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We determine the leading order mesonic (B0 and F0) and baryonic (m0, D and F) SU(3) chiral
perturbation theory low energy constants from lattice QCD.We employ gauge ensembles withNf ¼ 3 (i.e.,
mu ¼ md ¼ ms) nonperturbatively improved Wilson fermions at six distinct values of the lattice spacing in
the range a ≈ ð0.039–0.098Þ fm, which constitute a subset of the coordinated lattice simulations (CLS)
gauge ensembles. The pseudoscalar meson mass Mπ ranges from around 430 MeV down to 240 MeV
and the linear spatial lattice extent L from 6.4M−1

π to 3.3M−1
π , where LMπ ≥ 4 for the majority of the

ensembles. This allows us to perform a controlled extrapolation of all the low energy constants to the chiral,
infinite volume and continuum limits. We find the SU(3) chiral condensate and F0 to be smaller than their
SU(2) counterparts while the Gell-Mann–Oakes–Renner parameters B0 ≈ B are similar. Regarding
baryonic LECs, we obtain F=D ¼ 0.612ð14Þð12Þ.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) is a central tool for the
description and understanding of a multitude of hadronic
processes. In this context, the interplay between ChPT and
lattice simulations of QCD is of particular interest: while in
Nature the quark masses are fixed, in lattice simulations
these (and other simulation parameters) can be varied and
the precision and the range of validity of truncated ChPT
expansions explored systematically. Moreover, some of the
low energy constants (LECs) of this effective field theory
can be constrained or determined from lattice data, which
complements phenomenological fits to experimental data
that are restricted to the physical quark mass point. Vice
versa, ChPT augments lattice QCD simulations, providing
parametrizations of the dependence of the results on the
light quark masses and the simulation volume that are

consistent with the dynamical breaking of chiral symmetry
as well as with the global symmetries of QCD in the
massless limit.
While the light pseudoscalar masses, decay constants,

the chiral condensate and related mesonic quantities have
been well explored in lattice QCD simulations and con-
fronted with SU(2) ChPT predictions—see, e.g., the recent
Flavour Lattice Averaging Group (FLAG) review [1]—this
is less so regarding baryonic observables. On the one hand,
the lattice data are less precise for baryons, in particular
toward small values of the quark masses. On the other hand,
the number of independent LECs is larger and also the
convergence properties of ChPT may be inferior in the
baryonic sector. For instance, the mass gaps between octet
and decuplet baryons are smaller than those between
pseudoscalar mesons and vector meson resonances, which
may necessitate the inclusion of decuplet baryons as
explicit degrees of freedom, at least for some observables.
Including hyperons, i.e., the Λ, the Σ and the Ξ, into the
ChPT analysis, in addition to the nucleon N (or the N and
the Δ resonance), provides a wealth of additional informa-
tion, whereas the number of baryonic LECs of flavor SU(3)
ChPT increases only moderately relative to SU(2) ChPT.
This makes SU(3) ChPTa particularly popular choice in the
description of processes that involve baryons. One concern
regarding phenomenological applications, however, is the
convergence of SU(3) ChPT at the physical point itself,
where neither the mass Mη8 ≈ð4
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of the would-be η8 pseudoscalar meson, the kaon mass
MK ≈ 494 MeV nor the average light meson mass M̄ ¼
ð2
3
M2

K þ 1
3
M2

πÞ1=2 ≈ 411 MeV are particularly small in
comparison to the chiral symmetry breaking scale
Λχ ≔ 4πF0 < 4πFπ ≈ 1160 MeV. While this may limit
the practical applicability of SU(3) ChPT regarding some
observables, the corresponding LECs are well defined and
can in principle be obtained from lattice QCD.
Within most lattice simulations of Nf ¼ 2þ 1 (or of

Nf ¼ 2þ 1þ 1) QCD the mass of the light quark ml ¼
mu ¼ md is varied while that of the strange quarkms is kept
approximately fixed near its physical value. In a few cases,
instead trM ¼ mu þmd þms is kept constant [2–5]. The
former setting is ideal regarding SU(2) ChPTwhile neither
choice is sufficient to determine SU(3) LECs, unless other
quark mass combinations are added; in particular, one may
want to reduce the trace of the mass matrix trM below
its physical value. This can be achieved via a partially
quenched strategy, see, e.g., Refs. [6–8], or, ideally, by
realizing additional sea quark mass combinations [9,10].
So far no comprehensive lattice QCD investigation of

SU(3) ChPT exists, that includes pion masses smaller than
300 MeV or addresses the continuum limit—neither for
mesons nor for baryons. Here we start to close this gap with
a consistent, simultaneous analysis of several observables
within the framework of SU(3) ChPT: we are in the process
of computing the masses MP (P ∈ fπ; K; η8g) and mB
(B ∈ fN;Λ;Σ;Ξg) of the light pseudoscalar mesons and
baryons as well as the corresponding decay constants FP
and axial charges gBA from Nf ¼ 2þ 1 QCD at many points
in the plane spanned by the quark masses ml ¼ mu ¼ md
and ms at several values of the lattice spacing a.
Here we present first results, obtained on Nf ¼ 3 mass-

degenerate gauge ensembles for the leading order (LO)
mesonic LECs F0 and B0 and baryonic LECsm0,D and F,
where D and F also enter the dependence of the octet
baryon masses on the pseudoscalar meson masses at order
p3 [next-to-leading order (NLO) of heavy baryon ChPT
(HBChPT) or next-to-next-to-leading order (NNLO) of
covariant baryon ChPT (BChPT)]. We remark that for
ml ¼ ms all the octet baryons masses are degenerate,
however, this is not so for the nonflavor singlet axial
charges, where two independent combinations exist. The
main quantity that determines the convergence properties of
ChPT is the squared average pseudoscalar mass M̄2. The
value realized in Nature corresponds to our largest quark
mass values and we cover a range in M̄2 that extends down
to less than one third of that: if SU(3) ChPT is applicable at
the physical quark mass point then it should also apply to
our lattice data, in the continuum limit.
The reliable determination of LO LECs from an extrapo-

lation to the chiral limit requires at least NLO ChPT.
Naturally, it is a priori unknown whether higher order
ChPT may be required within the window of available
pseudoscalar masses or if ChPT is applicable at all.

Including higher orders is of limited practicability in view
of the finite number of data points and their statistical
errors, due to the exploding number of new LECs.
However, simultaneously analysing a number of different
quantities that should be sensitive to the same set of LECs
like baryon masses and their axial charges can serve as a
consistency check and reduces the parametric uncertainty.
Here we attempt exactly this, albeit only for the LO LECs.
Previous analyses of lattice QCD data that aimed at
determining LECs focused on one type of observable at
a time. Ideally, however, one would wish to confirm that the
same set of LECs can be employed consistently across a
range of quantities.
This article is organized as follows. In Sec. II we collect

all SU(3) ChPT expressions for the quark mass and volume
dependence that are relevant for our analysis, restricting
ourselves to the special case ml ¼ ms. For completeness,
additional expressions for the baryon mass and the axial
charges are collected in Appendix A. Then, in Sec. III, we
discuss properties of the gauge ensembles employed, the
analysis methods used, the nonperturbative renormalization
and improvement of the pseudoscalar decay constant and
the axial charges as well as our continuum and chiral limit
extrapolation strategy. The determination of systematic
errors through a model averaging procedure is detailed
in Appendix B. Finally, in Sec. IV we determine and
discuss the LECs, before we conclude.

