for maintaining the relevancy of hosted analytics. This thesis proposes a field-

programmable gate array (FPGA) based fog node architecture with reconfigurable

application plane for fog analytics. The proposed fog node’s application plane can

be remotely reconfigured at run-time to enable dynamic redeployment of various

fog analytics. The reconfigurable application plane allows run-time queuing scheme

alteration to prioritize certain network ports and supports scaling on processing entity

to cope with increased application loads. The proposed fog node architecture is

tested experimentally on the NetFPGA development board with a case study on time-

series anomaly detection analytics. The proposed fog node is a monolithic FPGA

implementation without general-purpose processor utilization with very low intra-chip

communication overhead (less than 24 ns). A customized reconfiguration controller

for dynamic partial reconfiguration (DPR) is implemented internally within the FPGA

device with 15.34 ms reconfiguration time (i.e., service downtime) at near 3.2 Gbps

reconfiguration throughput. Add-on architectures and mechanisms are also proposed

to enable service-uninterrupted remote DPR, which are impactful to applications with

minimum or no tolerance on service interruption. The implemented FPGA-based

time-series anomaly detection analytics have been benchmarked with the Numenta

Anomaly Benchmark (NAB) environment for performance assessment. The latency and

throughput improvement for the KNN CAD (i.e., a k-nearest neighbors based analytics)

in FPGA implementation over software is approximately 61×, while Windowed

Gaussian (i.e., a Gaussian-based analytics) is 42× and thus, both analytics attained

<1 ms real-time responsiveness. The proposed FPGA-based fog node significantly

exhibits high energy efficiency, low latency, and high throughput in network packet

and data analytics processing for greener fog networks and real-time Internet of Things

(IoT) applications.
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ABSTRAK

Pengkomputeran kabus meningkatkan keupayaan rangkaian komputer dengan
membenamkan analitik ke dalam peranti perantara yang lebih dekat dengan sumber
data. Pengkomputeran kabus memproses data dari penderia secara setempat,
menjimatkan lebar jalur rangkaian, meningkatkan kecekapan proses, dan melindungi
privasi maklumat. Namun, nod pengkomputeran kabus memerlukan daya pemprosesan
yang tinggi, kependaman yang rendah, dan kecekapan tenaga yang tinggi dalam
pemprosesan data dan paket. Selain itu, nod kabus memerlukan fleksibiliti seni
bina yang tinggi untuk membolehkan kemas kini fungsian ketepatan masa untuk
mengekalkan relevansi analitik yang dihoskan. Tesis ini mencadangkan seni bina
nod kabus berdasarkan tatasusunan get boleh-program medan (FPGA) dengan satah
aplikasi yang dapat dikonfigurasi semula untuk analitik kabus. Satah aplikasi nod
kabus yang dicadangkan dapat dikonfigurasikan dari jarak jauh pada masa jalan untuk
membolehkan kerah tugas semula secara dinamik oleh pelbagai analitik kabus. Satah
aplikasi yang dapat dikonfigurasi semula membolehkan perubahan dalam skema baris
gilir pada masa jalan untuk memberikan keutamaan kepada port rangkaian tertentu dan
menyokong penskalaan pada entiti pemprosesan untuk mengatasi peningkatan beban
aplikasi. Seni bina nod kabus yang dicadangkan telah diuji secara eksperimen di
papan pembangunan NetFPGA dengan kajian kes dalam analitik pengesanan anomali
siri masa. Nod kabus yang dicadangkan adalah implementasi FPGA monolitik
tanpa penggunaan pemproses tujuan umum dengan overhed komunikasi dalaman
cip yang sangat rendah (kurang dari 24 ns). Pengawal konfigurasi semula yang
disesuaikan untuk konfigurasi separa dinamik (DPR) telah diimplementasikan secara
dalaman di dalam peranti FPGA dengan masa konfigurasi 15.34 ms (iaitu, waktu henti
perkhidmatan) pada daya pemprosesan konfigurasi ulang hampir 3.2 Gbps. Seni bina
dan mekanisme tambahan juga dicadangkan untuk membolehkan DPR jarak jauh tanpa
gangguan perkhidmatan, yang berpengaruh kepada aplikasi dengan toleransi terendah
atau tanpa toleransi terhadap gangguan perkhidmatan. Analitik pengesanan anomali
siri masa berasaskan FPGA telah ditanda aras dengan Numenta Anomaly Benchmark
(NAB) untuk penilaian prestasi. Penambahbaikan kependaman dan peningkatan daya
pemprosesan untuk KNN CAD (iaitu, analitik berdasarkan k-jiran terdekat) dalam
implementasi FPGA berbanding perisian adalah sekitar 61×, sementara Window
Gaussian (iaitu, analitik berasaskan Gaussian) adalah 42× dan dengan itu, kedua-
dua analitik mencapai <1 ms respons masa nyata. Nod kabus berasaskan FPGA
yang dicadangkan jelas menunjukkan kecekapan tenaga yang tinggi, kependaman yang
rendah, dan daya pemprosesan yang tinggi dalam pemprosesan paket rangkaian dan
analitik data untuk merealisasikan rangkaian kabus yang lebih hijau dan aplikasi-
aplikasi IoT masa nyata.
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CHAPTER 1

