
Local Search and Restart Strategies for Satisfiability
Solving in Fuzzy Logics

Tim Brys∗, Madalina M. Drugan∗, Peter A.N. Bosman†, Martine De Cock§ and Ann Nowé∗
∗Artificial Intelligence Lab, VUB

Pleinlaan 2, 1050 Brussels, Belgium
{timbrys, mdrugan, anowe} @vub.ac.be
†Centrum Wiskunde & Informatica (CWI)

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
peter.bosman@cwi.nl

§Dept. of Applied Math. and Comp. Sc. UGent
Krijgslaan 281 (S9), 9000 Gent, Belgium

martine.decock@ugent.be

Abstract—Satisfiability solving in fuzzy logics is a subject that
has not been researched much, certainly compared to satisfiability
in propositional logics. Yet, fuzzy logics are a powerful tool
for modelling complex problems. Recently, we proposed an
optimization approach to solving satisfiability in fuzzy logics and
compared the standard Covariance Matrix Adaptation Evolution
Strategy algorithm (CMA-ES) with an analytical solver on a set of
benchmark problems. Especially on more finegrained problems
did CMA-ES compare favourably to the analytical approach.
In this paper, we evaluate two types of hillclimber in addition
to CMA-ES, as well as restart strategies for these algorithms.
Our results show that a population-based hillclimber outperforms
CMA-ES on the harder problem class.

I. INTRODUCTION

The problem of SAT in propositional logic [1] is well known
and is of interest to researchers from various domains [2], [3],
as many problems can be reformulated as a SAT problem and
subsequently solved by a state-of-the-art SAT solver.

In fuzzy logics – logics with an infinite number of truth
degrees – the same principle of satisfiability exists, SAT∞,
and it is, like its classical counterpart, useful for solving
a variety of problems. Indeed, many fuzzy reasoning tasks
can be reduced to SAT∞, including reasoning about vague
concepts in the context of the semantic web [4], fuzzy spatial
reasoning [5] and fuzzy answer set programming [6], which in
itself is an important framework for non-monotonic reasoning
over continuous domains (see e.g. [7], [8], [9]).

In contrast to SAT, SAT∞ has received much less attention
from the various research communities; there are only two
types of analytical solvers to be found in the literature, one
using mixed integer programming [10], and one using a con-
straint satisfaction approach [11]. Both methods suffer from
exponential complexity issues associated respectively with
mixed integer programming itself and an iteratively refining
discretization.

Recently, we proposed a new approach to solving SAT∞
[12] that models satisfiability as an optimization problem
over a continuous domain, and has the advantage of being
independent of the underlying logic and its operators, as well

as not suffering from the complexity issues associated with an-
alytical solvers, as our results showed. The disadvantage of this
approach is that only given an optimization algorithm proven
to converge to the global optimum can it be a complete solver,
i.e. deciding both SAT∞ and UNSAT∞. The optimization
algorithm used in [12] was the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)[13], which is considered to
be state-of-the-art in black-box optimization on a continuous
domain. In this paper we explore some alternatives to this
algorithm as the core for this SAT∞ solver. Our findings are
somewhat surprising in that CMA-ES is outperformed by a
hillclimber on one problem class.

The rest of the paper is structured as follows: in Section
II, we give a brief description of fuzzy logics and formally
define SAT∞ as an optimization problem. Section III contains
the description of a hillclimber algorithm (III-A), a population-
based version of that algorithm (III-B) and CMA-ES (III-C), as
well as restart strategies for these algorithms. These algorithms
are then evaluated and compared on a set of benchmark
problems in Section IV.

II. FUZZY LOGIC AND SAT∞

In fuzzy logics [14], truth is expressed as a real number
taken from the unit interval [0, 1]. Essentially, there are an
infinite number of truth degrees possible. A formula in a fuzzy
logic is built from a set of variables V , constants taken from
[0, 1] and n-ary connectives for n ∈ N. An interpretation is
a mapping I : V → [0, 1] that maps every variable to a truth
degree. We can extend this fuzzy interpretation I to formulas
as follows:
• For each constant c in [0, 1], [c]I = c.
• For each variable v in V , [v]I = I(v).
• Each n-ary connective f is interpreted by a function f :

[0, 1]n → [0, 1]. Furthermore we define

[f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I)

for formulas αi with 1 ≤ i ≤ n.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55871155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The connectives in fuzzy logics typically correspond to con-
nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively
by a t-norm, a t-conorm, an implicator and a negator. A
triangular norm or t-norm T is an increasing, associative
and commutative [0, 1]2 → [0, 1] mapping that satisfies the
boundary condition T(1, x) = x for all x in [0, 1]. Simi-
larly, a triangular conorm or t-conorm S is an increasing,
associative and commutative [0, 1]2 → [0, 1] mapping that
satisfies the boundary condition S(0, x) = x. An implicator
I is a [0, 1]2 → [0, 1] mapping that is decreasing in its first
argument, increasing in its second argument and that satisfies
the properties I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
A negator N is a decreasing [0, 1] → [0, 1] mapping that
satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⊗, disjunction ⊕
and implication → are interpreted as follows:
• [¬α]I = 1− [α]I
• [α⊗ β]I = max([α]I + [β]I − 1, 0)
• [α⊕ β]I = min(1, [α]I + [β]I)
• [α→ β]I = min(1− [α]I + [β]I , 1)

for any formulas α and β.
An interpretation I is said to be a model of a set of formulas

Θ iff ∀α ∈ Θ : l ≤ [α]I ≤ u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5 ≤ ¬(v1 ⊗ v2 ⊗ ¬v3) ≤ 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⊗ v2 ⊗
¬v3)]I1 = 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⊗ v2 ⊗
¬v3)]I2 = 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT∞ amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT∞.