II. MESON AND BARYON SU(3) ChPT
EXPRESSIONS

A. Infinite volume

Throughout this article the isospin limit ml ¼ mu ¼ md
is assumed and only the SU(3) symmetric case m ≔ ml ¼
ms is considered. Our aim is to determine the LO mesonic
(B0 and F0) and baryonic (m0, D and F) SU(3) ChPT
LECs. The ChPT expressions in which these LECs appear
are conveniently expressed in terms of the quark mass-
dependent variables

x¼ 2mB0

ð4πF0Þ2
; ξ¼ M2

π

ð4πF0Þ2
; L¼ log

�
M2

π

μ2

�
; ð1Þ

where Mπ denotes the pseudoscalar meson mass and B0 ≔
Σ0=F2

0 the Gell-Mann–Oakes–Renner (GMOR) parameter,
whereas Σ0 ≔ −hūuijm¼0 > 0 and F0 ≔ Fπjm¼0 are the
quark chiral condensate and the pseudoscalar decay con-
stant, respectively, in the SU(3) chiral limit. TheLOLECsdo
not depend on the scale μ. For the analysis of the mesonic
case, it is convenient to set μ−2 ¼ 8t0;ch, using the Wilson
scale parameter t0 [11] in the chiral limit. From t0;ch=t�0 ¼
1.037ð5Þ [12] and ð8t�0Þ−1=2 ¼ 478ð7Þ MeV [13], where t⋆0
[4] is defined as the value of t0 at the point where 12t⋆0M2

π ¼
1.11 (and ml ¼ ms), we obtain μ ¼ 469ð7Þ MeV.
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At NNLO in SU(Nf) ChPT the corrections to the GMOR
relation and the pion mass-dependence of the pseudoscalar
decay constant [14–16] read

M2
π ¼ 2B0m½1þ xða10 þ a11LÞ

þx2ða20 þ a21Lþ a22L2Þ�; ð2Þ

Fπ ¼ F0½1þ xðb10 þ b11LÞ
þ x2ðb20 þ b21Lþ b22L2Þ�; ð3Þ

where

a11 ¼
1

Nf
; a22 ¼

9

2N2
f

−
1

2
þ 3N2

f

8
; ð4Þ

b11 ¼ −
Nf

2
; b22 ¼ −

1

2
−
3N2

f

16
: ð5Þ

While a10, b10, a21 and b21 are combinations of NLO
LECs, a20 and b20 are combinations of NNLO LECs.
Whereas NLO and possibly NNLO corrections may turn
out necessary to describe our lattice data for which
430 MeV≳Mπ ≳ 240 MeV, it needs to be seen whether
all of these LECs can be resolved, in addition to lattice
spacing effects.
The LO octet baryonic LECs are the nucleon mass in the

chiral limitm0 and the couplings F andDwhich parameter-
ize the octet axial charges in the SU(3) chiral limit and also
enter within the chiral expansions of other octet baryon
observables, in particular the masses. In the Nf ¼ 3 flavor
symmetric case at Oðp3Þ in BChPT the octet baryon mass
mB is given as [17,18]

mB ¼ m0 þ b̄M2
π þ 2ξMπ

�
5D2

3
þ 3F2

�
fBðrÞ ð6Þ

with b̄ ¼ −6b0 − 4bD being a combination of NLO LECs
and r ¼ Mπ=m0. In the extended on-mass-shell (EOMS)
scheme [18–20] the loop function is given as

fBðrÞ ¼ −2
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 −
r2

4

r
arccos

�
r
2

�
þ r
2
logðrÞ

�
; ð7Þ

where we follow the standard convention to identify the
renormalization scale with m0. Expanding this function for
small r, i.e., for m0 → ∞, one obtains the heavy baryon
ChPT (HBChPT) limit [21,22] fBðrÞ ¼ −π þOðrÞ. The
EOMS BChPT expressions are also known at NNNLO
[23], however, our present lattice data cannot constrain the
additional free parameters.
Regarding the axial charges gBA, the pion mass depend-

ence in the SU(3) case for the nucleon and the Σ baryon at
Oðp3Þ is given as [24–26]

gNA ¼ Dþ F þ cNξþ c̄Nξ log

�
Mπ

m0

�
þ dNξ3=2; ð8Þ

gΣA ¼ 2F þ cΣξþ c̄Σξ log

�
Mπ

m0

�
þ dΣξ3=2; ð9Þ

where the coefficients,

c̄N ¼−
�
3ðDþFÞþ1

3
ð27D3þ25D2Fþ45DF2þ63F3Þ

�
;

ð10Þ

c̄Σ ¼ −
�
6F þ 2

3
Fð25D2 þ 63F2Þ

�
; ð11Þ

are entirely determined by the LO LECs. Above,
dN ¼ dΣ ¼ 0, however, such terms arise naturally when
loop corrections that contain decuplet baryons are included
[27]. For completeness, we reference the corresponding
expectations (as well as those for mB) in Appendix A.
Unfortunately, these expressions, involving the additional
LECs Δ, C andH, do not satisfactorily describe our data on
gBA while fits tomB suggest C ≈ 0. Including the logarithmic
terms, a reasonable fit quality seems only possible when
also adding the above phenomenological dB-terms.
However, such fits give very small values for F and D,
that are at variance with the pion mass-dependence of mB.
Leaving c̄B as free parameters, i.e., ignoring the ChPT
expectation, the data even suggest c̄B > 0, opposite to the
expectation of Eqs. (10) and (11). Similar tensions are
evident also in recent data on gNA within SU(2) ChPT, see,
e.g., Refs. [28–30]. We interpret this as a sign of large
cancellations between pion and decuplet loop effects, a
full understanding of which requires to further reduce the
quark mass and/or to increase the ChPT order. For the
purpose of determining the LO LECs and also in view of
the precision of the lattice data, we will truncate Eqs. (8)
and (9) at Oðp2Þ.

B. Finite volume corrections

Since ChPT also predicts the finite volume dependence,
we include the associated corrections. For the pseudoscalar
meson mass and decay constant in the continuum limit
the dependence on the linear spatial lattice extent L is
given by [31,32]

M2
πðLÞ ¼ M2

π

�
1þ x

1

Nf
hðλπÞ þ � � �

�
; ð12Þ

FπðLÞ ¼ Fπ

�
1 − x

Nf

2
hðλπÞ þ � � �

�
ð13Þ

with Mπ ¼ MπðL ¼ ∞Þ, Fπ ¼ FπðL ¼ ∞Þ and to this
order we can substitute x for ξ. Above, λπ ¼ LMπ and
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hðλÞ ¼ 4
X
n≠0

K1ðλjnjÞ
λjnj ; ð14Þ

where n ∈ Z3 and KnðxÞ denotes the modified Bessel
function of the second kind of order n. We will not consider
two-loop finite volume effects [33,34] since these contain
the NLO LECs.
For the octet baryon mass the SU(2) BChPT result

[35,36] easily generalizes to SU(3):

mBðLÞ ¼ mB þ 4m0ξ

�
5D2

3
þ 3F2

�

·
Z

∞

0

dy
X
n≠0

K0

�
λπjnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − yþ y2

r2

r �
; ð15Þ

wherewe truncated the expression atOðp3Þ and r ¼ Mπ=m0

as above. Note that corrections to the baryonmassmB due to
transitions to decuplet baryons with the massmD0 were first
considered in Ref. [27]. For completeness, we collect the
corresponding ml ¼ ms expectations in Appendix A.
In the case of the axial charges gBA, the finite volume

corrections given in Appendix A have a sign opposite to the
trend of the lattice data. It appears that—just like in the
infinite volume case—the effect of decuplet baryons needs
to be included, introducing three additional LECs which
cannot be resolved at present. Therefore, we combine the
infinite volumeOðp2Þ ChPTexpectation with the dominant
ChPT finite volume term

gBAðLÞ ¼ gBA þ cBVξ
exp ð−LMπÞffiffiffiffiffiffiffiffiffiffi

LMπ
p ; ð16Þ

where cBV is a free phenomenological coefficient.

