
Optimizing the FPGA Memory Design
for a Sobel Edge Detector

Craig Moore, Harald Devos and Dirk Stroobandt
Hardware and Embedded Systems Group

Electronics and Information Systems Department
Ghent University, Belgium

phone +32 9 264 33 66 | fax +32 9 264 35 94
{craig.moore, harald.devos, dirk.stroobandt}@elis.ugent.be

Index Terms—Field programmable gate arrays, Memories,
Memory architecture, Buffers

Abstract—This research explored different memory systems
on FPGA chips in order to show the various trade-offs involved
with choosing one memory system over another. We explored
the different memory components that are found on FPGA chips
using the example of a Sobel edge detector. We demonstrated how
the different FPGA chip’s memories affected I/O performance
and area. By exploiting the trade-offs between these a designer
should be able to find an optimal on-chip memory system for a
given application. Given further study, we believe we can develop
application-specific memory templates that can be used with a
hardware compiler to generate optimal on-chip memory systems.

I. INTRODUCTION

Application specific hardware designs enjoy exponential
gains in computation speed, compared to equivalent software
designs, since they can take advantage of the highly parallel
nature of their architecture. Hardware designers are free to
utilize the hardware that runs their applications in any way they
choose. However, this makes the size of their problem space
much larger since they have more considerations related to
hardware selection. The same is not true for software designers
since many of the hardware considerations are handled by the
compiler. We believe our research is important in this regard,
since hardware compilers (or high level synthesis tools) are
not yet able to efficiently choose the correct memory system
for an application without significant human intervention. Fur-
thermore, since the memory system can be a major bottleneck
in system performance, it is important that hardware compilers
be able to select the optimum on-chip memory system for a
given application.

II. METRICS

There are four important metrics for hardware designs when
it comes to memory: bandwidth, latency, size, and area. Using
a traditional pipeline analogy, bandwidth would be the size
(flow rate) of the pipe or the number of pipes used. Latency
can be described as the length of the pipe(s). The longer the
pipe, the longer it takes for the data to reach its destination
and the slower the overall system. If items can be stored near
their destination, then they will not need to be retrieved further
upstream which reduces the overall execution time. This is

why size is an important metric. If there is insufficient space to
store all the values needed, then the system must replace stale
values for new ones when needed. A well designed memory
system should only replace those values that are no longer
needed in order to minimize (or eliminate) multiple calls to
external memory for the same value. Often, the larger the
size of the memory required means a larger area occupied
in hardware so area is also an important consideration.

There are typically three different types of memory avail-
able: registers, block memory (RAM), and external memory.
As seen in Table I, each memory type has its own benefits and
drawbacks. Registers are fast, but are evenly distributed on the
FPGA so consume a larger amount of area when connected
together to form a larger memory system. Block RAM on the
FPGA, while slower than registers, is much more compact
allowing it to occupy less area on the FPGA by comparison.
External RAM, is much larger than the other two and occupies
no space on the FPGA. However, it is much slower since data
has to travel further to reach its destination.

TABLE I: Proposed taxonomy of trade-offs.
Type Latency Bandwidth Size Area

registers ++ ++ ± – –
block memory + + ± +
external memory – – – ++ ++

± Depends on FPGA architecture selected

III. EXPLORATION OF MEMORY SYSTEMS

We explored the trade-offs between memory components
using a Sobel edge detector because it offers a number of
opportunities for data reuse, prefetching, and parallel access.
The Sobel edge detector example is also similar to a number
of other applications that use windowing operations, such as
a FIR filter and wavelet transforms [1]. Sobel edge detectors
are used in image processing to identify and isolate areas on
an image with strong intensity changes from one pixel to the
next.