A. SAT∞ as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT∞ instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT∞ instance. A SAT∞ problem consists of
a set Θ of formulas αi, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per
formula. Given these n formulas αi, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

∑n
i=1 fI(αi, li, ui)

n
(2)

0 1

1

[0, 1]n ! [0, 1]. Furthermore we define

[f(↵1, . . . ,↵n)]I = f([↵1]I , . . . , [↵n]I)

for formulas ↵i with 1 i n.
The connectives in fuzzy logics typically correspond to con-

nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively
by a t-norm, a t-conorm, an implicator and a negator. A
triangular norm or t-norm T is an increasing, associative
and commutative [0, 1]2 ! [0, 1] mapping that satisfies the
boundary condition T(1, x) = x for all x in [0, 1]. Simi-
larly, a triangular conorm or t-conorm S is an increasing,
associative and commutative [0, 1]2 ! [0, 1] mapping that
satisfies the boundary condition S(0, x) = x. An implicator
I is a [0, 1]2 ! [0, 1] mapping that is decreasing in its first
argument, increasing in its second argument and that satisfies
the properties I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
A negator N is a decreasing [0, 1] ! [0, 1] mapping that
satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⌦, disjunction �
and implication ! are interpreted as follows:

• [¬↵]I = 1 � [↵]I
• [↵⌦ �]I = max([↵]I + [�]I � 1, 0)
• [↵� �]I = min(1, [↵]I + [�]I)
• [↵ ! �]I = min(1 � [↵]I + [�]I , 1)

for formulas ↵ and �.
An interpretation I is said to be a model of a set of formulas

⇥ iff 8↵ 2 ⇥ : l [↵]I u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5 ¬(v1 ⌦ v2 ⌦ ¬v3) 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⌦ v2 ⌦
¬v3)]I1

= 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⌦ v2 ⌦
¬v3)]I2

= 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT1 amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT1.

A. SAT1 as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT1 instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT1 instance. A SAT1 problem consists of
a set ⇥ of formulas ↵i, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per

0 l u 1

1

[αi]I

f I(
α
i)

Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li [↵i]I ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or

[0, 1]n ! [0, 1]. Furthermore we define

[f(↵1, . . . ,↵n)]I = f([↵1]I , . . . , [↵n]I)

for formulas ↵i with 1 i n.
The connectives in fuzzy logics typically correspond to con-

nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively
by a t-norm, a t-conorm, an implicator and a negator. A
triangular norm or t-norm T is an increasing, associative
and commutative [0, 1]2 ! [0, 1] mapping that satisfies the
boundary condition T(1, x) = x for all x in [0, 1]. Simi-
larly, a triangular conorm or t-conorm S is an increasing,
associative and commutative [0, 1]2 ! [0, 1] mapping that
satisfies the boundary condition S(0, x) = x. An implicator
I is a [0, 1]2 ! [0, 1] mapping that is decreasing in its first
argument, increasing in its second argument and that satisfies
the properties I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
A negator N is a decreasing [0, 1] ! [0, 1] mapping that
satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⌦, disjunction �
and implication ! are interpreted as follows:

• [¬↵]I = 1 � [↵]I
• [↵⌦ �]I = max([↵]I + [�]I � 1, 0)
• [↵� �]I = min(1, [↵]I + [�]I)
• [↵ ! �]I = min(1 � [↵]I + [�]I , 1)

for formulas ↵ and �.
An interpretation I is said to be a model of a set of formulas

⇥ iff 8↵ 2 ⇥ : l [↵]I u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5 ¬(v1 ⌦ v2 ⌦ ¬v3) 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⌦ v2 ⌦
¬v3)]I1

= 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⌦ v2 ⌦
¬v3)]I2

= 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT1 amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT1.

A. SAT1 as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT1 instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT1 instance. A SAT1 problem consists of
a set ⇥ of formulas ↵i, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per

0 l u 1

1

[αi]I

f I(
α
i)

Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li [↵i]I ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or

[0, 1]n ! [0, 1]. Furthermore we define

[f(↵1, . . . ,↵n)]I = f([↵1]I , . . . , [↵n]I)

for formulas ↵i with 1 i n.
The connectives in fuzzy logics typically correspond to con-

nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively
by a t-norm, a t-conorm, an implicator and a negator. A
triangular norm or t-norm T is an increasing, associative
and commutative [0, 1]2 ! [0, 1] mapping that satisfies the
boundary condition T(1, x) = x for all x in [0, 1]. Simi-
larly, a triangular conorm or t-conorm S is an increasing,
associative and commutative [0, 1]2 ! [0, 1] mapping that
satisfies the boundary condition S(0, x) = x. An implicator
I is a [0, 1]2 ! [0, 1] mapping that is decreasing in its first
argument, increasing in its second argument and that satisfies
the properties I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
A negator N is a decreasing [0, 1] ! [0, 1] mapping that
satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⌦, disjunction �
and implication ! are interpreted as follows:

• [¬↵]I = 1 � [↵]I
• [↵⌦ �]I = max([↵]I + [�]I � 1, 0)
• [↵� �]I = min(1, [↵]I + [�]I)
• [↵ ! �]I = min(1 � [↵]I + [�]I , 1)

for formulas ↵ and �.
An interpretation I is said to be a model of a set of formulas

⇥ iff 8↵ 2 ⇥ : l [↵]I u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5 ¬(v1 ⌦ v2 ⌦ ¬v3) 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⌦ v2 ⌦
¬v3)]I1

= 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⌦ v2 ⌦
¬v3)]I2

= 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT1 amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT1.