INTRODUCTION

1.1 Recent Trends

The recent emergence of the high-speed network (e.g., 5G) accelerates

sensors growth in Internet-of-Things (IoT) by providing the high-performance network

infrastructure required to implement a more connected world [3]. Inherently, an

unprecedented volume of data is generated by IoT sensors deployed for various

applications [4]. To monetize the data, data analytics and machine learning techniques

[5–9] are employed to discover its intrinsic information for decision support and

automation (e.g., regulating process) purposes [4]. However, the effectiveness and

efficiency of conventional analytics diminish as the volume, velocity, veracity, and

variety of data increase drastically [10, 11]. Consequently, big data analytics [10–13]

are proposed to leverage these huge volumes, fast-growing, and complex data generated

from various heterogeneous sources. Fast data analytics [4, 14, 15] has been proposed

to focus on the data velocity aspect alone, where the data are highly time-sensitive and

require real-time processing (i.e., low latency).

Fog computing [16–18] has emerged as a viable solution for applications with

fast data processing, where data analytics are embedded into the network nodes that

are placed much closer to the data source compared to the cloud servers. Hence,

the analytics in fog nodes can process sensors’ data at optimal deployment location

depending on the required responsiveness from applications. Moreover, transportation

of irrelevant data across the network can be avoided by having the generated

data processed locally, which could conserve network bandwidth, improve process

efficiency, and safeguard information privacy [16–18]. From the IoT perspective,

applications require both fog localization and cloud globalization, where fog nodes

could de-emphasize cloud servers’ centralized computing environment and provide

responses in real-time by eliminating the round-trip latency to cloud servers. Apart from

1



that, fog node scalability allows sensor data to be processed in stages and distributively

across the network tiers [16]. A study reported that the mean energy expenses in fog

computing are 40.48% lesser than in the cloud [19].

Generally, a fog node can be implemented in several ways, which are

application-specific integrated circuit (ASIC) design, software executing in general-

purpose processor (GPP), field-programmable gate array (FPGA), and combination of

them. ASIC design exhibits very little architectural flexibility and it is not suitable

for applications with dynamicity (e.g., fog or IoT applications), where the frequent

functional updates are required to maintain its relevancy. Conversely, software approach

exhibits highest flexibility from its nature of programmability but it lacks processing

throughput and has high processing latency due to instruction stream nature that requires

huge memory cycles [20, 21]. The combinations of GPP with accelerators in either

FPGA or ASIC are common in HW/SW co-design setups as it can exhibits the balance

of processing throughput and architectural flexibility. However, the communication

overhead between GPP and accelerators is high and it lacks processing efficiency,

which can negatively impact the real-time IoT applications.

To accomplish the objectives of real-time fog analytics in fog computing, fog

nodes require the factors as follows that can be satisfied with monolithic FPGA

implementation as it exhibits a balance of data processing throughput [22] and

architectural flexibility [23, 24]:

1. High computing performance (i.e., high throughput and low latency in data

processing) is expected to cope with the growing bandwidth demand in

network and the increasing deployed IoT sensors. Meanwhile, low latency

computation is needed to meet the real-time data processing demand in IoT

applications with fast data. The implementation in FPGA allows pipelined and

parallel data processing, which has been commonly adopted in network packet

processing [25]. However, the architecture in a design is customized to exploit

the computing performance in FPGA implementation optimally.