We developed four designs which each have a different type
of memory system to demonstrate the trade-offs in perfor-
mance and area. Each design consisted of four components:
an input buffer, the data path, an output buffer, and a simulated

-496-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55871299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

input buffer data path output buffer

we

ready

q00

q01

q02

q10

q12

q20

q21
q22

d we

d00

d01

d02

d10

d12

d20

d21
d22

ready

q

we

d ready

q

memory

we

d
ready
q

Fig. 1: System configuration used for each design

external memory as shown in Fig. 1. The designs each use a
different type of input buffer, but have the same data path
with a slightly different output buffer in each design. The first
design uses primarily external memory and a very small input
buffer of eight registers for the sliding window. The remaining
designs all have input and output buffers that are able to reuse
values without having to reread them from external memory.
The second design’s input buffer uses only registers and no
block RAM. The third design’s input buffer uses primarily
block RAM, and the fourth design uses a combination of block
RAM with registers.

After simulating each design, we verified that it produces
the same output images as the C code which we based our
designs on [2] and synthesized it using Altera’s Quartus II
Version 8.0 targeting a Stratix EP1S25F1020C5 board. The
results are shown in Table II.

A. External Memory

XY Register in Window

Sliding Window Buffer

Image Pixel

Pixel to be calculated11

Key

Y

X

0

1

2

3

M-1

.
 .

.

0 1 2 3 N-1. . .

.
 .

.

00

01

02

10

11

12

20

21

22

.
.

.

. . .

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

. . .

. . .

. . .

Input Image

Fig. 2: External memory design: input image with
input buffer registers centered at pixel 2,2

The first design listed in Table II consists of a small input
buffer of eight registers where each register stores one pixel
in the sliding window, as show in Fig. 2. Before the data path
can begin calculating the first window, the input buffer must
read eight pixels. Pixels are read in from external memory

each time they are needed so there is no way to reuse pixels
after they are used. As can be seen in the table of results, this
design has the fastest clock speed, utilizes the least amount of
resources on the FPGA, but has the longest execution time.
This long execution time is due to the fact that no pixels are
reused.

B. Registers with Data Reuse

Input Image

0 1 2 3 N-1

Input Pixel StreamY

X

. . .

00

01

02

10

11

12

20

21

22

3 N-1. . .

3 N-1. . .

Input Buffer
Shift Registers

Sliding Window
Registers

Fig. 3: Registers with Data Reuse: Input buffer
using registers organized as a shift register

We can reduce the number of execution cycles by adding
more registers to the input buffer so that pixels can be stored
and reused until they are no longer needed. We did this by
adding shift registers, as shown in Fig. 3 where values are
read in sequentially from the input image as a stream of input
pixels. The input buffer stores two rows of pixels from the
input image and top three pixels of the sliding window. Values
are then shifted through the sliding windows as shown by the
arrows. When pixels are no longer needed they are simply
shifted out of the input buffer. Before the data path can start
processing the input buffer must first read in the first two
rows and three pixels from the third row. Overall this was the
fastest design compared with the others because it required the
fewest number of execution cycles with almost the same clock
speed as external memory design. However, because the input
buffer is composed entirely of registers, which are distributed
uniformly over the FPGA, it utilized the largest area on the
FPGA.

C. Block RAM with Data Reuse

We can reduce the area utilized by using block RAM instead
of registers in the input buffer as show in Fig. 4. However,
this design has a longer pipeline latency because calculation
can only start once the first three rows of the input image
have been buffered. While having a slower clock speed and a
larger number of execution cycles, this design utilized a much
smaller area on the FPGA.

-497-

TABLE II: Table of Synthesis Results for each design.

Design Frequency Cycles1 Time1,2 Area1,3 Registers1 RAM1,4 Accesses1,5 Bandwidth1,6

1 142.82 MHz 810,275 5.67 ms 187 91 0 bits 808,992 142.93 B/s
2 139.80 MHz 102,726 0.73 ms 5,474 5,322 0 bits 102,400 140.27 B/s
3 123.20 MHz 104,000 0.84 ms 459 252 7,584 bits 102,400 121.30 B/s
4 134.73 MHz 103,683 0.77 ms 492 260 5,056 bits 102,400 133.06 B/s

1. Values when used with a 320× 320 pixel, 8-bit encoded bitmap input image
2. Execution time = cycles/frequency
3. The total number of logic elements utilized by the design
4. Bits of on-chip RAM memory blocks utilized
5. Number of accesses to external memory made by the design
6. Required external memory bandwidth =

`
memory accesses · (bytes/access)

´
/time

Y

X

221202

S
lid

in
g

 W
in

d
ow

N-1

N-1

. . .