A. SAT1 as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT1 instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT1 instance. A SAT1 problem consists of
a set ⇥ of formulas ↵i, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per

0 l u 1

1

[αi]I

f I(
α
i)

Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li [↵i]I ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or

[0, 1]n ! [0, 1]. Furthermore we define

[f(↵1, . . . ,↵n)]I = f([↵1]I , . . . , [↵n]I)

for formulas ↵i with 1 i n.
The connectives in fuzzy logics typically correspond to con-

nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively
by a t-norm, a t-conorm, an implicator and a negator. A
triangular norm or t-norm T is an increasing, associative
and commutative [0, 1]2 ! [0, 1] mapping that satisfies the
boundary condition T(1, x) = x for all x in [0, 1]. Simi-
larly, a triangular conorm or t-conorm S is an increasing,
associative and commutative [0, 1]2 ! [0, 1] mapping that
satisfies the boundary condition S(0, x) = x. An implicator
I is a [0, 1]2 ! [0, 1] mapping that is decreasing in its first
argument, increasing in its second argument and that satisfies
the properties I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.
A negator N is a decreasing [0, 1] ! [0, 1] mapping that
satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⌦, disjunction �
and implication ! are interpreted as follows:

• [¬↵]I = 1 � [↵]I
• [↵⌦ �]I = max([↵]I + [�]I � 1, 0)
• [↵� �]I = min(1, [↵]I + [�]I)
• [↵ ! �]I = min(1 � [↵]I + [�]I , 1)

for formulas ↵ and �.
An interpretation I is said to be a model of a set of formulas

⇥ iff 8↵ 2 ⇥ : l [↵]I u, given lower and upper bounds
l and u for that formula (usually u is 1, and in classical logic
even both l and u are 1). An example of a formula with three
variables v1, v2, and v3 in Łukasiewicz logic, with bounds is:

0.5 ¬(v1 ⌦ v2 ⌦ ¬v3) 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⌦ v2 ⌦
¬v3)]I1

= 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I2(v3) = 0.2 is a model too because [¬(v1 ⌦ v2 ⌦
¬v3)]I2

= 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT1 amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT1.

A. SAT1 as an Optimization Problem

As we propose an optimization approach to solving satisfia-
bility in fuzzy logics, we need to reformulate SAT1 instances
as optimization problems, i.e. defining a function over the
solution space such that optimizing this function corresponds
to solving the SAT1 instance. A SAT1 problem consists of
a set ⇥ of formulas ↵i, each of which must be satisfied to a
certain degree, as defined by an upper and lower bound per

0 l u 1

1

[αi]I

f I(
α
i)

Fig. 1. fI(↵i) for a formula ↵i with lower bound l, upper bound u and
degree of satisfaction [↵i]I .

formula. Given these n formulas ↵i, bounds (ui, li), and an
interpretation I, we define the objective function f as follows:

f(I) =

Pn
i=1 fI(↵i, li, ui)

n
(2)

and,

fI(↵i, li, ui) =

8
><
>:

1 if li [↵i]I ui
[↵i]I

li
if [↵i]I < li

1�[↵i]I
1�ui

if [↵i]I > ui

(3)

with [↵i]I representing the degree of satisfaction of formula
↵i under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula ↵i’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT1
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT1 solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT1 sometimes, but
never concluding UNSAT1.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a simple hillclimber.
Such local search algorithms often perform very well given
their simplicity. The most basic version iteratively updates
a candidate solution by evaluating all possible neighbouring
solutions, given a neighbourhood function, and picks the most
improving one. This method is called steepest ascent (or

Fig. 1. fI(αi) for a formula αi with lower bound li, upper bound ui and
degree of satisfaction [αi]I .

and,

fI(αi, li, ui) =

1 if li ≤ [αi]I ≤ ui
[αi]I
li

if [αi]I < li
1−[αi]I
1−ui

if [αi]I > ui

(3)

with [αi]I representing the degree of satisfaction of formula
αi under interpretation I. Each fI is a trapezoid function, with
a plateau of value 1 when formula αi’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 1. This formulation is similar to that typ-
ically used for SAT in propositional logic, where the number
of satisfied clauses is divided by the number of clauses. The
difference here is that in case of non-satisfaction, we do not
always return 0 as in SAT, but we give gradient information
that can point an optimization algorithm to satisfying config-
urations.

The objective function is formulated such that the global
maxima will always have a function value 1 if the SAT∞
instance is satisfiable. In that case, every global maximum
corresponds to a model of the problem. Given an algorithm
of which we can prove convergence to the global maximum
on this function, we have a complete SAT∞ solver. As we
can not provide such an algorithm, we are left with an
incomplete solver, being able to solve SAT∞ sometimes, but
never concluding UNSAT∞.

III. ALGORITHMS

In this section, we discuss three optimization algorithms
that we evaluate and compare on a set of benchmark problems
further on in this paper.

A. Hillclimber

The first algorithm we consider is a hillclimber. Such local
search algorithms often perform very well given their sim-
plicity. The most basic version iteratively updates a candidate
solution by evaluating all possible neighbouring solutions,
given a neighbourhood function, and picks the most improv-
ing one. This method is called steepest ascent hill climb-
ing (or descent, when considering a minimization problem),
because it stops when it no longer finds better solutions
in the neighbourhood, i.e. you are at the top of the hill.