2. Architectural flexibility is needed by IoT applications for timely functional-

update to remain relevant and cope with applications dynamicity, where
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operating requirements, protocols, and policy are subjected to alteration from

time-to-time. Because of this, newer FPGA devices support dynamic partial

reconfiguration (DPR) feature by allowing alteration in regional circuitry at run-

time [26] to adapt to the new application operating requirements. Technically,

the utilization of DPR feature in FPGA requires a proper design methodology

paired with the internal mechanism and reconfigurable architecture to handle

the run-time internal circuitry alteration process.

3. High service availability is an important factor in IoT monitoring, data

collection, and data processing applications, where service interruptions cause

missing data samples that can negatively impact monitoring analytic [27]. Most

intermediary devices including fog nodes are always active to preserve end-to-

end nodes connectivity and continual fog data processing. The impact of

service interruptions is highly significant for mission-critical applications or

systems deployed on the gateway between internet service providers (ISPs) [28].

Thus, the reconfigurable architecture in an FPGA-based system that supports

smooth remote functional updates with dynamic partial reconfiguration feature

is necessary, especially for application that has little to no tolerance toward

service interruption.

4. High energy efficiency in both network packet and data analytics processing

is one of the critical aspect in fog computing as well. Specifically, the fog

nodes near to sensors may have very limited power supply and thus, having

high energy efficiency helps to lower the power consumption. High energy

efficiency in processing eases the deployment for embedded system in remote

area as the devices can be powered from low-power batteries and recharged from

solar panel. In data processing, the FPGA implementation exhibits 1.2–22.3×
better energy efficiency than the implementation in graphics processing unit

(GPU) and GPP [29].

In short, the implementation of fog node with FPGA in monolithic form has various

strengths, but it is non-trivial due to the prerequisite of having a good framework,

architecture, and mechanism in FPGA design. Additionally, a monolithic FPGA

design is not suitable for applications that do not appreciate architectural flexibility

and functional updates, where an ASIC design is a better option.
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1.2 Problem Statement

Fog computing and network processing applications require processing

throughput, real-time latency, and architectural flexibility. Specifically, the processing

throughput is needed to meet the growing bandwidth demand [30] from new devices.

Real-time latency is essential when the applications utilizing the network infrastructure

are time-sensitive and demand responsiveness (e.g., live streaming applications,

monitoring applications, and control applications). Besides, the network applications

and protocols are dynamic [31], which causes the network devices to require timely

functional updates to remain relevant. Since fog computing embeds data analytics into

the network devices, its applications share similar requirements as network processing

applications.

Specifically, the processing throughput is required to fulfill the growth of

new IoT sensors, while architectural flexibility is needed by data analytics to adapt

applications dynamicity and data concept drift [32, 33]. The real-time processing

latency is critical for fog applications with fast data [4, 14, 15]. FPGA implementation

can be considered a feasible solution for such applications due to its low latency and

high throughput data processing characteristic paired with datapath reconfigurability,

which is critical to real-time and evolving applications. Several works [34–36] have

studied and reviewed the suitability and feasibility of employing FPGA in fog and IoT

applications. Based on the experiments by Biookaghazadeh et al. [34], the FPGA

key advantages for edge computing compared to GPUs are consistent throughput, up

to 4× lower power consumption, up to 30.7× better energy efficiency, better thermal

stability, and lower energy cost per functionality. The benefits of utilizing FPGAs in

data (pre)processing near to its source have been demonstrated in [37].

The existing FPGA-based fog node architectures [38–42] are mainly based

on HW/SW co-design framework, where the compute-intensive tasks are offloaded

to FPGA-based accelerators, while task management is implemented in software and

executes in an embedded GPP or a host PC. As a result, these fog node architectures

[38–42] are hardly to be applied in gigabit networks or high data rate use cases due to

the limited processing capability of GPP on network packet processing. Furthermore,
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there is a communication overhead between the FPGA-based analytics in reconfigurable

fabric and embedded GPP executing the task management routines. The existing FPGA-

based network middlebox [43–45] including our previous work [46,47] utilized the DPR

feature for timely functional module update. However, existing FPGA-based network

middleboxes [43–47] have limited architectural flexibility, which is up to a functional

module level that be reconfigured at run-time. Since fog node involves the incorporation

of data analytics into a network device, the existing FPGA-based network middlebox

requires greater architectural flexibility to host additional fog analytics and its interface.