III. LATTICE SETUP

We discuss the gauge ensembles used. Subsequently, we
summarize our determination of the relevant observables,
including—where applicable—their renormalization and
order a improvement. We then list the results for the
analyzed ensembles and detail our continuum, infinite
volume and chiral extrapolation strategy.

A. Gauge ensembles

In our analysis we employ ensembles generated with
Nf ¼ 3 flavors of nonperturbatively OðaÞ-improved
Wilson fermions with the tree-level Symanzik-improved
gauge action. Most of the ensembles were produced within
the coordinated lattice simulations (CLS) [3] effort. Here
we only focus on the subset of ensembles with degenerate
quark masses mu ¼ md ¼ ms.
The ensembles come with either periodic or open

boundary conditions in time [37], where the latter choice
is necessary at the two finest lattice spacings to circumvent

the freezing of the topological charge and thus to ensure
ergodicity [38]. On ensembles with open boundary con-
ditions measurements are taken far away from the boun-
daries, where translational symmetry in time is restored
within statistical precision.
In total we analyzed fifteen ensembles where the

simulated parameter space is illustrated in Fig. 1. More
details can be found in Table I. We cover a range of six
different lattice spacings 0.039 fm≲ a≲ 0.098 fm, the
pion masses range from around 430 MeV down to
240 MeV and volumes are realized between 3.3 ≤ LMπ ≤
6.4 where LMπ ≥ 4 for the majority of the ensembles.

B. Analysis methods

The scale parameters t0=a2 and t⋆0=a2 as well as the
quark mass from the axial Ward identity (AWI), the
pseudoscalar meson mass and the octet baryon mass have
been obtained within an extensive RQCD analysis [12] of
the light hadron spectrum on all the available CLS gauge
ensembles. For the present purpose we only require these
results for the subset ofml ¼ ms ensembles. Details on the
computation of the two-point correlation functions C2ptðtÞ,
the extraction of the ground state masses and the statistical
methods applied to account for autocorrelation effects and
to compute covariance matrices between these quantities
will be described in Ref. [12]. In Fig. 2 we show as an
example the effective mass in lattice units for the nucleon

amN
effðtþ a=2Þ ¼ log

�
C2ptðtÞ

C2ptðtþ aÞ
�
; ð17Þ

FIG. 1. The parameter landscape of the ensembles listed in
Table I. The same color coding will be used throughout this
article to identify the individual ensembles.
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together with the extracted ground state mass amN ¼ amB,
on the ensemble B450. C2ptðtÞ in this case is a baryonic
two-point function. For this, the pion two-point function
and the baryon three-point functions, we employWuppertal
smearing [40] at the source and the sink, using spatially
APE-smeared [41] gauge transporters. The root mean
squared quark smearing radii range from about 0.6 fm
(for Mπ ≈ 420 MeV) up to about 0.75 fm (for
Mπ ≈ 230 fm), see Table 2 of Ref. [42].
The pion decay constant and the AWI quark mass are

also obtained from two-point functions, using similar
methods as for the pseudoscalar mass. However, in this
case the two-point functions are only smeared at the source.
We follow the strategy detailed in Refs. [43] and [44].
The calculation of the octet axial charges gBA for the nucleon
and the Σ baryon is part of a long term project [10]. The
baryon three-point functions C3ptðt; τ; JÞ, are computed

using the sequential source method [45], (approximately)
realizing four distinct source-sink separations t=fm∈
f0.7;0.8;1.0;1.2g in order to control excited state contami-
nation. The local current Jud¼Ju−Jd, where Jq ¼ q̄γμγ5q
is inserted at the time τ. Note that since mu ¼ md, no quark
line-disconnected contributions appear. For definiteness
with respect to the quark content we choose N¼p∼uud,
Σ ¼ Σþ ∼ uus and Ξ ¼ Ξ0 ∼ ssu. Since the Cartan sub-
group of SU(3) has rank two, in the case of exact
SU(3) flavor symmetry (ml ¼ ms) all the axial charges
gBA can be written as combinations of just two fundamental
charges F̄ and D̄:

gNA ¼ F̄ þ D̄; gΛA ¼ 0;

gΣA ¼ 2F̄; gΞA ¼ F̄ − D̄: ð18Þ
Here we choose gNA and gΣA as our basis. The combinations

F̄ ¼ 1

2
gΣA !m→0

F; D̄ ¼ gNA −
1

2
gΣA !m→0

D ð19Þ

approach the LECs F and D in the chiral limit.
The matrix element of interest for a baryon B can be

obtained from a fit to the ratio of three-point over two-point
functions

RBðt; τ; JudÞ ¼
CB
3ptðt; τ; JudÞ
CB
2ptðtÞ

!t;τ→∞
gBA; ð20Þ

see, e.g., Ref. [46], for details. As an example, we show
in Fig. 3 for the ensemble N300 a simultaneous fit for
J ∈ fJu; Jdg,1 to the ratios

TABLE I. The gauge ensembles analyzed in this work. The rqcd xyz ensembles were generated by RQCD using the BQCD code [39],
whereas all the other ensembles were generated within the CLS effort [3]. The fourth column labels periodic (p) and open (o) boundary
conditions, respectively. The lattice spacings a were determined in Refs. [4,9,12].

Ensemble β a (fm) Bc Nt · N3
s Mπ (MeV) LMπ Nconfig

A652 3.34 0.098 p 48 · 243 431 5.14 4995
A653 p 48 · 243 427 5.09 2525
A650 p 48 · 243 368 4.4 2328
H101 3.4 0.086 o 96 · 323 421 5.85 2000
U103 o 128 · 243 418 4.35 2475
rqcd021 p 32 · 323 338 4.7 1541
rqcd017 p 32 · 323 236 3.27 2468
B450 3.46 0.076 p 64 · 323 418 5.15 1612
rqcd030 p 64 · 323 319 3.94 1224
X450 p 64 · 483 263 4.87 400
N202 3.55 0.064 o 128 · 483 411 6.43 884
X250 p 64 · 483 347 5.43 345
X251 p 64 · 483 268 4.19 436
N300 3.7 0.05 o 128 · 483 422 5.11 1520
J500 3.85 0.039 o 192 · 643 409 5.2 751

FIG. 2. Effective mass [see Eq. (17)] of the baryon on ensemble
B450. The grey horizontal error band indicates the fit range and
the extracted ground state mass.

