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1. Introduction 
Damage is described as changes in structural properties, which may degrade the structural strength and adversely 

affects the functionality of a structure. Any drop in structural characteristics, such as stiffness, can affect the overall 
dynamic parameters of a structure. An alteration in the modal characteristics from an undamaged condition shows a 
potential damage in the given structure. Thus, it is necessary to accurately identify and detect structural changes from 
the modal parameters in the early stages [1]-[3]. 

Artificial intelligence approaches, such as artificial neural networks (ANNs) and fuzzy logic which parallel the 
significant capability of the human brain to learn in situations with uncertainty and inaccuracy, are very useful for 
solving inverse problems and have been used extensively for fault diagnosis in civil structures [4]-[8]. ANNs are highly 
efficient tools and have been developed to simulate complex problems in different fields of engineering and science. In 
addition, ANNs have the ability to learn the fundamental relationships in a set of data and then use that information to 
identify the output for different inputs [9]-[11]. Indeed, ANNs are very good at pattern recognition and can be trained 
properly from data and they can also generalise highly nonlinear mapping between diverse domains, but they are poor 
in term of reasoning capabilities [12], [13]. 

Abstract: In recent times, damage identification based on vibration methods are emerging as common approaches, 
in which the techniques apply the vibration response of a monitored structure, such as modal frequencies and 
damping ratios, to evaluate its condition and detect structural damage. The basis of the vibration-based health 
monitoring method is that when there are alterations in the physical characteristics of a structure, there will also be 
changes in its vibration properties. This paper proposed a neuro-fuzzy artificial intelligence method, called 
adaptive neuro-fuzzy inference system (ANFIS), to detect damage using modal properties. To generate the modal 
characteristics of the structures, experimental study and finite element analysis of I-beams with single damage 
cases were performed. The results showed that the ANFIS approach was able to detect the magnitude and location 
of the damage with a significant degree of precision, and notably reduced computational time. 
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 Fuzzy logic systems, on the contrary, can reason with inaccurate data and are great at describing their decisions, 
but do not have the learning ability and cannot modify themselves to adjust to a new environment. These limitations 
have encouraged researchers to create composite systems, where two or more intelligent methods are joined in a 
technique that overcomes the drawbacks of individual methods and attain better performance by utilising the 
proficiencies of each single technique. The adaptive neuro-fuzzy inference system (ANFIS) is the combination of both 
fuzzy logic systems and ANNs, which can take the benefits of both methods in a single structure. 

ANFIS based on vibration parameters of a structure has been implemented for structural health monitoring and 
damage detection in a number of literatures. For example, the identification of damage in a beam structure using 
ANFIS was investigated by Fallahian & Seyedpoor [14]. In the said study, damage was defined as reduction in the 
modulus of elasticity in each element of the beam and modelled using finite element analysis. The natural frequencies 
of the structure were used as the input parameters. Results demonstrated that ANFIS could identify the damaged 
elements with a high percentage of accuracy.  

The effect of damage on the first three modes of an isotropic beam using both ANN and ANFIS was presented by 
Banerjee et al. [15]. According to their study, ANFIS was able to predict the natural frequency of a damaged beam with 
an error of 1%, which demonstrated a high level of precision. In a different study, Zhu & Wu [16] proposed the method 
of structural damage detection based on dynamic vibration data, in which the authors employed ANFIS for structural 
damage detection purpose. According to their results, the proposed ANFIS approach was reliable for the detection of 
damage and prediction of the structural response. Next, implementation of ANFIS for damage detection of nonlinear 
truss structures was investigated by Salajegheh et al. [17]. In the said study, the ANFIS technique was implemented to 
identify the nodal displacement in truss structures. The presented ANFIS was compared with the results of ANN and 
indicated superior performance for assessing structure design values. 

In another study, Das et al. [18] included the application of ANFIS to identify fatigue crack propagation of steel 
beam. The dynamic responses of the structure were measured in both undamaged and multiple damage states and 
experimental modal analysis was performed at each damaged stage. From the outcomes of their research, it was found 
that the ANFIS model demonstrated its efficiency quite acceptably. Damage detection in curvilinear beam structures 
using neural networks and ANFIS was also investigated by Saeed et al. [19]. The modal frequencies and frequency 
response functions (FRFs) of the undamaged and damaged structures at different locations were generated from finite 
element simulation and applied as the input parameters. Length and location of the cracks were considered as the output 
parameters. Principal component analysis (PCA) was used to decrease the dimension of the FRFs. The comparison of 
the error results showed that the multiple ANN and ANFIS combination achieved better results than the single ANN. 