. . .

Input Buffer
Block RAMs

211101

0 1 2 3 N-1. . .

Input Pixel Stream

3

N-1. . .201000 33

3

Input Image

Fig. 4: Block RAM with Data Reuse: Input buffer using block
RAM organized as a shift register

D. Block RAM and Registers with Data Reuse

The final design is a combination of the register design
with the block RAM design as seen in Fig. 5. This design
has almost the same performance as the register design and
utilizes almost the same area as the block RAM design. As
show in Table II, this design makes the best trade-off between
area and performance compared with the other three designs.

IV. RELATED WORK

Many current hardware compiler projects can convert high
level programming languages like C to a hardware descrip-
tion language (HDL) for FPGAs [3]–[11]. Part of this work
involves developing the memory systems to be used for the
applications it compiles. One component of this is identifying
the design patterns of the application. A survey of such
work can be found in [12]. Another component is developing
the memory systems which are best suited for a particular
application [13], [14], so that once the design pattern of the
application is identified the compiler can pair it with the
memory system best suited for that application. Our work has
shown how important exploration of an application’s memory
system can be on performance.

00

01

02

10

11

12

20

21

22

Sliding Window
Registers

Input Buffer
Block RAMs

Input Image

0 1 2 3 N-1

Input Pixel StreamY

X

. . .

N-1. . .3

N-1. . .3

Fig. 5: Block RAM and Registers with Data Reuse: Input buffer
using block RAM and registers organized as a shift register

Dong et al. proposed a universal memory structure to be
used within high level synthesis of sliding window appli-
cations [14]. During our exploration, we utilized a similar
memory structure to their system, as described in section III-D,
with registers for the window pixels and block memory for
buffering values from external memory. However, their design
uses three rows of pixels in block memory while ours only
requires two rows. Additionally, their system uses a dataflow
controller in between the window registers and buffer memory.
We do not need this because the values for the window are
shifted into place without a controller’s intervention. They
have better clock speeds than our design, but without further
info regarding their memory block utilization numbers we can
not make a direct comparison.

Guo et al. also developed a buffer which uses input data
reuse in window operations [1] and further extended it for
simplified loop control [7]. We have found that their smart
buffer can’t hold enough values without having to reread
values from external memory. However, the benefit of their
buffer is that, like ours, a dataflow controller is not required.

A point not addressed in this paper, but important to be

-498-

aware of, is the problem of interfacing with external memory.
Diniz et al. [15], [16] state that most designs do not interface
directly with external memory, rather they use vendor-specific
IP cores that have interface signals which can be utilized
by the on-chip memory system. In their implementation of
the DEFACTO compilation and synthesis system, they define
two interfaces and a set of parameterizable abstractions to
interface with existing synthesis tools. Using this type of
implementation ensures that they can still use application-
specific scheduling. They do this by using distinct ordering
of memory accesses which interfaces with the vendor-specific
memory IP core that handles the access to external memory.
Since this is a fixed cost for any design, we did not take it into
consideration, but in future work we will investigate it further
to see if there may be optimizations to be exploited.

V. CONCLUSIONS AND FUTURE WORK

We found that a combination of registers and block memory
worked best for a Sobel edge detector because it makes the
best trade-off between area and performance. It used a type
of smart buffer that shifts values into the sliding window,
without having to reread values from memory. We believe this
design could be used with a hardware compiler and may be
an improvement over the memory systems developed in [1],
[14].

Future work will include, incorporating our memory design
into the JCCI compiler developed by Devos et al. [17]. We
will develope a parameterizable version of our memory design
that can be easily adapted to the size of the system. Then we
will look at how it performs with other applications using
our compiler. We also want to investigate other performance
metrics such as power and data locality like the work done by
Cathoor et al [18]. Finally, we will be investigating adding
an external memory controller that can be adapted to suit
vendor-specific IP memory interfaces like the one used by the
DEFACTO compiler [15].

VI. ACKNOWLEDGMENTS

This research is supported by the I.W.T. grant 060068.
Ghent University is a member of the HiPEAC Network of
Excellence. The authors would like to thank Karel Bruneel
and Wim Meeus for their valuable suggestions.