1We take the differences of a proton with spin-up and spin-
down along the direction k.
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Rp
conðt; τ; JÞ ¼ b0;J þ b1;Je−Δmt=2 cosh ðΔmðτ − t=2ÞÞ

þ b2;Je−Δmt ð21Þ

for the proton, employing one and the same excited state
mass gap Δm in both channels, where the subscript “con”
indicates that we only consider the quark line-connected
Wick contractions. Exploiting the fact that all the quarks are
mass-degenerate, this gives the matrix elements b0;Ju ¼
gΣA ¼ 2F̄ and b0;Jd ¼ gΣA − gNA ¼ F̄ − D̄. The bootstrap
error analysis is carried out using binned data with a bin
size that is large compared to the integrated autocorrelation
time, with the bootstraps matched to those of the other
observables so that in the subsequent analysis all correla-
tions can be taken into account.

C. Nonperturbative renormalization and improvement

The quark mass, the pion decay constant and the axial
charges need to be renormalized. We also OðaÞ-improve
these observables. Regarding the renormalization of the axial
currents, we use the factors Zl

A;subðg2Þ of Ref. [47], obtained
with the chirally rotated Schrdinger functional approach,
as parametrized in their interpolation formula (C.7).
The renormalization factor ZMðg2Þ ¼ ZAðg2Þ=ZPðg2Þ,
required to translate the AWI quark mass mAWI into the

renormalization group invariant (RGI) [48,49] mass m, is
given in Eq. (5.6) of Ref. [50]. We emphasize that both
these factors have been computed entirely nonperturbatively.
Using the improvement coefficients bAðg2Þ, b̃Aðg2Þ, bPðg2Þ
and b̃Pðg2Þ [51], the observables can be renormalized and
fully OðaÞ-improved at each value of the lattice coupling
g2 ¼ 6=β as follows:

m ¼ ZM½1þ amlattðbA − bP þ 3b̃A − 3b̃PÞ�mAWI; ð22Þ

Fπ ¼ ZA½1þ amlattðbA þ 3b̃AÞ�Flatt
π ; ð23Þ

gBA ¼ ZA½1þ amlattðbA þ 3b̃AÞ�gB;lattA ; ð24Þ

where amlatt ¼ ðκ−1 − κ−1critÞ=2 is the lattice quark mass,
κcrit is determined in Ref. [12] and we have assumed
ml ¼ ms ¼ 1

3
trM. The uncertainties of the renormalization

factors and improvement coefficients are incorporated in
the statistical analysis by means of pseudo-bootstrap
distributions.

D. Lattice results

We will fit the squared pion massM2
π and the pion decay

constant Fπ simultaneously as functions of the RGI quark
mass m, whereas we parametrize the dependence of the
baryon massmB and of the axial charges gNA and gΣA in terms
of the pion mass. Regarding the continuum limit extrapo-
lation, the quantities t0 and t⋆0 are required, as described
below in more detail. In Table II we summarize the
corresponding results in lattice units for all the ensembles,
with the exception of t⋆0=a2, listed in Table III, whose
values are common to all ensembles that share the same
gauge coupling. Note that no axial charges have been
determined on the ensembles A652 and rqcd017. However,
ensemble A653 is very similar to A652 in terms of the
simulation parameters while the rqcd017 volume is rather
small and finite volume effects can be substantial, in
particular for the axial charges.

E. Extrapolation strategy

A reliable extraction of the LO SU(3) LECs in the chiral
limit requires a chiral, infinite volume and continuum limit
extrapolation. Ideally, one would carry out simultaneous
fits to all the observables. In particular, the mesonic LEC F0

also appears within the ChPT expansions of the baryonic
observables. In principle, this is possible and we even have
the full covariance matrices available between aMπ , am,
aFπ , amB, gNA and gΣA, however, the former three observ-
ables are much more precise in terms of their statistical
accuracy than the baryonic ones. Therefore, any impact of
the baryonic results onto the mesonic LECs should be
negligible and we opt for a two stage procedure, first
determining the mesonic LECs and then using the resulting

FIG. 3. Simultaneous fit to all four source-sink separations of
the ratios for hpjJdjpicon ¼ F̄ − D̄ and hpjJujpicon ¼ 2F̄ on the
ensemble N300. Only the dark symbols are included in the fit.
The grey band shows the ground state contribution and its error.

BALI, COLLINS, SÖLDNER, and WEISHÄUPL PHYS. REV. D 105, 054516 (2022)

054516-6



value for F0=
ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
within the extraction of the bar-

yonic LECs.
For the action, the axial current (needed for Fπ, gBA and

m) and the pseudoscalar current (needed for m), OðaÞ
improvement is implemented nonperturbatively. Therefore,
if we would simulate at a fixed lattice spacing a, we would
have fullOðaÞ improvement. However, instead we keep the
unimproved, bare lattice coupling g2 fixed which results in
a correction term ∝ atrM for quantities aQ, that are
measured in lattice units.2 This term cancels when con-
structing dimensionless combinations ð ffiffiffiffiffiffi

8t0
p

a−1ÞðaQÞ,
using the scale parameter t0=a2 on the same ensemble.
Therefore, to achieve fullOðaÞ-improvement while varying
the quark mass, we rescale all quantities aQ ↦

ffiffiffiffiffiffi
8t0

p
Q.

This means that at the end of the analysis the dimensionful
LECs m0, F0 and B0 will be obtained in units of

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
,

which can then be converted into physical units.
The continuum fit functions XðM; L; a ¼ 0Þ, where

M ¼ ffiffiffiffiffiffi
8t0

p
m and M ¼ 8t0M2

π , respectively, for
mesonic observables X ∈ f8t0M2

π;
ffiffiffiffiffiffi
8t0

p
Fπg and baryonic

observables X ∈ f ffiffiffiffiffiffi
8t0

p
mB; gNA ; g

Σ
Ag, are summarized in

Eqs. (1)–(9) and (12)–(16). Note that the dependence

t0 ¼ t0;ch½1þ k1xþ ðk20 þ k21LÞx2 þ…� [52] does not
interfere with the universal ChPT logs and therefore neither
the functional forms of the continuum formulas nor the
LECs are affected by the rescaling of all dimensionful
quantities in units of t0. Nevertheless, we remark that some
of the higher order LECs, which we do not determine here,
would require some knowledge about the LECs k1 etc., that
are associated with t0. Regarding the lattice spacing-
dependence, we assume the factorization

XðM; L; aÞ ¼ XðM; L; 0Þ

·

�
1þ a2

8t⋆0
ðcXa þ c̄Xa8t0M2

πÞ
�

ð25Þ

into the continuum parametrization timesmass-independent
andmass-dependent lattice spacing effects, where cXa and c̄Xa
are independent fit parameters for each observable X.
We will estimate the systematic errors of the LECs by

varying the fit model and by employing different cuts on
the ensembles that enter the fit:
(1) no cut: including all the available data points,
(2) pion mass cut: excluding all ensembles with

Mπ > 400 MeV,
(3) lattice spacing cut: excluding the coarsest lattice

spacing, i.e., the ensembles with a ≈ 0.098 fm,
(4) volume cut: excluding all ensembles with LMπ < 4.

We then carry out the model averaging procedure described
in Appendix B.

IV. RESULTS AND DISCUSSION

We determine the LO SU(3) mesonic LECs as well as the
LO SU(3) octet baryonic LECs and compare the results
with values from the literature.

TABLE II. Results for the ensembles used in this work. The scale parameter t0=a2, the renormalized pion decay constant Fπ (where
Fπ ¼ fπ=

ffiffiffi
2

p
), the pion massMπ , the baryon mass mB, the RGI quark mass m as well as the renormalized axial charges for the nucleon

gNA and the Σ baryon gΣA, respectively.