In this present research, the development, application and verification of ANFIS-based damage identification 
methods using modal data in I-beam structures were investigated. In the first step, the dynamic properties of the 
structures were extracted using experimental modal analysis and in the second step, the finite element analyses of both 
undamaged and damaged structures were implemented. The results showed that ANFIS, as an artificial intelligence 
method, could recognise the magnitude and detect the position of damage in the structures with a significant level of 
precision. 

 
2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS was developed by Jang [20] and is a class of adaptive networks, which use the learning algorithms of both 
ANNs and fuzzy logic (FL) principles to take the advantages of both techniques. Using a specified dataset, ANFIS sets 
up a fuzzy system, whose membership functions (MFs) are modified using a hybrid approach, applying a combination 
of backpropagation (BP) algorithm and least mean square (LMS) [21]-[23]. The architecture of ANFIS, which has five 
layers, is depicted in Fig. 1. These layers perform multiplication, normalization, linear regression, and summation. 

Each node in the first layer is an adaptive node and produces membership functions (MFs) of inputs, using several 
parameters. Each input has at least 2 MFs. Both Gaussian and bell-shaped are common membership functions used in 
fuzzy sets. Bell-shaped MFs have some advantages in ANFIS, such as being more flexible, than that of Gaussian MFs. 
Hence, the parameters of network would be more adjustable when using bell-shaped MFs. Parameters in layer 1 are 
called premise parameters {ai, bi, ci}. 

Moving on, every node in layers 2 and 3 is a fixed node and each node represents the firing strength of the rule. 
The output of the nodes in layer 3 is known as normalized firing strength. In the fourth layer, every node is an adaptive 
node function and computes the contribution of each rule toward the total output. Parameters in layer 4 are called 
consequent parameters {pi, qi, ri}.  

Finally, the single node in layer 5 is a fixed node, which basically calculates the total output of the system as the 
summation of all the received signals. ANFIS uses a hybrid algorithm to learn and compute the (i) consequence 
variables (pi, qi, ri) via least mean square during the forward pass and (ii) premise variables (ai, bi, ci), updating using 
gradient descent during the backward pass. In the process of learning, the least mean square method is used to find the 
linear variables, while the non-linear variables (membership functions) are considered to be fixed. The gradient descent 
is applied to upgrade the non-linear variables, while the linear variables remain fixed. 
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Fig. 1 - ANFIS architecture with a two-input first order Sugeno fuzzy model [24] 

 
3. Experimental Study 

Modal analysis is one of the key technologies in structural dynamics and uses a vibration base to determine 
damage in structures. Modal parameters are usually extracted from experimentally acquired time responses or 
frequency response functions (FRFs). However, it is more common to apply frequency-domain approaches than time-
domain methods [25]-[28]. In the experimental study, the specifications of the tested specimens were expressed. Then, 
the modal analysis of the I-beam structure with respects to the variety of damage scenarios was described. In the last 
step, the dynamic parameters of both the intact and damaged structures were extracted.  

In this research, four undamaged steel I-beams with a length of 3200 mm were considered. The dimensions of the 
structures included a flange width of 75 mm, thickness of 7 mm and 5 mm for the flange and web, respectively, and a 
section depth of 150 mm. In the experimental modal analysis, the specimens were excited using a shaker and the 
responses were measured by accelerometers. Then, the converted signals were analysed and the dynamic characteristics 
of the structures were determined. The set-up of the tested structure is as shown in Fig. 2.  

 

 
Fig. 2 - Experimental test set up 

 
In this study, from the modal analysis, all structures were experimented in their healthy condition and under 

various locations of damaged to extract the modal frequencies of the structures. In the first step, each structure was 
tested separately in its undamaged state. The first five modal frequencies of healthy beams are shown in Table 1. From 
this table, it was clear that, in higher mode shapes that were more challenging to acquire, the variations were more 
considerable than in lower modes that were simply acquired.  
 

Table 1- Experimental results for the first five frequencies of healthy beams 
Frequency F1 F2 F3 F4 F5 Beam 

B1 56.21 202.01 440.95 709.42 951.21 
B2 55.88 198.56 439.47 713.31 947.11 
B3 55.74 206.16 440.26 716.21 967.21 
B4 54.55 202.47 440.58 715.95 963.94 
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Also, different damage cases were generated in the structures. Damage scenarios were consisted of four positions 
with 25 magnitudes of severity for each position. Four beams named B1 to B4, were examined as single damaged by 
inflicting a slot by grinding at locations L/2, 2L/15, 4L/15 and 6L/15 of the span length, respectively. The 25 damage 
cases with 5 mm breadth and depth of 3 to 75 mm with an interval of 3 mm were gently inflicted. The positions of the 
damage in beams B1 to B4 are demonstrated in Fig. 3.  
 

