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Introduction

Marching on in time, time domain integral equation solvers represent an increas-
ingly appealing avenue for analyzing transient electromagnetic interactions with
large and complex structures. Compared to their differential equation counterparts,
these solvers automatically impose radiation conditions, do not require unknown
fields to be discretized throughout homogeneous volumes, and are highly immune to
numerical dispersion. Among their many incarnations, marching on in time, time
domain electric field integral equation (MOT-TDEFIE) solvers remain the most
widely used. Unfortunately MOT-TDEFIE solvers often are plagued by DC insta-
bilities, i.e. constant and linear-in-time solutions of MOT-TDEFIE systems that
reside in the null space of the (non-causal) TDEFIE operator. In the past, these
instabilities have been partially cured by using loop-tree decompositions [1] and by
enforcing boundary conditions on normal magnetic field components [2]. Unfortu-
nately, neither technique completely annihilates the static null space of the TDEFIE
operator, nor guarantees that MOT-TDEFIE solutions are free of DC remnants. In
this paper, a modified TDEFIE that resolves static and linear-in-time currents is
presented. The equation is obtained by leveraging the time domain Calderón iden-
tities in conjunction with the “dot-trick”, viz. a careful rearrangement of temporal
derivative operators appearing in sequences of TDEFIE operators. The effective-
ness of the dottrick TDEFIE for both open and closed structures is demonstrated
theoretically, proving the resonance free behavior of the dottrick TDEFIE, and nu-
merically.

Formulation

Let Γ and n̂r denote the surface of a perfect electrically conducting smooth object
and its outward pointing unit normal at r, respectively. Assume that Γ resides in
a homogeneous medium with electric permittivity ε and magnetic permeability µ,
and is illuminated by the electric field Ei(r, t). The current density J(r, t) induced
on Γ in response to this excitation satisfies the TDEFIE

∂T (J)
∂t

=
∂(Ts + Th)(J)

∂t
= −n̂r × ∂Ei(r, t)

∂t
(1)

where
Th(J) =

(
n̂r ×∇R

(∫ t

0

∇s · J
ε

dt

))
(2)

Ts(J) = −
(

n̂r ×R
(

µ
∂J

∂t

))
. (3)
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with R(f) =
∫
Γ

f(r′,t−|r−r′|/c)
4π|r−r′| dr′.The temporal differentiations in (1) undo the in-

convenient temporal integration in (2). To numerically solve (1), Γ is approximated
by a mesh of planar triangles, and the current density J(r, t) is approximated as
J(r, t) ≈

∑Nt
j=1

∑Ns
n=1 Jj,nfn(r)Tj(t) where fn(r), n = 1, . . . , Ns are Rao-Wilton-

Glisson basis functions defined on the mesh’s Ns interior edges and Tj(t), j =
1, . . . , Nt are higher-order polynomial interpolants satisfying Tj(t) = T (t − j∆t)
with T (t) = 0 ∀t < ∆t; ∆t denotes the time step size. Substituting the above ex-
pression for J(r, t) in (1) and spatial Galerkin testing the resulting equation at time
tj = j∆t yields

TJ = E (4)

where

T =




T0

T1 T0

T2 T1 T0

...
...

...
. . .


 , J =




J0

J1

J2

...


 , E =




E0

E1

E2

...


 , {Jj}n = Jj,n

{Tk}m,n =
〈

fm(r),
∂T (Tkfn)

∂t

〉∣∣∣∣
t=0

, {Ej}n =
〈

fn(r),−n̂r×
∂Ei(r, t)

∂t

〉∣∣∣∣
t=tj

with 〈a(r, t), b(r, t)〉 =
∫
Γ a(r, t)b(r, t) dr. Equation (4) can be cast in Marching-

On-in-Time (MOT) form as

T0Jj = Ej −
j−1∑
k=0

TkJj−k, j ≥ 0. (5)

It is easy to see that constant functions and linear in time solenoidal functions reside
in the null space of ∂T /∂t [3]. In other words, given the physical solution J(r, t)
of the scattering problem, every current J(r, t) + J0(r, t), with J0(r, t) static or
linear in time and solenoidal, will be a valid solution to (1). As a consequence,
the numerical solution of (1) will be corrupted by a constant or linear in time
spurious offsets [3] further termed DC instabilities. To construct a TDEFIE that
upon discretization is immune to DC instabilities, define the operators

T̃h(J) =
c

4π
n̂×

∫
Γ

dS′∇∇′
s · J(r′, t)

R
, T̃s(J) = − 1

4πc
n̂×

∫
Γ

dS′J(r′, t − R/c)
R

. (6)