Such algorithms are very efficient at moving quickly to a
local optimum. When a local optimum has been found, the
hillclimber restarts from a random location. Restart strategies
for (local) search algorithms have often been shown to improve
an algorithm’s qualitative performance. The most cited reason
for this is that performance almost always depends on starting
conditions, and especially the starting location in the search
space, although to what extent depends on the algorithm itself.
The most simple hillclimber (without restart strategy) simply
converges to the local optimum in which basin of attraction it
has started. Other algorithms, such as CMA-ES – see below –,
have mechanisms that allow them to overcome such problems,
although only to a certain extent. A restart strategy allows an
algorithm that may have started in a very bad region of the
search space, with little to no chance of finding good solutions,
move to another location in the search space that may prove
to be much better.

In the particular hill climber we propose, we use a continu-
ous neighbourhood, where all neighbours lie in a hypersphere
around the current solution at a certain distance. Because of the
continuous neighbourhood, we cannot consider all potential
neighbours, and therefore cannot definitely tell whether there
are no improving neighbours and whether the current solution
is a local optimum. Therefore, we determine that we are in a
local optimum when we have not observed an improvement
for i iterations; at that point the hillclimber restarts.

For the same reason that we cannot evaluate all neighbours,
we generate and evaluate only one single neighbour and decide
how to proceed solely based on that neighbour’s fitness. This
neighbour is selected by taking a random direction and taking
the point on the hypersphere that lies in that direction. If that
new candidate solution is an improvement or a status quo,
we accept the step, otherwise, depending on probability p,
we accept the worsening step anyway, or we pick another
neighbour in a different direction. This added stochasticity can
help the hillclimber to escape suboptimal local optima.

A last mechanism is a changing neighbourhood over time
(iterations) [15]. In the experimental section, we evaluate both
constant neighbourhoods (a hypersphere with fixed radius)
and exponential decay neighbourhoods (a hypersphere with
exponentially decaying radius). This concept of a decaying
neighbourhood is conceived to allow the hillclimber to initially
make large steps to locate promising regions in the search
space, and then gradually refine the solutions by searching
more locally. With a decaying stepsize, the schedule is reset
after a restart, so that the hillclimber can again start making
large steps to quickly improve the candidate solution. Besides
this, we add some gaussian noise to the stepsize.

Note that this particular hillclimber could arguably be re-
ferred to as simulated annealing with a fixed acceptance prob-
ability. In simulated annealing, the probability of accepting
worsening steps is decayed over time, and the neighbourhood
usually stays the same. In our algorithm the inverse is true,
i.e. the probability of accepting worsening steps is fixed and
the neighbourhood can be varied, by decaying the distance
between neighbouring solutions.

Of course, solutions need to adhere to the box-constraint
for fuzzy truth values ∀v : v ∈ [0, 1]. When a step takes the
algorithm outside the box defined by the possible truth values
([0, 1]n), we force it back in by setting the violating variables
to the closest value in the box, i.e. 0 or 1.

Figure 2 shows the pseudo-code for this hillclimber. Ini-
tially, a random interpretation (variable assignment) is gener-
ated and assigned to the current solution I. Then, as long as
no model (satisfying assignment) is found or the maximum
number of allowed function evaluations is not exceeded, we
iteratively update the current solution. To select a neighbour
on the hypersphere, we generate a random normalized vector
to select a direction, and multiplied with the stepsize or radius
of the hypersphere, added to the current solution, we obtain
a neighbour. If it is an improvement, we continue with that
solution. If not, with probability p we continue with that
solution anyway, and otherwise we select another neighbour.
If no improvement has been made over the past i function
evaluations, we reassign the current solution to a random
location in the search space, i.e. a restart.

1: procedure HILLCLIMBER
2: I = randomInterpretation()
3: while not satisfied and not maxEvaluations do
4: s = randomNormalizedVector()
5: tmp = I + (s× stepSize)
6: if f(tmp) ≤ f(I) || rand() < p then
7: I = tmp
8: end if
9: if restartCondition() then

10: I = randomInterpretation()
11: else
12: stepSize = updateStepsize(iteration)
13: end if
14: end while
15: end procedure

Fig. 2. Hillclimber

B. Population-based Hillclimber

Instead of working with a single solution, we can build a
hillclimber that works on a population of candidate solutions.
Populations typically allow an algorithm to better estimate the
local shape of the search space and make more informed de-
cisions. In this case, we implement some principles borrowed
from Evolution Strategies (ES) [16], [17], which optimize
an objective function by iteratively applying the principles
of selection, mutation and recombination to a population of
candidate solutions.

We have implemented these principles using a multivariate
distribution with the same variance in all dimensions, i.e. no
covariances. This is used to sample λ solutions for the next
generation, from which the µ best are selected, which are
subsequently used to calculate the mean of the distribution
that will generate the next generation. This mean is simply
the average of the µ best solutions. As with the no-population

hillclimber, we allow this population-based hillclimber to
restart when it has not encountered better solutions for a
certain number of function evaluations, and we will also
look at both constant and decaying neighbourhoods (standard
deviation). Boundary violations are handled in the same way
as in the previous hillclimber. Figure 3 shows pseudocode for
this algorithm.