 
(a) Beam B1 

 
(b) Beam B2 

 
(c) Beam B3 

 
(d) Beam B4 

Fig. 3 - Location of single damages 
 

The results of the natural frequencies for all the damaged state cases for beam B1 are depicted in Fig. 4. According 
to the damaged results, the maximum reductions of the natural frequency were 29.48%, 1.71%, 17.88%, 2.55% and 
5.33% for mode 1 to mode 5, respectively. However, the values of the frequencies of the second and fourth modes were 
only slightly affected. To offer an explanation, in beam B1, where damage was imposed at mid-span, only minor 
changes had been observed for these two modes. The mid-span of the structure was the node point for modes 2 and 4. 
From Fig. 4, after increasing the inflicting damage from 3 mm to 75 mm, the frequencies decreased with the severity 
level. In beam B1 where the damage was located at the mid-span of the beam, the frequencies of modes 1, 3 and 5 were 
the most affected. Fig. 4 also specified that, the natural frequencies decreased with the rise in the level of damage and 
could be used as a criterion for fault diagnosis in civil structures. 
 

 
Fig. 4 - Natural frequencies of beam B1 for different damage severities 

 
It is important to note that a mode shape is more sensitive at the location of the damage and provides more details 

about the location of the defect than natural frequencies. According to the results, changes in the mode shapes could 
happen with various levels of damage. The mode shape variations demonstrated that when the extent of defect was 
high, the mode shape alterations would also be larger. The results of the experimental modal analysis for beams B1 to 
B4 were saved and used for damage identification purpose using ANFIS. 

 
4. Numerical Simulation 

Finite element models were developed to simulate the modal analysis experiments. In this section, modal 
frequencies and mode shapes were attained by carrying out the numerical modal analysis of the undamaged beams and 
with different damage scenarios using Abaqus (Release 6.14). The I-beam model was simulated in its undamaged state 
to ascertain the first five flexural frequencies and mode shape magnitudes, as shown in Table 2. 
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Table 2 - Numerical results of natural frequencies (undamaged beam) 
F1 

(Hz) 
F2 

(Hz) 
F3 

(Hz) 
F4 

(Hz) 
F5 

(Hz) 
54.39 209.01 443.13 732.84 1058 

 
It could be seen from Table 2 and results from the experiment (i.e., Table 1), that only the first measured frequency 

was higher than the finite element model. This was caused by the stiffness of the support used in the experiment. To 
add further, the support used during the measurement had impact toward the dynamic behaviour of the structure. Other 
measured natural frequencies were lower than the numerical results due to the higher stiffness of the finite element 
model. The first five flexural mode shapes of the healthy model of the structure are demonstrated in Fig. 5, which 
clearly indicated that all the flexural modes were smooth functions that showed the non-presence of damages. 

 

 
Fig. 5 - First five mode shapes of the undamaged beams 

 
Damage was modelled by a rectangular opening at locations L/2, 2L/15, 4L/15 and 6L/15 of the span length. The 

25 damage severities were individually modelled, for each beam. The results demonstrated that the effect of damage 
was dependent on the location and magnitude of the damage. Fig. 6 shows the variations of the mode shape magnitudes 
with 75 mm damage to beam B1. The results indicated that when the damage was located at the mid-span of the beam, 
the natural frequencies of modes 1, 3 and 5 were the most affected. However, the natural frequency values of the 
second and fourth modes were only slightly affected. These results resonated with the described test results in the 
previous section. 
 

 
Fig. 6 - First five mode shapes of beam B1 after inducing 75 mm damage 



Hakim et al., Int. Journal of Integrated Engineering Vol. 14 No. 6 (2022) p. 378-388 

 383 

5. Structural Damage Identification Using ANFIS  
The ANFIS technique was developed to identify the magnitude and location of damage from the vibration data of 

the structure. The natural frequencies, which were the global characteristics of the structure, were used as the input 
parameters to identify the severity of the damage, while the mode shapes, which represented the local characteristics of 
the structure, were applied to recognise the location of the damage. The ANFIS method that was considered in this 
study consisted of five layers. The first and fourth layers were adaptive layers, while the second and third layers were 
fixed layers. Finally, since ANFIS had a single output, the damage severity or damage location was the output 
parameter, which also represented the fifth layer of the ANFIS model. In the following sections, the design of the 
ANFIS architecture to identify the magnitude and location of the damage was investigated. 
 
