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Abstract—This article investigates a two-link flexible 

manipulator (TLFM) that can be modelled utilizing a deep 

learning neural network. The system was classified under a 

multiple-input multiple-output (MIMO) system. In the modelling 

stage of this study, the TLFM dynamic models were divided into 

single-input single-output (SISO) models. Since coupling impact 

was assumed to be minimised, the characterizations of TLFM were 

defined independently in each model. Two discrete SISO models 

of a flexible two link manipulator were developed using the torque 

input and the endpoint accelerations of each link. The input-

output data pairs were collected from experimental work and 

utilised to establish the system model. The Long Short-Term 

Memory (LSTM) algorithm optimised using Particle Swarm 

Optimization (PSO) was selected as the model structure due to the 

system's high degree of nonlinearity. The identification of the 

TLFM system utilizing LSTM optimised by PSO was successful, 

according to the high-performance result of PSO. Using LSTM-

PSO, it is demonstrated that both link 1 and 2 models are 

accurately identified and that their performance in terms of MSE 

for links endpoint acceleration 1 and 2 is within a 95% confidence 

interval. 

Keywords—Tow link flexible manipulator, Deep learning, 

Flexible manipulator, LSTM-PSO, Non-parametric modeling  

I. INTRODUCTION  

Flexible manipulators introduce unwanted vibrations, 
which are not simple to control because of its high non-
linearity. Current research concentrates on enhancing the 
control schemes to suppress these vibrations. A reliable 
controller must be developed to keep the advantages linked 
with the flexibility and lightness of the manipulators,  the 
modeling system's accuracy, and efficiency[1]. Suppressing 
the vibration on flexible structures is very important. The 
structure vibration will affect the performance, such as 
reduced efficiency and accuracy, tracking errors, and lags 
between tasks. Furthermore, extreme and continuous 
vibrations will cause the system's early failure and possible 
deformation [2]. 

Since the initial emerging of the Long Short-Term 
Memory (LSTM) network structure in 1997, many theoretical 
and experimental publications concerning this type of 
Recurrent Neural Networks (RNN) have been published, 
describing the great results obtained along a wide range of 
application fields which mostly sequences data. The fields of 
language modelling, machine translation, speech to text 
transcription, and many applications have seen significant 
advances due to the LSTM network. Researchers have been 

evaluating the LSTM network's suitability for their research 
or practical use-cases. The remarkable benchmarks mentioned 
in the literature served as the motivation behind the decision. 
The majority of RNN and LSTM network configurations are 
productively implemented and ready for production in all 
significant open source machine learning frameworks [3]. 

LSTM is a RNN architecture created to solve the 
exploding and vanishing gradient issues in traditional RNN. 
RNN are effective for simulating sequences because they have 
cyclic connections, unlike feedforward neural networks [4]. In 
addition, LSTM is used to create the inverse dynamic of the 
manipulator F[5]. According to the simulation results, it is 
essential to prioritise the impacts of the highest number of 
epochs on model performing for the proposed deep learning 
architecture. Expectation accuracy will decrease as the 
number of hidden layers rises, whereas the impacts of hidden 
nodes on model performing are constrained. 

Rueckert and Nakatenus created model of inverse dynamic 
based on a LSTM with time difficulty. The approach was 
tested on a KUKA robot arm utilised for object manipulation 
tasks with varying loads. It was demonstrated that these 
variation of estimates might be employed to enhance a modify 
the stiffness or movement representation of the controller[6]. 

A prediction of  LSTM and seq-2-seq structure was 
applied by Xiang and Yan to estimate hourly rainfall-runoff. 
The models were calculated using the normalised mean square 
error, statistical bias, correlation coefficient, and Nash-
Sutcliffe Efficiency coefficient [7]. The prediction accuracy 
could be increased by using the LSTM-seq2seq model, which 
has a respectable predictive performance. Shen and Njock 
have suggested a system that incorporates data sequencing and 
Bi-LSTM in order to expect the jet grouted columns diameter. 
The findings demonstrate the precision with which the 
proposed methodologies can calculate the variant in the 
diameter of column with depth [8]. 