1: procedure POP-HILLCLIMBER
2: mean = randomInterpretation()
3: while not satisfied and not maxEvaluations do
4: generationλ = sampleDistribution(mean, std)
5: generationλ = sort(generationλ)
6: if restartCondition() then
7: mean = randomInterpretation()
8: else
9: bestµ = generationλ[1..µ]

10: mean = avg(bestµ)
11: std = updateStd(iteration)
12: end if
13: end while
14: end procedure

Fig. 3. Population-based Hillclimber

C. CMA-ES

The Covariance Matrix Adaptation-Evolution Strategy
(CMA-ES) [13] is an algorithm belonging to the class of
Evolution Strategies, and is considered to be state-of-the-art in
black-box optimization on a continuous domain. CMA-ES is
an (µ, λ)-ES with the addition of a non-random adaptation of
the multivariate distribution that generates candidate solutions.
This additional mechanism allows CMA-ES to efficiently ex-
plore promising search directions by adapting the distribution
to the local shape of the search space.

For a full description of this algorithm, we refer the reader
to [13]. Pseudocode is shown in Figure 4.

1: procedure CMA-ES
2: mean = randomInterpretation()
3: cov = initialCovarianceMatrix()
4: while not satisfied and not maxEvaluations do
5: generationλ = sampleDistribution(mean, cov)
6: generationλ = sort(generationλ)
7: if restartCondition() then
8: mean = randomInterpretation()
9: cov = initialCovarianceMatrix()

10: else
11: bestµ = generationλ[1..µ]
12: mean = avg(bestµ)
13: cov = updateCovMatrix(mean, bestµ)
14: end if
15: end while
16: end procedure

Fig. 4. Covariance Matrix Adaptation Evolution Strategy

Although we could also force the candidate solutions that
violate the box constraint back in the box, we apply a
penalty function as suggested in [18], because CMA-ES makes
assumptions about the distribution of these solutions. This
penalty is quadratic in the distance between the candidate
solution and the box. The new objective function is:

f(I) =

−∑n
i=1 fI(αi,li,ui)

n , I ∈ [0, 1]v

104
∑v
i=1 θ(|(I(i)− 0.5)| − 0.5)(I(i)− 0.5)2,

I 6∈ [0, 1]v

(4)
with θ the heaviside function (0 for negative input, otherwise
1) and v the number of variables. Note the minus in the first
part, which is necessary because CMA-ES is a minimization
technique.

We make the new function conditional instead of adding the
penalty to the objective function as is commonly done, because
numbers beyond [0,1] have no meaning in fuzzy logics and
prevent the formulas from being evaluated. We do realise that
now the objective function is different for the hillclimbers
and CMA-ES, but note that this is necessary. As we want
each algorithm to perform as good as possible, we chose
not to use this penalty function for the hillclimbers, but to
repair solutions, as this gives better performance. CMA-ES
unfortunately does not perform well when repairing solutions
and requires this penalty function.

Auger and Hansen have introduced a restart strategy for
CMA-ES called LR-CMA-ES [19]. Restart conditions are,
amongst others: little or no variation in the fitness of the last x
generations, extremely small standard deviation of the normal
distribution and no change in fitness function when perturbing
any coordinate of the mean with 0.2 standard deviation. These
are all indications that CMA-ES has converged and that it will
not very likely find better solutions in subsequent generations.
When this happens, LR-CMA-ES restarts in another random
location in the search space. In our experiments, we will
consider both these sophisticated restart conditions, and our
simple ’x function evaluations without improvement’ restart
condition.

IV. EXPERIMENTS

In this section, we evaluate the previously described algo-
rithms on a testbed of SAT∞ problems. These benchmark
problems come from [11] and [12] and can be divided into
two problem classes, namely those with constants (formulas’
upper and lower bounds) from T4 =

{
0, 14 ,

2
4 ,

3
4 , 1
}

, and those
problems with constants from T100 =

{
0, 1

100 , ..,
99
100 , 1

}
. The

latter problems were much harder for the analytical approach
from [11] to solve, due to the higher granularity in constants.
The testbed contains 50 instances of each problem class, each
problem having 40 dimensions or variables, making for 100
problem instances in total.

The algorithms we will evaluate all have some parameters
that need to be set, such as the stepsize (or standard deviation)
in the hillclimbers, and the population size in population-based

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000 1e+06 1e+07

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Evaluations

Hillclimber Decay 0.99
Hillclimber Decay 0.999
Hillclimber Decay 0.9999

Hillclimber Constant 0.025
Hillclimber Constant 0.25
Hillclimber Constant 2.5

Fig. 5. Probability of the hillclimber solving an instance for various stepsize
schedules on Łukasiewicz T4 problems.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06 1e+07

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Evaluations

Hillclimber Constant 2.5

Hillclimber Decay 0.99
Hillclimber Decay 0.999
Hillclimber Decay 0.9999

Hillclimber Constant 0.025
Hillclimber Constant 0.25
Hillclimber Constant 2.5

Fig. 6. Probability of the hillclimber solving an instance for various stepsize
schedules on Łukasiewicz T100 problems.

hillclimber and CMA-ES. Before we compare these algo-
rithms, we perform a performance analysis of each algorithm
with various parameter settings, and select those parameter
values that yield the best results. These settings are then used
in the final comparison.

A. Hillclimber

Figures 5 and 6 show the performance of the hillclimber
with different stepsize schedules, either constant or exponen-
tially decaying. Table I summarises these results. When the
stepsize is decaying exponentially, it starts at value 2.5 and
does not go lower than 0.025. These values were selected
for their good performance. The probability of accepting
worsening solutions is set to 0.1. Restarts are performed
after 1000 iterations without improvement. Evaluations are
limited to 107. For each instance, 10 runs were performed, all
algorithms using the same list of initial and restart positions
(randomly generated for each run). This setup stays the same
for all preliminary experiments in this paper.