Ensemble t0=a2 aFπ aMπ amB am gNA gΣA

A652 2.1697(56) 0.04985(29) 0.2140(10) 0.5842(41) 0.02072(21)
A653 2.1729(50) 0.04980(25) 0.21245(93) 0.5855(37) 0.02050(20) 1.1670(85) 0.8903(61)
A650 2.2878(72) 0.04598(36) 0.1835(13) 0.5469(54) 0.01547(21) 1.1489(94) 0.8822(74)
H101 2.8545(81) 0.04499(23) 0.18286(57) 0.5074(18) 0.01796(10) 1.1818(87) 0.9014(78)
U103 2.8815(57) 0.04386(57) 0.18158(60) 0.5193(30) 0.01745(10) 1.1334(74) 0.8692(72)
rqcd021 3.032(15) 0.04084(23) 0.14702(88) 0.4508(47) 0.01172(12) 1.1548(90) 0.873(12)
rqcd017 3.251(13) 0.03505(68) 0.1022(15) 0.388(13) 0.00548(21)
B450 3.663(11) 0.03999(13) 0.16103(49) 0.4582(24) 0.016154(82) 1.1723(58) 0.8962(71)
rqcd030 3.914(15) 0.03535(18) 0.12221(68) 0.3957(90) 0.009460(80) 1.1437(89) 0.8723(70)
X450 3.9935(92) 0.03358(21) 0.10144(62) 0.3764(61) 0.006574(57) 1.175(10) 0.894(11)
N202 5.165(14) 0.03419(18) 0.13389(35) 0.3799(18) 0.013802(46) 1.1806(58) 0.9026(70)
X250 5.283(28) 0.03195(19) 0.11321(39) 0.3597(51) 0.009880(47) 1.1650(89) 0.8884(93)
X251 5.483(26) 0.02932(21) 0.08684(40) 0.3185(85) 0.005812(47) 1.165(13) 0.889(14)
N300 8.576(21) 0.02680(12) 0.10647(38) 0.3035(13) 0.011332(30) 1.1639(86) 0.884(17)
J500 14.013(40) 0.02106(11) 0.08119(34) 0.2313(26) 0.008755(21) 1.1514(50) 0.8873(84)

TABLE III. Values for t⋆0=a2 for each β-value taken from [12].

β 3.34 3.4 3.46 3.55 3.7 3.85
t⋆
0

a2 2.219(7) 2.908(3) 3.709(3) 5.180(4) 8.634(10) 13.984(31)

2In fact this mass-dependent shift of the improved lattice
coupling also affects the renormalization factors of the axial and
pseudoscalar currents but this effect has been accounted for
within the definition of the improvement coefficients b̃A and b̃P
[51] of Eqs. (22)–(24).
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A. Mesonic LECs

The LO mesonic LECs B0 and F0 are determined by
simultaneous fits to thepseudoscalarmass anddecayconstant
as functions of the quark mass, the volume and the lattice
spacing as described above. The fits are carried out including
the errors of and the correlations between the pion decay
constant, the pseudoscalar mass and the quark mass within
each ensemble. The resulting χ2-values are fully correlated.
Including only the mass-independent discretization

terms of Eq. (25) and carrying out fits employing the
NLO ChPT expressions, i.e., truncating the quark mass and
the volume dependence at OðxÞ, we are able to resolve all
parameters reasonably well. Figures 4 and 5 illustrate the
resulting quark mass-dependence of the pseudoscalar decay
constant and the squared pion mass, respectively, from a
combined fit to all the available data points. This fit to 30

points requires six parameters (
ffiffiffiffiffiffi
8t0

p
B0,

ffiffiffiffiffiffi
8t0

p
F0, a10, b10,

cMπ
a and cFπ

a ) while the coefficients of the logs, a11 ¼ 1=3
and b11 ¼ −3=2, are fixed, see Eqs. (4) and (5). For a better
visualization of the deviations from the linear GMOR, in
Fig. 5 we have divided the squared pion mass by the quark
mass (all in units of 8t0). This ratio approaches the GMOR
expectation 2B0

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
in the chiral limit. The deviation

from a linear dependence is caused by b11. This, as well as
the curvature observed in Fig. 4 that is due to a11, is in
agreement with the data.
Since this simple fit describes the data very well, adding

further parameters does not improve the situation: allowing
for the mass-dependent discretization terms c̄Xa ≠ 0 in
Eq. (25), does not significantly change the values of
χ2=Ndof , F0 or B0. However, the errors for the fit param-
eters cXA , a10 and b10 increase considerably and on the
reduced datasets, when incorporating the cuts described at
the end of Sec. III E, stable fits become impossible.
Similarly, when allowing for the Oðx2Þ (NNLO) terms
in the continuum fit functions (2) and (3), the statistical
errors of all parameters increase while the higher order
parameters are either comparable with zero or cannot be
resolved reliably due to cancellations. After exploring these
alternative parametrizations, we decided, in view of the
range and quality of the present data, only to include the
four parameter NLO continuum fit in conjunction with
the two parameters that account for mass-independent
Oða2Þ effects into our analysis, and to explore the para-
metrization uncertainty by imposing the cuts on the data
that are defined in Sec. III E. Carrying out the fits on these
four sets of ensembles and performing the model averaging
procedure as described in Appendix B, we obtain

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
F0 ¼ 0.1502ð56Þð29Þ;

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
B0 ¼ 4.22ð15Þð16Þ; ð26Þ

where the errors include the systematics. The individual
results for each fit are listed in Table IV and compiled in
Fig. 6, where also the final result is indicated.

B. Baryonic LECs

In analogy to the analysis of the mesonic observables, we
carry out a simultaneous extrapolation of the octet baryon

FIG. 4. Extrapolation of the pion decay constant Fπ to the chiral
limit. The data points are corrected for discretization and finite
volume effects according to the parameters obtained from a
combined fit to the pseudoscalar decay constant and mass on
all the available data points employing the NLO ChPT ansatz.
The blue band shows the NLO expression for the quark mass
dependence.

FIG. 5. The same as Fig. 4 for the ratio of the squared pion mass
over the quark mass M2

π=m.

TABLE IV. Results for the LO mesonic LECs F0 and B0 in
units of 1=

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p ¼ 469ð7Þ MeVobtained from fits to the NLO
ChPT expression and different subsets of the parameter space
spanned. The subsets are defined at the end of Sec. III E.