5.1 Damage Severity 

In this section ANFIS was trained with the first five flexural natural frequencies to identify the extent of damage in 
the I-beam structures. The inputs were (f1), (f2), (f3), (f4) and (f5) representing the first five natural frequencies of the 
structure. The training of ANFIS was performed to minimise the error between the output identified from ANFIS and 
the real target. During training, both the premise and consequent parameters were adjusted using hybrid algorithm. In 
order to achieve an output with higher precision, several ANFIS structures with different MFs, fuzzy rules and number 
of MFs were trained to attain the preferred structure of ANFIS. Types and number of MFs were changed to increase the 
functionality of ANFIS during training. The number of MFs allocated to each input was selected practically by trial and 
error, and the performance measure in terms of absolute error (AE) was applied to guarantee that the model had good 
generalisation capability. In this study, the MFs were bell shaped function. The parameters in the hybrid algorithm 
consisted of error tolerance, iteration number, initial step size, step size decrease and increase rates.  

The number of iterations in the training step was fixed to 3000. The length of each gradient transition in the 
parameter space, which is called step size was 0.02 in this research. This value was in the range of 0.01 to 0.1 and could 
be changed to diverge the speed of convergence. According to the literature [29]-[31], the primary value of the step size 
is not significant for the final performance of ANFIS, as it is a very small value. The number of MFs for each input was 
fixed to 18 to reach an acceptable level after training. The architecture of the proposed ANFIS model for damage 
severity in the I-beam structure is depicted in Fig. 7. According to this architecture, 18 fuzzy MFs and 18 rules for 
layers 2 and 3 were generated, with regard to the five inputs. After the training phase, the ANFIS model was used to 
identify the severity of damage in the structure. The efficiency of the trained ANFIS model was checked using the 
testing datasets to the network. For this purpose, 62 datasets were used.  

 

 
Fig. 7 - The structure of ANFIS for the identification of damage severity 

 
The comparison between the identified damage severity via ANFIS and testing datasets is shown in Fig. 8. The 

results indicated that ANFIS could identify the extent of damage with an AE of 0.86% for the testing datasets. The 
coefficient of correlation rose to 0.9941 for the testing data and demonstrated that the results of ANFIS were similar to 
the targets. A correlation analysis was also carried out to illustrate the strength of the relationship between the actual 
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results from the finite element modelling and experimental modal analysis with the damage severity results from 
ANFIS. 

 

 
Fig. 8 - Comparison of damage severity through ANFIS and the testing datasets 

 
The results of comparison showed that in beams B1 and B4, AE was below 0.65%, except for mode 5 

(approximately 1.23%). Also, in beams B2 and B3 the AE for modes 1, 3 and 4 was less than 0.71%, which showed a 
good correlation between the actual and predicted results. It is worth mentioning that the variations of AE between the 
actual and identified data in some cases were even less than 0.5%. For example, in beam B1 for mode 1, AE was 
0.48%, except for the severities of 69, 72 and 75 mm, which were 1.42%, 1.95% and 2.64%, respectively. The results 
demonstrated a very good correlation between the identified damage and actual datasets, and they proved that the 
developed ANFIS could be used as a very good approach for the recognition of damage extent in structures. 

 
5.2 Damage Localisation 

In this section, the possibility of using the ANFIS model for damage localisation in the I-beam structure is studied. 
Damage datasets was obtained from all the mode shape values consisting of 14 inputs at the points on the centreline of 
the beam. Damage location of the beam in terms of the ratio of location of damage from the support to the beam length 
(ld/L) was considered as the output of ANFIS. The training of ANFIS was initiated with 208 datasets from different 
damaged scenarios of beams B1 to B4. The datasets were randomly divided into two sets with 146 and 62 samples for 
training and testing, respectively. The input layer of ANFIS for each mode had 14 nodes including all mode shape 
values at the points on the centreline of the structure. Therefore, the inputs and output of ANFIS for modes 1 to 5 come 
in the form of an array, which was given as: 