REFERENCES

[1] Z. Guo, B. Buyukkurt, and W. Najjar, “Input data reuse in
compiling window operations onto reconfigurable hardware,” in LCTES
’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on
Languages, Compilers, and Tools for Embedded Systems. ACM Press,
July 2004, pp. 249–256. [Online]. Available: http://www.cs.ucr.edu/
∼zguo/

[2] B. Green, “Edge detection tutorial,” http://www.pages.drexel.edu/
∼weg22/edge.html, 2002, last Accessed 2009.02.24.

[3] Mentor Graphics, “Catapult C synthesis,” http://www.mentor.com/
products/esl/high level synthesis/catapult synthe%sis/, Accessed
01.2009.

[4] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, SPARK, A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits. Kluwer
Academic Publishers, 2004.

[5] Agility (Formerly Celoxica), “Handel-C,” February 2009. [On-
line]. Available: http://www.agilityds.com/products/c based products/
dk design suite/hand%el-c.aspx

[6] Impulse Accelerated Technologies, “Impulse C,” http://www.impulsec.
com/, Accessed 01.2009.

[7] Z. Guo, W. Najjar, and B. Buyukkurt, “Efficient hardware code
generation for FPGAs,” ACM Trans. Archit. Code Optim., vol. 5,
no. 1, pp. 1–26, May 2008. [Online]. Available: http://www.cs.ucr.edu/
\∼zguo/papers/TACO manuscript.pdf

[8] F. Diet, E. H. D’Hollander, K. Beyls, and H. Devos, “Embedding
smart buffers for window operations in a stream-oriented C-to-VHDL
compiler,” in 4th IEEE International Symposium on Electronic Design,
Test & Applications (DELTA’08), Hong Kong, January 2008, pp. 142–
147.

[9] D. Ghica, “Function interface models for hardware compilation,”
School of Computer Science, University of Birmingham, UK,
drg@cs.bham.ac.uk, Technical Report CSR-08-04, November 2008.

[10] B. So, M. W. Hall, and H. E. Ziegler, “Custom data layout for memory
parallelism,” in CGO ’04: Proceedings of the international symposium
on Code generation and optimization. Washington, DC, USA: IEEE
Computer Society, 2004, p. 291.

[11] M. Bednara and J. Teich, “Automatic synthesis of FPGA processor
arrays from loop algorithms.” Journal of Supercomputing, vol. 26, no. 2,
pp. 149–165, September 2003.

[12] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi,
M. Vanier, and M. Wrighton, “Design patterns for reconfigurable
computing,” in 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, FCCM, April 2004, pp. 13–23.

[13] H. Devos, “Loop transformations for the optimized generation of re-
configurable hardware,” Ph.D. dissertation, Ghent University, February
2008.

[14] Y. Dong, Y. Dou, and J. Zhou, “Optimized generation of memory
structure in compiling window operations onto reconfigurable hardware,”
in International Workshop on Applied Reconfigurable Computing (ARC),
ser. Lecture Notes in Computer Science, vol. 4419, 2007, pp. 110–121.

[15] J. Park and P. C. Diniz, “Synthesis of pipelined memory access
controllers for streamed data applications on FPGA-based computing
engines,” in ISSS ’01: Proceedings of the 14th international symposium
on Systems synthesis. New York, NY, USA: ACM, 2001, pp. 221–
226. [Online]. Available: http://www.isi.edu/∼pedro/PUBLICATIONS/
isss2001.html

[16] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler, “Automatic mapping
of C to FPGAs with the DEFACTO compilation and synthesis system,”
Microprocessors and Microsystems, vol. 29, no. 2-3, pp. 51–62, April
2005.

[17] H. Devos, W. Meeus, and D. Stroobandt, “CLooGVHDL and JCCI,” in
DATE University Booth, Nice, France, April 2009, pp. 1–2 (CD–ROM).

[18] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,
and A. Vandecappelle, Custom Memory Management Methodology:
Exploration of Memory Organisation for Embedded Multimedia System
Design. Boston, USA: Kluwer Academic Publishers, 1998.

-499-