Fit χ2=Ndof

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
F0

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
B0

1 0.9322 0.1504(19) 4.302(81)
2 0.7146 0.1565(30) 4.10(14)
3 0.3444 0.1485(22) 4.118(86)
4 1.0500 0.1489(22) 4.364(89)
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mass and the axial charges for the nucleon and the Σ
baryon. The continuum expressions for the dependence of
these three observables on the pion mass and the lattice
extent L are given in Eqs. (6)–(9), (15) and (16). Again,
lattice spacing effects are parametrized as in Eq. (25). For
the decay constant F0, that enters in the definition of ξ, we
use the result obtained in Sec. IVA. HBChPT should give
the same set of LO LECs m0, F and D as BChPT in the
EOMS prescription. To investigate the impact of different
truncations of the chiral expansion, in addition to the
BChPT fits, we also carry out a HBChPT analysis,
replacing the loop function (7) fBðrÞ ↦ −π.
The pion mass dependence of the axial charges appears

to be mild. As already pointed out at the end of Sec. II A,
the logarithmic corrections suggested by ChPT without
decuplet loops differ in sign from what the data suggest and
this—within our window of pion masses—can only be
compensated for by corrections of Oðξ3=2Þ and higher and/
or by including effects of the decuplet baryons, adding the
additional LECsΔ, C andH. The same observation is made
regarding finite volume effects, whose sign can only be
reconciled with the data if decuplet loops are included. We
list the relevant formulas in Appendix A but we cannot
explore these additional contributions, given the statistical
error of our present data. Therefore, regarding the axial
charges, we opt for the NLO [Oðp2Þ] analysis and truncate
Eqs. (8) and (9) at OðξÞ. Regarding the finite volume
effects, we restrict ourselves to the leading term (16), with
phenomenological coefficients cNV and cΣV . Turning to the
baryon mass, we are able to employ the full NNLO [Oðp3Þ]
expressions, both for the pion mass-dependence and the
finite volume behavior. We also found the baryon mass data
to be well described when including decuplet loops,
however, in this case, the LEC C is found to be compatible
with zero within large errors, suggesting that the impact of
the decuplet on the octet baryon mass is small.

In Figs. 7 and 8 the pion mass dependencies of the
nucleon mass and of the axial charges are shown, respec-
tively, for a combined fit to all the available data points.
The fit is to 41 data points (15 ensembles for mB and 13
ensembles for each of the axial charges) and requires 11

parameters,m0, F,D, b̄, cN , cΣ, cNV , c
Σ
V , c

N
a , c

gNA
a and c

gΣA
a : six

(combinations of) LECs, two finite volume parameters for
the axial charges and three parameters to describe discre-
tization effects. We carry out the same variations of the
dataset as in the meson case. In addition, we explore both
BChPT and HBChPT for the pion mass-dependence of the
baryon mass, giving eight distinct results that are collected
in Table V and shown in Fig. 9. We find BChPT to give
better fit qualities than HBChPT which is why the former
fits dominate the averaging procedure. The BChPT results
for m0 are systematically larger than those of HBChPT

FIG. 6. Final result for F0 and B0 (red point and green error
band) obtained from individual fits (blue points) by performing
the model averaging procedure described in Appendix B. The
model averaged distribution is shown as a histogram on the right
where also the median and the 68% confidence level interval are
indicated (green lines).

FIG. 7. Extrapolation of the nucleon mass mN to the chiral
limit. The data points are corrected for discretization and finite
volume effects according to the parameters obtained from a
combined fit to the nucleon mass and the two axial charges on all
the available data points. The blue band shows the NNLO BChPT
expression for the pion mass dependence.

FIG. 8. The same as Fig. 7 for the axial charges of the nucleon
and the Σ baryon. The blue band shows the NLO [Oðp2Þ] chiral
extrapolation.
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which suggests a larger curvature of the data. Since D and
F are mostly determined by the axial charges, where to the
order that we employ no difference between BChPT and
HBChPT exists, these values are largely unaffected by the
parametrization. The final, averaged results read:

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
m0 ¼ 1.57ð5Þð6Þ; F ¼ 0.447ð6Þð7Þ; D ¼ 0.730ð11Þð11Þ:

ð27Þ

Again, the errors include the systematics of the
extrapolation.

C. Comparison with other recent determinations

We employ the value ð8t0;chÞ−1=2 ¼ μ ¼ 469ð7Þ MeV to
convert our results into physical units. As explained in

Sec. II A, this value is obtained by combining t0;ch=t�0 ¼
1.037ð5Þ [12] with ð8t�0Þ−1=2 ¼ 478ð7Þ MeV [13]. The
mesonic LECs (with systematic uncertainties included in
the errors) then read

F0 ¼ 70
ð3Þ
ð2Þ MeV; Σ1=3

0 ðRGIÞ ¼ 214
ð7Þ
ð5Þ MeV; ð28Þ

where Σ0 ¼ B0F2
0. Note that Σ0ðRGIÞ refers to the value

of the chiral condensate in the RGI scheme with Nf ¼ 3
active sea quark flavors. Using version 3 of the
Mathematica implementation of the RUNDEC package
[53,54] at five loop accuracy in the quark mass anomalous
dimension- and the β-functions, we obtain the conversion
factor mðRGIÞ ¼ 1.330ð14Þð7ÞmðMS; 2 GeVÞ for the
quark mass between the RGI and the MS schemes.3 The
first error corresponds to the uncertainty of the three-flavor
Λ-parameter [13], whereas the second error is the differ-
ence between five- and four-loop running. Using the scale-
independence of mΣ0 and taking the third root, we obtain

Σ1=3
0 ðMS; 2 GeVÞ ¼ 236

ð7Þ
ð6Þ MeV: ð29Þ

Fig. 10 shows a comparison of our results for F0 and Σ0

with the most recent determinations from SU(3) ChPT
analyses of other groups, also see the present FLAG
report [1] for a detailed discussion. One issue with Nf ¼
2þ 1ðþ1Þ simulations is that the strange quark mass is
usually kept close to its physical value, which limits the
sensitivity of observables to the deviation of F0 and B0

from their SU(2) ChPT counter parts and necessitates
partially quenched analyses. The only other simulation
withNf ¼ 3mass-degenerate quarks was carried out over a
decade ago by JLQCD/TWQCD [55].
From an analysis of several lattice datasets Guo et al.

[56] estimated F0 ¼ 71ð3Þ MeV. Hernández et al. [57] find
from a large Nc scaling analysis of Nf ¼ 4 and Nc ¼ 3–6

lattice data F0 ¼ 71ð3Þ MeV and Σ1=3
0 ¼ 223ð4Þð8Þ MeV

for Nf ¼ Nc ¼ 3. Simulating Nf ¼ 3 flavors, JLQCD/
TWCQD [55] determine F0 ¼ 71ð3Þð8Þ MeV and
Σ0 ¼ 214ð6Þð24Þ MeV. Employing Nf ¼ 2þ 1 flavor
simulations, the most recent determinations of F0 are
68(1)(3) MeV by χQCD [8], 80.3(2.5)(5.4) MeV by
MILC [58], 66.1(5.2) MeV by RBC/UKCQD [59] and
83.8(6.4) MeV by PACS-CS [60]. For Σ1=3

0 in the MS
scheme at 2 GeV, χQCD [8] find 233(1)(2) MeV, MILC
[61] quote 245(5)(4)(4) MeV, while PACS-CS [60] report
290(16) MeV. In summary, all the results for the mesonic
LECs agree within their errors, with the exception of
PACS-CS [60], in particular regarding the chiral
condensate.

FIG. 9. The same as Fig. 6 but for m0, F and D. For each cut
there are two data points: BChPT (B) and HBChPT (H).

TABLE V. Results for the LO baryonic LECs m0 (octet baryon
mass in the chiral limit), F andD obtained from fits to the BChPT
(B) and HBChPT (H) expressions on different subsets of
ensembles. The subsets are defined at the end of Sec. III E.