Besides, the architectural flexibility to support DPR on an application plane allows

dynamic functional modules allocation based on remote reconfiguration. Specifically,

a reconfigurable application plane enables alteration on the internal queuing scheme and

scaling on the application processing module at run-time to adapt network prioritization

and future increased processing throughput demand.

Service availability is another important factor required by fog computing

applications due to these applications are expected to be in service at all times, given

the fact that fog nodes are transporting packets containing very critical pieces of sensor

data across the networks. Additionally, frequent functional updates on these devices

could hinder them from meeting the requirement of high availability. For example,

fog computing analytics is retrained frequently to maintain its accuracy. Therefore,

service interruptions caused by frequent remote functional updates can be impactful to

applications with little to no tolerance (e.g., monitoring applications, data streaming

applications, and control applications). Even though the functional update in [48]

does not cause service interruption, it is only applicable to a single flow table but

not applicable on a functional unit or the data plane. In short, an FPGA-based

reconfigurable architecture with mechanisms to enable service-uninterrupted remote

functional updates is a requirement for an FPGA-based fog node to support applications

without tolerance for service interruption.

In IoT applications, anomaly detection analytics has been commonly employed

to monitor time-series data for anomalous events. Existing FPGA-based anomaly

detection analytics on time-series often depend on a time-series model [49], e.g., long

short-term memory (LSTM) [50, 51] or autoregressive moving average (ARMA) [52]
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for detecting anomalous events. A software-based anomaly detection analytics with a

reliable non-parametric approach [49] (known as KNN CAD) is proposed for anomaly

detection in one-dimensional time-series data. This anomaly detection analytics [49]

has been benchmarked with Numenta Anomaly Benchmark (NAB) [53, 54] and it is

available as open-source at [55]. However, the software implementation [49,55] limits

its processing throughput and exhibits higher latency due to the nature of the instruction

stream that requires a number of memory cycles [20, 21]. Hence, the well-established

NAB is a good option to be used for the FPGA-based time-series anomaly detection

analytics development workbench.

1.3 Research Motivation

Current trends on device connectivity and intelligence imply demands for fog

node with high computational performance (high throughput & low latency) and high

architectural flexibility. FPGA-based implementation has been a consolidated approach

to satisfy applications that require both processing performance and datapath flexibility.

Additionally, the DPR feature of FPGA and remote connectivity has made a service-

uninterrupted dynamic redeployment possible. Furthermore, the customized datapath

in an FPGA design can be defined in software from a remote entity at run-time provided

that the underlying reconfigurable architecture supports remote connectivity and DPR.

The development of such versatile fog node is the primary focus of this

research work. Employing the ICAP primitive in an FPGA device, DPR can be

controlled internally by the controller that is implemented with internal logic resources.

Consequently, the FPGA design can be implemented within a single chip, which

exhibits high scalability and low device overhead at the system level. Besides, the

monolithic FPGA design exhibits low communication between network processing

circuitry and data analytics circuitry to reduce overall processing latency and improve

energy efficiency.
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1.4 Research Objectives

The primary aim of this thesis is to propose a low latency and low

communication overhead FPGA-based fog node architecture with reconfigurable

application plane to support dynamic redeployment on hosted fog analytics. The

objectives of this research work are:

1. To propose, devise, and develop an FPGA-based fog node with reconfigurable

application plane, that exhibits a higher degree of architectural flexibility for

dynamic redeployment of various fog analytics.

2. To propose, devise, and develop an FPGA-based reconfigurable architecture

with supports on service-uninterrupted remote functional updates.

3. To propose, devise, and develop FPGA-based time-series anomaly detection

analytics as a case study for the proposed FPGA-based fog node, that has low

processing latency to meet the real-time (<1 ms) requirement in fog applications.

1.5 Scope of Work

The scope of this research are:

1. The proposed architectures in this research are tested on the NetFPGA CML

development board as this development board can be obtained off-the-shelf

and it includes an FPGA device (Xilinx Kintex 7 XC7K325T-1FFG676) that

supports the DPR feature. With modularity in the proposed architecture, the

migration effort to the other development boards is minimized, where changes

are mainly on the peripherals interface.

2. The proposed architectures can handle packets size up to 2048 Bytes, which

is larger than the maximum transmission unit (MTU) of Ethernet V2. This

limitation can be lifted by increasing the FIFO depth at the cost of BRAM

resources in FPGA.
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3. The proposed architectures exclude the security aspect in the remote

reconfiguration as add-on security modules and mechanisms can be utilized

for use cases with security concerns.