Hillclimber Configuration Success

Łukasiewicz T4

Decay 0.99 85.4%
Decay 0.999 84.8%
Decay 0.9999 84.6%
Constant 0.025 85.0%
Constant 0.25 73.6%
Constant 2.5 2.2%

Łukasiewicz T100

Decay 0.99 95.8%
Decay 0.999 94.8%
Decay 0.9999 94.0%
Constant 0.025 95.0%
Constant 0.25 66.8%
Constant 2.5 0.4%

TABLE I
PERCENTAGE OF SUCCESSFUL RUNS FOR DIFFERENT HILLCLIMBER

CONFIGURATIONS. ALL OBSERVED DIFFERENCES ARE STATISTICALLY
SIGNIFICANT (WILCOXON SIGNED RANK TEST).

Both the hillclimbers with the decaying stepsizes and the
hillclimber with the smallest constant stepsize solve an ap-
partenly similar number of instances at the end of the allowed
number of evaluations, although the hillclimber with the fastest
decay schedule is statistically significantly better.

We can differentiate between the hillclimbers with decay
schedules by looking at the average number of evaluations
necessary to solve an instance. Slower decay schedules do
not find solutions early on, but after a certain number of
evaluations, they quickly climb to a much higher probability
of solving an instance than those hillclimbers with faster decay
schedules. This is a result of a higher amount of exploration
with a large stepsize, allowing them to locate better regions
in the search space before performing more local search with
a small stepsize. From these experiments, we select a decay
schedule with rate 0.99 to use in further experiments, as it
has a statistically significantly higher probability of solving a
problem instance in the benchmark set.

B. Population-based Hillclimber

Considering the population-based hillclimber, we can both
optimize the population size λ, as well as the ratio of selected
individuals versus the number of individuals in a population
µ/λ, as well as the size of the distribution used to generate
candidate solutions, i.e. the standard deviation or stepsize.
As many combinations of settings are possible, we restrict
ourselves to evaluating different values for λ (10 − 1000),
as well as two µ/λ ratios (0.5 and 0.1). We assume that
the performance of various stepsize schedules will not differ
much compared to that found for the previous hillclimber, and
as such, we use the 0.99 decay schedule. Restarting is after
1000× λ evaluations without improvement.

Figures 7 and 8 show the relation between population
size and hillclimber performance. Table II summarises these
results. As the population size grows, the hillclimbers perform
worse because of the limited function evaluation budget. Se-
lecting less individuals from the population µ/λ is also clearly
better. From this analysis, we select a restarting hillclimber,
with λ = 10 and µ/λ = 0.1 for both problem classes. We also
checked our assumption for taking the best stepsize schedule

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Population Size

Pop-Hillclimber µ/λ=0.5 without restart
Pop-Hillclimber µ/λ=0.1 without restart

Pop-Hillclimber µ/λ=0.5 with restart
Pop-Hillclimber µ/λ=0.1 with restart

Fig. 7. Probability of the population-based hillclimber solving an instance
in function of the population size on Łukasiewicz T4 problems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Population Size

Pop-Hillclimber µ/λ=0.5 without restart
Pop-Hillclimber µ/λ=0.1 without restart

Pop-Hillclimber µ/λ=0.5 with restart
Pop-Hillclimber µ/λ=0.1 with restart

Fig. 8. Probability of the population-based hillclimber solving an instance
in function of the population size on Łukasiewicz T100 problems.

from the first hillclimber for the population-based one, and the
results validated our assumption (results not included in this
paper).

Pop-Hillclimber Configuration Success

Łukasiewicz T4

µ = 10, µ/λ = 0.5, no restart 79.4%
µ = 10, µ/λ = 0.1, no restart 84.2%
µ = 10, µ/λ = 0.5, restart 83.8%
µ = 10µ = 10µ = 10, µµµ/λλλ = 0.1, restart 86.0%

Łukasiewicz T100

µ = 10, µ/λ = 0.5, no restart 84.4%
µ = 10, µ/λ = 0.1, no restart 92.8%
µ = 10, µ/λ = 0.5, restart 90.8%
µ = 10µ = 10µ = 10, µµµ/λλλ = 0.1, restart 97.6%

TABLE II
PERCENTAGE OF SUCCESSFUL RUNS FOR DIFFERENT POPULATION-BASED

HILLCLIMBER CONFIGURATIONS. ALL OBSERVED DIFFERENCES ARE
STATISTICALLY SIGNIFICANT (WILCOXON SIGNED RANK TEST).

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 100 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Population Size

CMA-ES µ/λ=0.5
CMA-ES µ/λ=0.1

Restart CMA-ES µ/λ=0.5
Restart CMA-ES µ/λ=0.1

LR-CMA-ES µ/λ=0.5
LR-CMA-ES µ/λ=0.1

Fig. 9. Probability of CMA-ES solving an instance in function of the
population size on Łukasiewicz T4 problems.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 100 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Population Size

CMA-ES µ/λ=0.5
CMA-ES µ/λ=0.1

Restart CMA-ES µ/λ=0.5
Restart CMA-ES µ/λ=0.1

LR-CMA-ES µ/λ=0.5
LR-CMA-ES µ/λ=0.1

Fig. 10. Probability of CMA-ES solving an instance in function of the
population size on Łukasiewicz T100 problems.