Gonzalez and Yu made use of the benefits of LSTM and 
NN in combination. One multilayer perceptron, one 
hierarchical recurrent network, and a newly used 
backpropagation through time and backpropagation methods 
are all components of the innovative neural model[9]. The 
results showed that the modified LSTM model offered for the 
simulation model performed noticeably more improved to the 
other existing neural models. In order to process information 
in sequences, LSTM additionally makes use of recurrent 
processes and gate approaches. In comparison to other 
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feedforward and recurrent NNs, LSTM has a lot of advantages 
for modelling time series, such as audio and video [10]. 

LSTM was used in Deep Learning to represent nonlinear 
dynamic systems, and it produced promising performance in 
prediction. However, as indicated in studies, LSTM effects are 
mostly determined by the number of maximum epochs as well 
as by the number of hidden nodes. 

Finding an accurate model of the system that has to be 
controlled is important for the design of an effective 
controller. The majority of research focuses on mathematical 
models like LPM, AMM, FEM, and LM to develop models of 
flexible manipulators; nevertheless, these models are 
constrained by the assumptions made for them. Additionally, 
a lot of research has used system parametric identification 
techniques, and flexible manipulator modelling is already well 
developed. Nonparametric identification techniques have, 
however, received relatively few nonlinear model research. 
The both numbers of hidden nodes and maximum epochs for 
LSTM  are optimised in this work employing deep learning 
using LSTM and particle swam optimization (PSO). 

II. EXPERIMENTAL SET UP OF TLFM 

TLFM test rig was conceived and built by Jamali based on 
the diagram shown in Fig. 1 to assess the effectiveness of the 
suggested control methods. The TLFM system consists of two 
flexible links, data acquisition system, dc motors, motor 
controllers, accelerometers and power source. Motor 
controllers are connected to DC motors. Motor controllers are 
currently coupled to power supplies and connecter blocks 
[11]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two link flexible robotic manipulator rig. 

III. EXPERIMENTATION SET UP AND DATA 

COLLECTION 

TLFM performs at each link as a single input multiple 
output system. The manipulator hub is subjected to a single 
torque system, which changes the hub angle. The TLFM setup 
was used to experimentally collect the input-output data. The 
block diagrams utilised to gather the data are shown in figs. 2 
(a) and (b). The power required to simultaneously excite the 
two-link was provided by using bang-bang signals. Two 
accelerometers were used for the accumulating. Two outputs, 
one for each endpoint acceleration of a different link. 

The experiment lasted 9 seconds, with a 0.01 second 
sampling interval. The time needed to move the links to the 
desired angle is sufficient given the constraints on space and 
link motion shown in fig. 3. Utilizing MATLAB, the online 
real-time application is created. The interface between the 
computer system and signals from input and output is the data 
acquisition system (NI-DAQ). Through NI-DAQ, the motor 
driver receives the actuation signal from the encoder as well 
as the motor driver's digital input. 

(a) Flexible manipulator link 1 (b) Flexible manipulator link 2 

Fig. 2. Bang-bang input voltage. 

 

(a) Endpoint acceleration 1 (b) Endpoint acceleration 2 

Fig. 3. Experimental output response. 

 

IV. MODEL STRUCTURE OF DEEP LEARNING LSTM 

The two-link flexible manipulator is predicted using a 
deep learning system. There are various units in the deep 
learning model. The computational unit, which is made up of 
several layers, is designed to successively obtain greater 
features from the input data. By eliminating duplicate data 
from each input and choosing only the characteristics that 
enhance performance, so every layer performs a different task 
to extract link for more information from the data 
analysis[12]. 

The proposed LSTM model consists of four layers: the 
sequence input layer, LSTM layer, fully connected layer, and 
regression layer respectively in fig. 4, these connections 
between the layers are made gradually. The data sequence 
found in the first row of a data matrix provides input to the 
sequence input layer. It is analysed by the LSTM layer. The 
LSTM layer is discussed in more detail in long short-term 
memory. The input data that are simulated by the LSTM layer 
are then presented to the fully connected layer. Similar to a 
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standard feedforward network, this layer conveys the 
sequence of crucial information to the layer below. 