Fit χ2=Ndof

ffiffiffiffiffiffiffiffiffiffi
8t0;ch

p
m0 F D

1 (H) 1.1710 1.325(49) 0.4455(59) 0.729(10)
1 (B) 0.9451 1.570(39) 0.4465(59) 0.730(10)
2 (H) 1.4793 1.447(70) 0.4489(82) 0.741(12)
2 (B) 1.2450 1.608(64) 0.4492(82) 0.742(12)
3 (H) 1.3788 1.341(51) 0.4442(61) 0.726(11)
3 (B) 1.1174 1.570(42) 0.4449(61) 0.728(11)
4 (H) 1.2265 1.339(50) 0.4447(61) 0.725(10)
4 (B) 0.9689 1.587(41) 0.4456(61) 0.727(10)

3The normalization of the RGI mass used in RUNDEC3 differs
from the one we employ. References [1,48,49] share our con-
vention.
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A compilation of the most recent results for the octet
baryon mass in the SU(3) chiral limit is shown in Fig. 11.
Our result, including the systematic uncertainties and
converted into physical units, reads

m0 ¼ 736
ð25Þ
ð32Þ MeV: ð30Þ

Carrying out SU(3) HBChPT or BChPT analyses of data
from Nf ¼ 2þ 1 flavor simulations for m0, Walker-Loud
[6] predicts 899(40) MeV, BMW [62] find 750(150) MeV
and Martin Camalich et al. [63] obtain 756(32) MeV.

Investigating multiple lattice datasets, Guo et al. [64,65]
obtain 870(3) MeV (mean and error estimated from the
two fit results quoted in Ref. [65]) and Ren et al. [66]
884(11) MeV. A number of earlier results exists
[23,67–70], which are not displayed in the figure. While
it is difficult to estimate realistic errors for the two very
global fits to lattice data [64,66], there is disagreement
between our results and Walker-Loud [6] who obtains a
much larger value.
In Fig. 12 we compare our results (27) for the baryonic

LECs F and D with results obtained from lattice as well as
phenomenological determinations. From a lattice QCD
calculation of the axial charges, Lin and Orginos [71]
determine F ¼ 0.453ð5Þð19Þ and D ¼ 0.715ð6Þð29Þ with
Nf ¼ 2þ 1 flavors. Later Savanur and Lin [72] find
F ¼ 0.438ð7Þð6Þ and D ¼ 0.708ð1Þð6Þ, this time with
Nf ¼ 2þ 1þ 1 flavors. Both values, however, refer to
the physical quark mass point, where the definition of F
and D is ambiguous, rather than to the chiral limit. From
the baryon masses, Walker-Loud [6] finds F ¼ 0.47ð3Þ
and D ¼ 0.70ð5Þ. Most phenomenological predictions are
inferred from semileptonic hyperon decays. A selection of
such analyses contains Jenkins et al. [27], Savage et al. [73],
Flores et al. [74], Cabibbo et al. [75], Ratcliffe [76] and
Ledwig et al. [26]. Regarding F, there is no clear contra-
diction when comparing any pair of results within the stated
errors. With respect to D, however, Flores et al. [74] and
Cabibbo et al. [75]—while obtaining central values very
similar to those of Savage et al. [73] and Ratcliffe [76]—are
at variance with the lattice determinations, within their
errors. Note that the lattice results agree with each other,

FIG. 10. Comparison with the most recent SU(3) ChPT
determinations of F0 and Σ0 ¼ B0F2

0 from other groups. The
latter is in the MS scheme at the scale 2 GeV with three active
flavors. Note that the result labeled “Nf ¼ 4” is for the Nf ¼ 3
LECs, however, extrapolated from Nf ¼ 4 simulations at differ-
ent numbers of colors. Dark error bars correspond to the statistical
error only, whereas the lighter error bars include a systematic
error estimate, added in quadrature.

FIG. 11. Comparison with the most recent determinations of
the octet baryon mass in the Nf ¼ 3 chiral limit m0, obtained
from fits to Lattice QCD results.

FIG. 12. Comparison of our results for the LECs F and D with
results obtained from lattice QCD calculations of the hyperon
axial charges (green points)—albeit for physical quark masses,
rather than in the chiral limit—and the baryon mass (purple
point). In addition, we show selected results obtained from
measurements of semileptonic hyperon decays.
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however, this should change if the precision was increased
since two of the studies give numbers that correspond to the
physical strange quark mass, rather than to the Nf ¼ 3
chiral limit.

V. SUMMARY AND OUTLOOK

We carried out a simultaneous determination of all LO
mesonic (B0, F0) and octet baryonic (m0, D, F) SU(3)
ChPT LECs, using Nf ¼ 3 lattice QCD simulations. The
analysis is based on fifteen gauge ensembles, spanning a
range of pion masses from 430 MeV down to 240 MeV
across six different lattice spacings between a ≈ 0.039 fm
and a ≈ 0.098 fm and spatial lattice sizes between
3.3 ≤ LMπ ≤ 6.4. We found that a consistent description
of the pion mass and volume dependence of the axial
charges and the octet baryon mass was possible with the
same set of LECs. Systematic errors were assessed and
included by imposing cuts on the pion mass, the lattice
spacing and the volume. For the baryon mass both
covariant BChPT and HBChPT were employed. The
resulting LECs are as follows (Σ0 ¼ F2

0B0):

F0 ¼ 70
ð3Þ
ð2Þ MeV;

Σ1=3
0 ¼ 214

ð7Þ
ð5Þ MeVðRGIÞ;

¼ 236
ð7Þ
ð6Þ MeVðMS; 2 GeVÞ;

B0 ¼ 1.98ð7Þð8Þ GeVðRGIÞ;
¼ 2.63ð10Þð10Þ GeVðMS; 2 GeVÞ;

m0 ¼ 736
ð25Þ
ð32Þ MeV;

F ¼ 0.447ð6Þð7Þ;

D ¼ 0.730ð11Þð11Þ;

F
D

¼ 0.612ð14Þð12Þ;

where the uncertainties of the continuum, chiral and infinite
volume extrapolation as well as of the conversion into
physical units are included in the error. The RGI and MS
results above refer to the three-flavor scheme. We compare
the mesonic SU(3) LECs X0 ∈ fF0;Σ0; B0g with their
SU(2) ChPT counterparts X, where the strange quark mass
is fixed at its physical value, in the MS scheme with three
active flavors at 2 GeV: the decay constant F0 <
F ≈ 86 MeV [1,77] and the chiral condensate Σ0 < Σ ≈
ð270 MeVÞ3 [1] decrease significantly as we send the
strange quark mass to zero, whereas the GMOR parameter
B0 ≈ B ≈ 2.66 GeV remains unaffected within its present
uncertainty.
Further constraining the mass-dependence by including

ensembles with lighter pion masses would be very inter-
esting, in particular regarding the axial couplings. In

addition to this, in the near future we plan to extend the
analysis to the Nf ¼ 2þ 1 case in order to further improve
the accuracy, to test the applicability range of SU(3) ChPT
and also to determine higher order LECs.
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APPENDIX A: FURTHER ChPT EXPRESSIONS

We collect ChPT expressions that were not used in the
final analysis. In particular, these are expressions that
include decuplet loops (and therefore additional LECs that
we were unable to resolve) and the finite volume effects for
the axial charges. Regarding the latter, these have been
computed using SU(2) HBChPT [87] and confirmed in
SU(2) BChPT [88]. We define the function
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h1ðλπÞ ¼
X
n≠0