C. CMA-ES

Although CMA-ES is always claimed to be virtually pa-
rameter free [18], we can still play around with λ, the number
of offspring generated each iteration, and the ratio µ/λ,
the number of individuals selected each generation versus
the number of individuals in that generation as before with
the population-based hillclimber. Setting λ is usually left
to the implementer of the system, although a guideline of
4+b3 ln(n)c is suggested in [18]. For µ it is strongly suggested
to set it to λ/2 [13], yet we found in [12] a µ/λ ratio
of 0.1 to work better on the types of problems considered.
We perform a similar experiment as the population-based
hillclimber experiment before, as we compare CMA-ES, with
and without restarting strategies (both the LR-CMA-ES and
our ’1000×λ iterations without improvement’ restart strategy)
using µ/λ ratios 0.1 and 0.5, and varying population sizes, to
determine the best parameters for later comparison with the
hillclimbers.

CMA-ES Configuration Success

Łukasiewicz T4

µ = 100, µ/λ = 0.5 CMA-ES 79.2%
µ = 1000, µ/λ = 0.1 CMA-ES 84.0%
µµµ = 10, µµµ/λλλ = 0.5, Restart CMA-ES 92.8%
µ = 40, µ/λ = 0.1, Restart CMA-ES 92.4%
µ = 100, µ/λ = 0.5, LR-CMA-ES 78.8%
µ = 1000, µ/λ = 0.1, LR-CMA-ES 84.0%

Łukasiewicz T100

µ = 1000, µ/λ = 0.5 CMA-ES 79.2%
µ = 20, µ/λ = 0.1 CMA-ES 82.4%
µ = 20, µ/λ = 0.5, Restart CMA-ES 93.4%
µµµ = 20, µµµ/λλλ = 0.1, Restart CMA-ES 95.4%
µ = 200, µ/λ = 0.5, LR-CMA-ES 79.2%
µ = 20, µ/λ = 0.1, LR-CMA-ES 84.6%

TABLE III
PERCENTAGE OF SUCCESSFUL RUNS FOR DIFFERENT CMA-ES

CONFIGURATIONS. ALL OBSERVED DIFFERENCES ARE STATISTICALLY
SIGNIFICANT (WILCOXON SIGNED RANK TEST).

Figures 9 and 10 show how the likelihood of these variants
solving a SAT∞ instance scales with the population size on
the same benchmark problems as before. Table III summarises
these results.

Surprisingly, the LR-CMA-ES restart strategy performs
almost identical to the standard CMA-ES, suggesting that
the conditions for restarting are not suited for the function
landscapes encountered in the kind of problems considered
here. On the other hand, the simple ’restart after λ × 1000
evaluations without improvement’ strategy does improve over
CMA-ES’ performance a lot. The best performing parameter
configurations are CMA-ES with our simple restart strategy
and λ = 10, µ/λ = 0.5 for the T4 problem class, and the
same with λ = 20, µ/λ = 0.1 for the T100 problem class.

D. Final Comparison

Given this analysis, we compare the best performing pa-
rameter configurations for the hillclimbers and CMA-ES by
looking at the percentage of successful runs in function of
both evaluations and CPU time. The experimental setup is the
same, with the same benchmark instances, and a maximum
of 107 function evaluations, except now does every algorithm
solve each instance 50 times instead of 10 in the preliminary
experiments, for more significant results.

Figures 11 and 12 show the performance of the algorithms
discussed previously with their best parameter configurations
in function of the number of function evaluations. Table
IV summarizes these results. The most notable result we
find is that CMA-ES is marginally, but statistically signifi-
cantly, outperformed by the population-based hillclimber on
the Łukasiewicz T100 problems in terms of successful runs,
although CMA-ES needs much fewer function evaluations to
come to that result. Also note that this order could again be
reversed given a larger budget of function evaluations, as both
methods do not seem to have converged yet and thus we cannot
conclusively call one method better than the other.

The relative performance on the Łukasiewicz T4 problems
lies more in the line of expectation, where the population-
based hillclimber has more successful runs than the hillclimber
and needs less function evaluations to get there. CMA-ES finds

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Evaluations

Hillclimber
Pop-Hillclimber

CMA-ES

Fig. 11. Probability of solving an instance in function of the number of
evaluations for the best population size on Łukasiewicz T4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000 100000 1e+06 1e+07

P
r
o
b
a
b
i
l
i
t
y

o
f

s
o
l
v
i
n
g

Evaluations

Hillclimber
Pop-Hillclimber

CMA-ES

Fig. 12. Probability of solving an instance in function of the number of
evaluations for the best population size on Łukasiewicz T100.

more solutions than both hillclimbers, although it needs on
average more evaluations to find a solution. One caveat: this
average number of evaluations needed is higher for CMA-ES,
partly because the hillclimbers start finding solutions an order
of magnitude faster, but also because CMA-ES still manages
to find solutions near the end of a run, in contrast to the
hillclimbers. Therefore, this measure must be viewed with
caution. The same is true for the CPU time.

V. CONCLUSION

In previous work, we proposed an optimization approach
for solving satisfiability problems in the Łukasiewicz fuzzy
logic. We applied the CMA-ES algorithm out-of-the-box, as it
is considered state-of-the-art in optimization on a continuous
domain, and found it to be a significant contribution to
the state-of-the-art in satisfiability solving in fuzzy logics,
as it outperformed the standard analytical approach by a
large margin on the hard problem class analysed. In this
paper, we analysed the performance of different optimization

Algorithm Success Evaluations CPU

Łukasiewicz T4

Hillclimber 85.08% 169477.6 22219
Pop-Hillclimber 86.16% 144521.8 14816
CMA-ES 93.56% 309105.6 42792

Łukasiewicz T100

Hillclimber 95.12% 224423.4 31904
Pop-Hillclimber 96.96% 417474.1 54547
CMA-ES 96.84% 295679.0 29516