 

 

Fig. 4. Model Structure of Deep Learning LSTM [13] 

A. Deep Learning LSTM Optimized by PSO 

Particle swarm optimization features a built-in guidance 
strategy that enables PSO solutions to learn from better 
solutions and utilise that information to generate their own 
unique solutions. In this case study, the PSO was chosen to 
optimise the LSTM maximum epoch and neuron nodes 
because it provides a faster convergence rate with a higher 
probability.  

The proper model for TLFM is found in this paper by 
combining the methodologies of deep learning LSTM and 
particle swarm optimization. The maximum epoch and neuron 
nodes make up the PSO position, according to flow chart fig. 
5. For the TLFM system's prediction outputs, this position 
takes into account the LSTM training's parameters. It is the 
fitness function of PSO to calculate mean square error (MSE) 
from the original outputs and the predicted outputs. Since each 
particle is being evaluated objectively, LSTM is used. 

 

Fig. 5. Flow chart of deep learning LSTM optimized by particle swarm 
optimization algorithm. 

V. RESULTS AND DISCUSSION 

Various MATLAB sequencers, including deep learning 
LSTM and neural networks models for simulating endpoint 
acceleration, were created utilising system identification. The 
models employed the data collected through the input voltage 
to the endpoint acceleration output from the TLFM equipment 
as detailed in this paper. The data set's 900 data were divided 
into 2 sets, each with 650 and 250 records. The model was 
created using the first set (the prediction set), and the 
validation test was carried out using the second set (the testing 
set) for validation purposes [14, 15]. On the deep learning 
LSTM, the particle swam optimization (PSO) approach has 
been used to find the right number of  maximum epochs 
and neurons. 

A. Endpoint acceleration 

The system identification procedure utilising deep 
learning LSTM was explored by varying the number of 
maximum epochs and neuronal nodes to determine the 
boundary of searching that can be utilised to start the particle 
swam. The outline of effectiveness for endpoint accelerations 
1 and 2 is shown in Table 4.2. It can be seen through the table 
that for output and input data sets for both endpoint 
accelerations 2 and 1, the MSE decreased between 250 and 
500 for the maximum epoch and between 150 and 300 for the 
maximum number of neuronal nodes. Then, the value of MSE 
in endpoint accelerations 1 decreased into 0.0754 between 300 
to 450 neurons nodes. Therefore, it has been shown that the 
maximum epoch range of 500 to 800 and the number of 
neuronal nodes of 200 to 500 are used to obtain the good 
prediction. 

 

TABLE I.  PERFORMANCE OF DEEP LEARNING LSTM FOR ENDPOINT 

ACCELERATIONS WITH DIFFERENT NUMBER OF MAXIMUM EPOCH AND THE 

NUMBER NEURONS NODES 

Endpoint Accelerations 1 Endpoint Accelerations 2 

Maxi

mum 

of 

epoch 

Neuron’s 

nodes 

MSE Maxi

mum 

of 

epoch 

Neuron’s 

nodes 

MSE 

250 150 0.087  
 

250 150 0.012 
 

500 300 0.0787 
 

500 300 0.0071 
 

750 450 0.0954 
 

750 450 0.092 
 

1000 600 0.1242 1000 600 0.085 
 

 
 
Then, deep learning LSTM is tested with various number of 
maximum epoch and the number neurons nodes. Thus, the 
boundary that will search for the number of maximum epochs 
500 to 800 and the number neurons nodes 200 to 500. PSO 
has been used to search for the MSE fitness function of the 
algorithm as shown at the fig. 6.  

In PSO for both endpoint accelerations 1 and 2, the 
initialization of the particle sawm was 22 of the population 
and 50 iterations. The constant values of PSO were 0.75 for 
W and 2 for C1 and C2. Thus, the mean square error (MSE) 
for endpoint accelerations 1 is 0.00016 at the maximum 
number of epoch 399 and neurons node 703. Moreover, MSE 
of the endpoint accelerations 2 is 0.000425 at the maximum 
number of epoch 261 and neurons node 526. 
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(a) Endpoint accelerations 1 (b) Endpoint accelerations 2 

Fig. 6. Searching Swam of MSE fitness function. 