 
Mode 1: {φ 1,2, φ 1,3, φ 1,4, φ 1,5, φ 1,6, φ 1,7,φ 1,8,φ 1,9,φ 1,10,φ 1,11,φ 1,12, φ 1,13, φ 1,14, φ 1,15, ld/L} 
Mode 2: {φ 2,2, φ 2,3, φ 2,4, φ 2,5, φ 2,6, φ 2,7,φ 2,8,φ 2,9,φ 2,10,φ 2,11,φ 2,12, φ 2,13, φ 2,14, φ 2,15, ld/L} 
Mode 3:{φ 3,2, φ 3,3, φ 3,4, φ 3,5, φ 3,6, φ 3,7,φ 3,8,φ 3,9,φ 3,10,φ 3,11,φ 3,12, φ 3,13, φ 3,14, φ 3,15, ld/L} 
Mode 4:{φ 4,2, φ 4,3, φ 4,4, φ 4,5, φ 4,6, φ 4,7,φ 4,8,φ 4,9,φ 4,10,φ 4,11,φ 4,12, φ 4,13, φ 4,14, φ 4,15, ld/L} 
Mode 5:{φ 5,2, φ 5,3, φ 5,4, φ 5,5, φ 5,6, φ 5,7,φ 5,8,φ 5,9,φ 5,10,φ 5,11,φ 5,12, φ 5,13, φ 5,14, φ 5,15, ld/L} 

 
During the training procedure, the number of MFs was progressively increased, to reduce the error, and thus, the 

best possible structure with suitable MF parameters was obtained. The number of iterations was set to 3000 and training 
procedure was completed for all modes. The number of MFs for each input neuron was fixed to 23 to define the input 
and output parameters, until ANFIS attained an acceptable level after training. Fig. 9 presents the structure of ANFIS to 
identify damage location of the I-beam. According to this architecture, 23 fuzzy MFs and 23 rules for layers 2 and 3 
were generated, with regard to the 14 inputs.  

The performance of the ANFIS model to locate damage in the structure for modes 1 to 5 was tested using testing 
datasets and the results are shown in Fig. 10. According to the results from Fig. 10, ANFIS recognised the location of 
damage with AE of 1.088%, 1.81%, 1.14%, 1.76% and 1.97% for modes 1 to 5, respectively, for testing datasets.      
Fig. 10 demonstrated that the results identified by ANFIS using modes 1 to 5 were very close to the actual values. The 
performance and statistics of the selected architecture for all modes using ANFIS are tabulated in Table 3. From the 
ANFIS results in Fig. 10 and Table 3, it was observed that the networks of modes 1 and 3 with minimum AE values of 
1.09% and 1.14% for the testing datasets performed the best, compared to the other networks. Larger errors were 
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achieved by the ANFIS for modes 2, 4 and 5. The higher AE for modes 2 and 4 were due to the existence of the node 
points of these modes. 
 

 
Fig. 9 - The structure of ANFIS for damage location identification  

 
Table 3- Statistics of all modes using ANFIS for damage location identification 

Network of M1 Network of M2 Network of M3 Network of M4 Network of M5 
AE R2 AE R2 AE R2 AE R2 AE R2 

0.01088 0.9846 0.01811 0.9631 0.01144 0.9818 0.01761 0.9675 0.01972 0.9526 

 

 
(a) mode 1 

 
(b) mode 2 

 

 
(c) mode 3 

 
(d) mode 4 
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(e) mode 5 

Fig. 10 - Damage location by ANFIS vs the actual data (first five modes) 
 

The ANFIS results from mode 5 gave an AE of 1.97% and the correlation value of 0.9526. The unexpected errors 
during the extraction of higher mode shapes from the experimental modal analysis could be attributed as the reason for 
the larger error in mode 5. According to Table 3, the correlation coefficient values obtained were 0.9846, 0.9631, 
0.9818, 0.9675 and 0.9526 for modes 1 to 5, respectively, for the testing datasets. These values indicated that ANFIS 
could provide good results for damage localisation using the mode shape values of structures. Thus, it exhibited good 
overall performance of ANFIS for the I-beam structure with very high correlation. 

 
6. Conclusion 

In this study, ANFIS was presented for the identification of single damage in I-beam structures. The vibration 
properties of the structures from finite element simulation and experimental modal analysis were used as the input 
parameters for the ANFIS model. Different ANFIS architectures with different types and number of MFs and fuzzy 
rules were trained, until the ANFIS model reached an acceptable level. According to the results of this study, the 
magnitude of damage in the I-beam was identified with a high degree of precision. The results further indicated that 
ANFIS could be used as a strong technique for the identification of damage severity in I-beam structures. Also, ANFIS 
managed to identify the location of damage in the I-beam structure. It was observed that, the performance of ANFIS 
provided good outcomes and demonstrated the applicability of ANFIS to identify the location of damage in I-beams 
with a high level of confidence. 
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