4. The proposed architectures are in stand-alone and network-attached (i.e.,

host PC is not required) mode, which is targeted for single-chip FPGA

implementation. The single-chip FPGA implementation exhibits high

scalability and low device overhead at the system level.

5. The partial bitstream compression algorithm used in the proposed architectures

is 64-bit run-length encoding (RLE).

6. A dual modular redundancy (DMR) approach is adopted to implement the

service-uninterrupted remote functional update, where the application modules

can cover for each other when either one is being reconfigured dynamically.

7. In the service-uninterrupted remote functional update implementation, the

application modules exclude fog analytics to reduce the complexity as it is

for proof-of-concept purposes.

8. Network packet processing in the proposed fog node is up to Ethernet frame

(i.e., layer 2), which is leveraged from NetFPGA Learning content-addressable

memory (CAM) [56] Switch. The network protocol and packet processing can

be updated from time-to-time with the remote DPR availability on the proposed

fog node’s application plane.

9. A time-series anomaly detection analytics IP core is used as a case study for fog

computing applications, where the IoT data are mostly available in time-series

with its application on monitoring the anomalous events.

10. The employed time-series anomaly detection analytics are adopted from NAB

open-source repository [54]. This ensures the benchmarked performance is

fair and within the same environment. Besides, the analytics algorithms are

available as open-source for public reference.

11. The application IP cores used in case studies are for proof-of-concept purposes,

where its complexity and performance are not the primary focus of this work.

Complex application IP core may require much higher logic resources amount,

which could be fulfilled by migration to newer FPGA device with larger capacity.
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1.6 Research Contributions

In this research, the contributions are:

1. An FPGA-based fog node architecture with reconfigurable application plane for

fog computing applications. The fog analytics is attached directly to the network

processing entity in the pipelined datapath, which reduces the communication

overhead between the two processing entities. With reconfigurable application

plane, the functional module in the application plane can be dynamically

allocated to meet run-time utilization demand, where the queuing schemes

can be altered to prioritize certain network ports while the processing entity can

be scaled to fulfill increased throughput.

2. An FPGA-based service-uninterrupted remote functional updates mechanism

and architecture for applications with high service availability requirement.

Service-uninterrupted functional updates mechanism and architecture enable

FPGA-based fog node to meet high availability requirements, where these

devices are expected to be in service at all times with minimal to no interruption.

3. An FPGA-based time-series anomaly detection analytics architecture as a case

study for the proposed fog node. The FPGA-based fog analytics is used as a

case study to demonstrate its integration into the proposed fog node and verify

their functionality. The FPGA-based fog analytics are able to meet the real-time

latency (<1 ms) requirement since its datapath can be pipelined and the data

can be processed in parallel.

1.7 Thesis Organization

The remaining content of the thesis is structured as follows:

• Chapter 2 describes the theoretical background and related works. The

theoretical background includes fog computing, network processing, FPGA

suitability for fog computing, and NetFPGA. The related work covers FPGA-
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based fog node, FPGA-based service-uninterrupted remote functional updates,

and FPGA-based anomaly detection analytics.

• Chapter 3 describes the procedure of this research towards achieving the

objectives. First, an overview of the proposed FPGA-based fog node and

its high-level architecture is discussed. Then, the development setup of the

proposed FPGA-based fog node architecture is provided together with its

development tools and environment setup. This chapter also discusses the

verification and validation methods used.

• Chapter 4 presents the implementation and development of the proposed FPGA-

based fog node with the NetFPGA CML development board. The evaluation of

the developed fog node is provided for verification and benchmark purposes.

• Chapter 5 presents the FPGA-based add-ons architectures and mechanisms

to enable remote DPR without causing service interruption. These add-

on architectures are significant to applications that sensitive toward service

interruption, where the application services circuitry implemented in FPGA is

halted during the DPR period.

• Chapter 6 presents the implementation and development of two different FPGA-

based anomaly detection analytics and their integration into the proposed FPGA-

based fog node as a case study. The developed anomaly detection analytics are

benchmarked with NAB [53,54] for verification and analysis purposes.

• Chapter 7 summarizes the presented content and reemphasizes the thesis

contributions. The potential future works are suggested in the last section

of this chapter.
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