 

 The LSTM-PSO predictions of the endpoint accelerations 
are shown in figs. 7 (a) and 8 (a). A green vertical line at the 
position 650 represents the validated data. Both plots show 
that although LSTM-PSO can track actual data, there is a large 
variance between predicted data and actual data. The 
divergence is significantly more obvious in the section with 
validated data. Both plots show that although LSTM-PSO can 
track actual data, there is a difference between predicted data 
and actual data. The divergence is significantly obvious in the 
section with validated data. These are supported by figs. 7 (b) 
and 8 (b), which show the inaccuracy between the real and 
predicted LSTM-PSO. The error is significant and cannot be 
ignored. As shown in figs. 9 and 10, the correlations of the 
error for the two LSTM-PSO models obviously deviate from 
the 95% confidence level. It has been proven that the LSTM-
PSO models are biased as a result. 

 

(a) Output and estimated outputs 
 

(b) Error between actual and                                                                             
predicted 

Fig. 7. Performance of Endpoint accelerations 1 model using 
LSTM-PSO. 

 
 

 

(a) Output and estimated outputs (b) Error between actual and                                                                             
predicted 

Fig. 8. Performance of Endpoint accelerations 2 model using 
LSTM-PSO. 

 

  

  (a) Auto-correlation of residuals             (b) Cross-correlation of input and 
residuals 

 

 

(c) Cross-correlation of input square 
and residuals 

(d) Cross correlation of input 
square and residuals square 

 

(e) Cross correlation of residuals and (input*residuals) 

Fig. 9. Correlation test for endpoint accelerations 1 model using 
LSTM-PSO. 

 

VI. CONCLUSIONS 

The modelling of the endpoint accelerations of TLFM 
intelligent approaches is presented in this paper. For the 
purpose of simulating the endpoint accelerations of TLFM, 
the LSTM-PSO neural network for non-parametric modelling 
was set into use. The input-output data pairs needed to 
simulate the TLFM system are collected through the 
experimental activity. In order to identify the overall TLFM 
model, the develop TLFM rig was excited using a bang-bang 
signal. Data from the experimental input and output were 
obtained and recorded. 

Deep learning LSTM improved via particle swarm 
optimization (PSO) structure depends on a distinct 
performance indicator, specifically MSE. Implementing 
LSTM-PSO is simple. The numbers of maximum epoch and 
neuronal nodes for LSTM-PSO are important factors that must 
be taken into account during the process. 

All of the modelling results are validated using mean 
square error and correlation testing. Correlation tests 
and mean square error were used to assess the LSTM-PSO 
models' capabilities. It has been demonstrated that the LSTM-
PSO produces variable mean square error levels in all 
modelling and validation stages when the numbers of 
maximum epochs and neural nodes are changed. All of the 

245Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on February 21,2023 at 00:57:32 UTC from IEEE Xplore.  Restrictions apply. 



2022 IEEE 8th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA2022)  

modelling results are validated using mean square error and 
correlation testing. Correlation tests and mean square error 
were used to assess the LSTM-PSO models' capabilities. It has 
been demonstrated that the LSTM-PSO produces variable 
mean square error levels in all modelling and validation stages 
when the numbers of maximum epochs and neural nodes are 
changed. It delivered a better model than only LSTM because 
it was able to predict the system reaction quite accurately. For 
the endpoint accelerations models of both links 1 and 2, the 
errors and correlation test are acceptable, with results that are 
supported by a 95 percent confidence level. 

 

  

(a) Auto-correlation of residuals (b) Cross-correlation of input and 
residuals 

  

(c) Cross-correlation of input 
square and residuals 

(d) Cross correlation of input 
square and residuals square 

 

(e) Cross correlation of residuals and (input*residuals) 

Fig. 10. Correlation test for endpoint accelerations 2 model using 
LSTM-PSO. 
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