TABLE IV
SUMMARY OF THE RESULTS FOR THE HILLCLIMBER, POPULATION-BASED

HILLCLIMBER AND CMA-ES. PERCENTAGE OF SUCCESSFUL RUNS,
AVERAGE NUMBER OF EVALUATIONS IN A SUCCESSFUL RUN AND CPU

TIME OF A SUCCESSFUL RUN ARE RECORDED. ALL OBSERVED
DIFFERENCES ARE STATISTICALLY SIGNIFICANT (WILCOXON SIGNED

RANK TEST).

algorithms, including CMA-ES, in order to test our assumption
that CMA-ES would be the best optimization algorithm for
these problems, an assumption based on CMA-ES’ status
in the community. On the Łukasiewicz T4 problems, CMA-
ES proved to be the best performing algorithm, although
this result must be seen in the light of our previous work
[12], where CMA-ES did not outperform the state-of-the-art
analytical approach on this problem class. The most interesting
result described in this paper concerns the Łukasiewicz T100

problems, where CMA-ES is outperformed by the population-
based hillclimber we described in this paper.

In future work, we intend to investigate how well this
optimization approach works for other fuzzy logics.

ACKNOWLEDGMENT

This work was partially funded by a joint VUB-UGent
Research Foundation-Flanders (FWO) project. Also, Tim Brys
is funded by a Ph.D grant of the Research Foundation-Flanders
(FWO).

REFERENCES

[1] L. Zhang and S. Malik, “The quest for efficient boolean satisfiability
solvers,” in Computer Aided Verification, ser. Lecture Notes in Computer
Science, E. Brinksma and K. Larsen, Eds. Springer Berlin / Heidelberg,
2002, vol. 2404, pp. 641–653.

[2] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European conference on Artificial intelligence, ser. ECAI ’92.
New York, NY, USA: John Wiley & Sons, Inc., 1992, pp. 359–363.
[Online]. Available: http://dl.acm.org/citation.cfm?id=145448.146725

[3] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling
finite linear CSP into SAT,” in Principles and Practice of
Constraint Programming - CP 2006, ser. Lecture Notes in Computer
Science, F. Benhamou, Ed. Springer Berlin / Heidelberg, 2006,
vol. 4204, pp. 590–603, 10.1007/11889205 42. [Online]. Available:
http://dx.doi.org/10.1007/11889205 42

[4] U. Straccia and F. Bobillo, “Mixed integer programming, general
concept inclusions and fuzzy description logics,” Mathware & Soft
Computing, 2007.

[5] S. Schockaert, M. De Cock, and E. E. Kerre, “Spatial reasoning
in a fuzzy region connection calculus,” Artificial Intelligence,
vol. 173, no. 2, pp. 258 – 298, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000437020800146X

[6] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock, “Reducing fuzzy
answer set programming to model finding in fuzzy logics,” CoRR, vol.
abs/1104.5133, 2011.

[7] T. Lukasiewicz and U. Straccia, “Tightly integrated fuzzy
description logic programs under the answer set semantics for
the semantic web,” in Proceedings of the 1st international
conference on Web reasoning and rule systems, ser. RR’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 289–298. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1768725.1768750

[8] N. Madrid and M. Ojeda-Aciego, “Measuring inconsistency in fuzzy
answer set semantics,” in Transactions on Fuzzy Systems, vol. 19, 2011,
pp. 605–622.

[9] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir, “An introduction
to fuzzy answer set programming,” Annals of Mathematics and Artificial
Intelligence, vol. 50, pp. 363–388, 2007.

[10] R. Hähnle, “Many-valued logic and mixed integer programming,” Annals
of Mathematics and Artificial Intelligence, vol. 12, pp. 231–263, 1994.

[11] S. Schockaert, J. Janssen, and D. Vermeir, “Satisfiability checking in
Łukasiewicz logic as finite constraint satisfaction,” Journal of Automated
Reasoning, 2012. [Online]. Available: http://dx.doi.org/10.1007/s10817-
011-9227-0

[12] T. Brys, Y.-M. De Hauwere, M. De Cock, and A. Nowé, “Solving
satisfiability in fuzzy logics with evolution strategies,” in Proceedings of
the 31st Annual North American Fuzzy Information Processing Society
Meeting, 2012.

[13] N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Ben-
goetxea, Eds. Springer, 2006, pp. 75–102.

[14] P. Hájek, Metamathematics of Fuzzy Logic. Springer, 1998.
[15] N. Mladenović and P. Hansen, “Variable neighborhood search,” Com-

puters & Operations Research, vol. 24, no. 11, pp. 1097 – 1100, 1997.
[16] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution

strategies,” in Proceedings of the Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann, 1991, pp. 2–9.

[17] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehen-
sive introduction,” Natural Computing, vol. 1, pp. 3–52, 2002.

[18] N. Hansen and S. Kern, “Evaluating the cma evolution strategy on
multimodal test functions,” in Parallel Problem Solving from Nature -
PPSN VIII, ser. Lecture Notes in Computer Science, X. Yao, E. Burke,
J. Lozano, J. Smith, J. Merelo-Guervós, J. Bullinaria, J. Rowe, P. Tino,
A. Kabán, and H.-P. Schwefel, Eds. Springer Berlin / Heidelberg, 2004,
vol. 3242, pp. 282–291.

[19] A. Auger and N. Hansen, “Performance Evaluation of an Advanced Lo-
cal Search Evolutionary Algorithm.” in IEEE Congress on Evolutionary
Computation, 2005, pp. 1777–1784.