The equalities ThTs = T̃hT̃s, TsTh = T̃sT̃h hold as spatial integrations and temporal
differentiations commute. This together with the fact that T 2

h = 0 allow us to
express T 2 as T 2 = T 2

s + ThTs + TsTh + T 2
h = T 2

s + T̃hT̃s + T̃sT̃h. Thus (1) can be
modified into (

T 2
s + T̃hT̃s + T̃sT̃h

)
[J ](r, t) = −T [n̂r × Ei](r, t) (7)

henceforth termed the “dottrick TDEFIE”. The dottrick TDEFIE can be discretized
as (

TsG
−1Ts + T̃hG

−1T̃s + T̃sG
−1T̃h

)
J = TE, (8)

where the matrices Ts, T̃h, T̃s, and G are detailed in [3], where it is also shown that
(8) can be cast in a MOT form similar to (5). Equation (8) has several advantages
over (1). First, it can be solved rapidly by iterative solvers [4]. Second, it contains
no temporal integral and therefore can be conveniently implemented. And third, as



will be shown next, it is immune to DC instabilities: given a static or linear-in-time
J(r, t) satisfying

(
T 2

s + T̃hT̃s + T̃sT̃h

)
[J ](r, t) = 0 ⇒ J(r, t) = 0. (9)

In other words, the static and linear-in-time kernels of T and Ṫ are not present in
T 2

s + T̃hT̃s + T̃sT̃h, and (7) is a DC-stable equation.

It is sufficient to prove (9) only for static currents J(r, t) = J(r). Indeed, if J(r, t)
is linear-in-time then (

T 2
s + T̃hT̃s + T̃sT̃h

)
[J ](r, t) = 0 (10)

implies
∂t

(
T 2

s + T̃hT̃s + T̃sT̃h

)
[J ](r, t) =

(
T 2

s + T̃hT̃s + T̃sT̃h

)
[∂tJ ](r, t) = 0. (11)

Once (9) is established for static currents and since ∂tJ(r, t) is static

T̃hT̃s[∂tJ ](r, t) = 0 ⇒ ∂tJ(r, t) = 0 ⇒ J(r, t) is static. (12)

To demonstrate (9) for static J(r), note that for such current T 2
s [J ](r) = 0. Con-

dition
(
T̃hT̃s + T̃sT̃h

)
[J ](r) = 0 implies

∇s ·
(
T̃hT̃s + T̃sT̃h

)
[J ](r) = 0 (13)

and (since ∇s · T̃hT̃s[J ](r) = 0)

∇s · T̃sT̃h[J ](r) = 0. (14)

To proceed, the following lemma, proven in [3], is needed:

Lemma: Given a simply connected surface Γ, the operator T̃s defined on Γ in (8), and
a static tangential vector field f(r) with ∇s·f(r) = 0, it follows that if ∇s·T̃s[f ](r) =
0 then f(r) = 0.

Since ∇s · T̃h[J ](r) = 0, the lemma can be applied to (14) with f (r) = T̃h[J ] (r),
yielding

f (r) = T̃h[J ] (r) =
c

4π
n̂ ×

∫
Γ

dS′∇∇′
s · J(r′)

R
= 0 ⇒

∫
Γ

dS′∇′
s · J(r′)

R
= const.

(15)
Note that

const =
∫

Γ
dS′∇′

s · J(r′)
R

∝ 1
C

∫
Γ
∇′

s · J(r′)dS′ = 0 (16)

where C is the (always positive) capacitance of Γ. Equations (16) and (15) imply

∇s · J(r) = 0 (17)

from which it follows that T̃sT̃h[J ](r) = 0. It only remains to be shown that
T̃hT̃s[J ](r) = 0 (with ∇s · J(r) = 0) implies J(r) = 0. To this end, note that

T̃hT̃s[J ](r) = n̂ ×
∫

Γ
dS′∇∇′

s · T̃s[J ](r′)
R

= 0 ⇒
∫

Γ
dS′∇′

s · T̃s[J ](r′)
R

= const. (18)
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Figure 1: (a) Magnitude of the surface current on the radar antenna tip as a function
of the time step ∆t obtained using the TDEFIE and the dottrick TDEFIE; (b)
Magnitude of the surface current on the radar dish at t = 0.2e − 5 seconds

A line of reasoning similar to that in (16) implies

∇s · T̃s[J ](r) = 0. (19)

It is now sufficient to reapply the lemma with f(r) = J(r) (recall that ∇s ·J(r) = 0)
to obtain J(r) = 0. This proves that (7) is immune to DC instabilities.
The dottrick TDEFIE has been tested on a radar dish of diameter 1m residing in the
xy-plane (Fig. 1(b)), and discretized using 5008 unknowns. The incident wave is a
Gaussian Ei(r, t) = 4x̂e−γ2

/ (T
√

π) with γ = 4 (ct − ct0 − ẑ · r) /T , T = 200 meter,
and t0 = 300 seconds. Fig. 1(a) compares the surface currents obtained using the
TDEFIE and the dottrick TDEFIE; from the figure it is evident that the dottrick
TDEFIE is completely DC stable.
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