�
K0ðλπjnjÞ −

K1ðλπjnjÞ
λπjnj

�
; ðA1Þ

that corresponds to F1 of Ref. [87] while for hðλπÞ, defined
in Eq. (14): hðλπÞ ¼ −ð8=3ÞF3ðMπ; LÞ. Again λπ ¼ LMπ .
The SU(3) finite size effects in the flavor symmetric limit
[utilizing the couplings that are tabulated in Ref. [26] and
truncating at Oðp3Þ] read:

gNA ðLÞ ¼ gNA −
3

2
ðDþ FÞξhðλπÞ

þ 2

9
ð27D3 þ 25D2F þ 45DF2 þ 63F3Þ

× ξh1ðλπÞ; ðA2Þ

gΣAðLÞ¼ gΣA−3FξhðλπÞþ
4

9
Fð25D2þ63F2Þξh1ðλπÞ: ðA3Þ

The gap between the decuplet and octet baryon mass in
the chiral limit Δ ¼ mD0 −m0 is within the range covered
by our pion masses. Therefore, decuplet loop effects may in
principle be relevant. Indeed, neglecting such terms, the
finite volume effects of gBA have a sign opposite to what we

see in the data. Already in Ref. [27] corrections due to
transitions to decuplet baryons were considered. The full
SU(3) result [63] for the octet baryon mass for the case
ms ¼ ml, to be added to Eq. (6), reads4:

mB ↦ mB −
Δ3

ð4πF0Þ2
5

3
C2
��

2 − 3
M2

π

Δ2

�
log

�
Mπ

2Δ

�

þ M2
π

2Δ2
þ 2

�
1 −

M2
π

Δ2

�
w

�
Mπ

Δ

��
; ðA4Þ

wðrÞ¼
�−ðr2−1Þ1=2 arccosðr−1Þ; r≥ 1

ð1− r2Þ1=2 logðr−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r−2−1

p
Þ; r < 1

ðA5Þ

with the additional LECs C and Δ. Regarding the above
decuplet baryon effects, we restrict ourselves to the heavy
baryon approximation. The full EOMS BChPT result can
be found in Ref. [63]. Note that the decuplet decouples as
Mπ → 0 as it should since in this case the extra term is
proportional to ½3 − 4 logðMπ=ð2ΔÞÞ�M4

π=ðΔF2
0Þ, which is

of a higher order in the chiral expansion. The associated
finite volume corrections to Eq. (15) read [36,91]

mBðLÞ ↦ mBðLÞ þ
5

3
C2ξ

m3
0

ðm0 þ ΔÞ2
Z

∞

0

dy

��
2 − yþ Δ

m0

�
fðyÞ

X
n≠0

�
fðyÞK0ðλπjnjfðyÞÞ −

K1ðλπjnjfðyÞÞ
λπjnj

��
; ðA6Þ

where

fðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM−2

π ½ðΔ2 þ 2m0Δ −M2
πÞyþm2

0y
2�

q
: ðA7Þ

We refer to Ref. [63] for the full SU(3) result and
to Refs. [36,91] for the corresponding finite volume
corrections.
For the axial charges, we start from Ref. [87] and

implement the decoupling constraints [92,93] at Oðp3Þ.
We obtain for the special Nf ¼ 3 case ms ¼ ml:

gBA ↦ gBA − jB
Δ2

16π2F2
0

JðMπ=ΔÞ

− nB
Δ2

16π2F2
0

NðMπ=ΔÞ; ðA8Þ

where

JðrÞ ¼ −r2 − ð2 − r2Þ log
�
r
2

�
− 2wðrÞ; ðA9Þ

NðrÞ ¼ −
r2

3
þ πr3

3
−
�
2

3
− r2

�
log

�
r
2

�

−
2

3
ð1 − r2ÞwðrÞ ðA10Þ

and the coefficients are given as

jN ¼ 5

�
F þDþ 8

27
H
�
C2; ðA11Þ

nN ¼ −4
�
11

9
Dþ F

�
C2; ðA12Þ

jΣ ¼ 10

�
F þ 5

27
H
�
C2; ðA13Þ

nΣ ¼ −
40

9
DC2: ðA14Þ

We remind the reader that the term dBξ3=2 within Eqs. (8)
and (9) does not appear at Oðp3Þ in the chiral expansion
but is purely phenomenological. However, the function
Δ2NðMπ=ΔÞ contains a genuine term ∝ ξ3=2ð4πF0Þ=Δ,
justifying the inclusion of that parameter.

4For the LEC C we use the normalization of Refs. [7,27,89],
where C2 ¼ g2ΔNπ [90].

LEADING ORDER MESONIC AND BARYONIC SU(3) LOW … PHYS. REV. D 105, 054516 (2022)

054516-13



Regarding finite volume effects, we infer from Ref. [87]
(see also Ref. [88]) that the following terms need to be
added to Eqs. (A2)–(A3)

gBAðLÞ ↦ gBAðLÞ þ
4

3
ξ

�
jNF2ðLMπ;Mπ=ΔÞ

−
9

8
nNF4ðLMπ;Mπ=ΔÞ

�
; ðA15Þ

where F2 and F4 are defined in Ref. [87].

APPENDIX B: MODEL AVERAGING

To address systematic effects we carry out fits varying
the fit function (e.g., BChPT vs. HBChPT) as well as the
number of data points included. This gives us a set of NM
different results, one for each model j, from which we
compute an average and its uncertainty that includes the
statistical error and the systematic uncertainty due to the
model variation.
One widely used approach is to assign a weight wj given

by the Akaike information criterion (AIC) [94] to each
model j in the model averaging procedure. Here we employ
the weights

wj ¼ A exp

�
−
1

2
½maxðχ2j ; Ndof;jÞ − Ndof;j þ kj�

�
; ðB1Þ

see, e.g., Eq. (161) of the e-print version of Ref. [95] and
references therein.5 The normalization A is such that

PNM
i wi ¼ 1. χ2j denotes the χ2-value of the fit to model

j, kj the number of fit parameters and Ndof;j ¼ nj − kj
the number of degrees of freedom. By replacing
χ2 ↦ maxðχ2; NdofÞ, we deviate somewhat from Ref. [95]
in so far as reducing the χ2-value belowNdof will not further
increase the weight. The rationale for this choice is that if
the fit function perfectly described the data then a value
χ2 < Ndof should not be more likely than the expected value
χ2 ¼ Ndof . The above equation extends the AIC to also
varying the number of data points nj and not only the fit
function. It is valid as long as there are no correlations
between the removed and the remaining data points, the fit
function is smooth and the parametrization does not depend
on the data space. This applies to our case where we reduce
the number of data points by removing entire ensembles and
carry out the same set of fits for every dataset.
For each parameter a that we are interested in, we

generate for each model j a bootstrap distribution ajðbÞ
with Nb ¼ 500 bootstrap samples b. The (normalized)
bootstrap histograms are usually normal distributed,

fjðaÞ ¼
1ffiffiffiffiffiffi
2π

p
σj

exp

�
−
1

2

�
a − aj
σj

�
2
�
; ðB2Þ

with a mean aj and a standard deviation σj. From the
(discrete) histograms, we obtain the model averaged
distribution

fðaÞ ¼
X
j

wjfjðaÞ; ðB3Þ

from which we take the median and the 1σ confidence
interval determined by the 15.9% and 84.1% percentiles as
the model average ā and its upper and lower confidence
limits āþ Δaþ and ā − Δa−. We then quote the average
and its total error as āΔaþΔa− . This procedure is illustrated in
Figs. 6 and 9, where the histograms are coarsely binned for
a better visualization.
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