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ABSTRACT
Parameterised configurations for FPGAs are configura-

tion bitstreams of which some of the bits are defined as
Boolean functions of parameters. By evaluating these Bool-
ean functions using different parameter values, it is possible
to quickly and efficiently derive specialised configuration
bitstreams with different properties. Generating and using
parameterized configurations requires a new tool flow. In
this paper we propose a novel algorithm for the routing step
of this tool flow. This new router, called the connection bun-
dle router, is able to route a circuit with parameterized inter-
connections. It produces routing solutions in less time (up
to a factor 5,2) and with a better quality in terms of number
of wires (up to 38%) and minimum track width (up to 25%)
than its pre decessors. The connection bundle router is fully
automated and uses a scalable connection-based represen-
tation for the parameterized interconnections in a tunable
circuit.

1. INTRODUCTION

Run-time reconfiguration (RTR) allows an improved utili-
sation of Field Programmable Gate Arrays (FPGA). RTR
enables specializing the FPGA through reconfiguring the
FPGA for the current application. This can be done by writ-
ing a specialized configuration to the FPGA’s configuration
memory. A specialized configuration uses fewer resources
and can attain faster clock speeds than a generic implemen-
tation. The downside is that the gain in efficiency can be
nullified by the specialization overhead – the time needed to
generate a specialized configuration and write it to the con-
figuration memory. Generating a specialized configuration
with a conventional FPGA tool flow can take in the order of
minutes to hours, which is unacceptable for most applica-
tions.

In [3] the TLUT method is proposed. It produces spe-
cialized configurations several orders of magnitude faster
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than a conventional FPGA tool flow, without sacrificing the
quality (speed and area) of the specialized configurations.
The method selects the input signals that change their value
much less frequent than other inputs and marks them as pa-
rameters. Then a specialized configuration is produced in
two steps. Offline, a parameterised configuration is cre-
ated. Parameterised FPGA configurations [2] are configu-
ration bitstreams of which some of the bits are defined as
Boolean functions of parameters. Online, these Boolean
functions can be evaluated using different parameter val-
ues, so it is possible to derive specialised configuration bit-
streams with different properties and/or functionality from a
single parameterised configuration.

The advantage of generating specialised configurations
from a parameterised configuration, instead of directly run-
ning the conventional FPGA tool flow, is the much lower
time cost per specialized configuration. Generating a spe-
cialized configuration from a parameterized configuration
requires only the evaluation of some Boolean functions, in-
stead of solving the computationally hard problems con-
tained in the full conventional tool flow, such as placement
and routing.

Parameterised configurations can be used in many ap-
plications. A first example is the “hard coding” of device
specific information in a production process (but with the
flexibility to change the information later): e.g. a MAC ad-
dress, an encryption key or calibration data. A second ex-
ample is speeding up development by allowing the devel-
oper to tune coefficients, e.g. the coefficients of a DSP filter
or the address range of a bus peripheral, without having to
rerun the complete tool flow. Another important application
of parameterised configurations is the efficient generation
of configuration bitstreams for Dynamic Circuit Specialisa-
tion (DCS). With DCS, RTR of (parts of) an FPGA is used
to dynamically optimise the circuit for the current situation
in order to improve its performance, increase the functional
density of the FPGA and consequently reduce the cost of the
design [10].

Using the conventional tool flow to create the specialised
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configurations at run-time for DCS would in many cases
take too much time (minutes to hours), while computing all
specialised configurations in advance and storing them in
a database quickly becomes infeasible because of the im-
mense number of possible configurations. E.g. 232 or ca. 4
billion configurations are needed for a 32-bit multiplier with
a semi-constant coefficient. With a parameterised config-
uration on the other hand, only one configuration needs to
be stored while the different specialised configurations can
be generated in milliseconds [2]. For example, the TLUT
method can produce specialized FIR configurations (8-bit
input, 8-bit coefficients and 32 taps) in only 1.3 ms on a
PowerPC 405 (PPC405) clocked at 300 Mhz (available in
the Xilinx Virtex-II pro FPGAs), while the conventional method
needs several minutes to produce a specialized configuration
on a standard desktop PC.

The parameterized configurations produced by the TLUT
method only express the truth tables of the LUTs as a func-
tion of the parameters. All the routing between the LUTs
is fixed. This leads to good quality specialized configura-
tions. However, it has been shown in [4] that also express-
ing the routing configuration as a function of the parameters
(TCON method) leads to specialized configurations with an
even better quality. As can be seen in Section 5, a 256×256
Clos switch requires 1792 LUTs when the TLUT method
is used while only 768 LUTs are needed when the TCON
method is used.

The TCON method produces parameterised configura-
tions starting from an RT level HDL description, using adapted
versions of synthesis, technology mapping, placement and
routing. Allowing reconfiguration of routing requires changes
in every step of the tool chain. At this point, our research
group is working on adapted algorithms for each of the steps.
An overview of the TCON method tool flow is given in Sec-
tion 2.1. In this paper we focus on the routing step.

In [4] a proof-of-concept reconfigurability-aware router,
called TROUTE, is proposed. Although TROUTE produces
good quality results in a reasonable time, these results are
heavily dependent on the way the routing problem is pre-
sented. The input is represented by a pattern-based rep-
resentation. For good results manual optimization of the
input is needed. More details can be fount in subsection
2.3 and 2.4. In [9] the connection router is proposed, a
first approach to circumvent the problems of TROUTE. The
downside of the connection router is that it takes a factor of
6 more time to generate parameterised configurations than
TROUTE and the solutions contain up to 29% more wires.
In this paper we present the Connection Bundle router. This
new reconfiguration-aware routing algorithm produces bet-
ter quality results in less time than the connection router. No
manual optimization of the input is needed.

In section 2 the TCON toolflow, the TROUTE algorithm
and its limitations are discussed. The scalable connection-
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Fig. 1: TCON Tool flow for parameterised configurations

based representation and the Connection router are described
in section 3. In section 4 a mechanism to extend resource
sharing and the adaptation to the routing algorithm is pre-
sented. In section 5 the performance of the routers are com-
pared.

2. BACKGROUND

2.1. TCON Tool Flow

The TCON tool flow, depicted in Figure 1, consists of two
stages. The generic stage is performed off-line at design
time to create a parameterised configuration from an HDL
description in which a number of inputs are denoted as pa-
rameters. The specialisation stage is performed every time
a specialised configuration is needed to (re-)configure an
FPGA. During the specialisation stage, the Boolean func-
tions contained in the parameterised configuration are eval-
uated to create a fully defined configuration bitstream. This
can be done efficiently using a microprocessor.

The generic stage of our new flow consists of similar,
but adapted, parts as the conventional tool flow. We give a
description of the changes made in each part.

2.1.1. Synthesis

The synthesis step converts a HDL description in which some
inputs are annotated as parameters into a parameterised Bool-
ean network. No significant changes need to be made to this
step because parameters can be synthesised just like regular
inputs.

2.1.2. Technology Mapping

During technology mapping, the parameterised Boolean net-
work generated by the synthesis step is mapped onto the re-
source primitives available in the target FPGA architecture
while trying to optimise the delay and area of the circuit. To
generate a parameterised configuration, we want to map to
primitives that can be parameterised:
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Fig. 2: A schematic of the TCON functionality of a
2×2 crossbar switch and the pattern representation. Under
each pattern, the corresponding parameter values for which
the pattern needs to be activated, are shown.

• Tuneable LUT (TLUT): A TLUT is a LookUp Table
with the truth table expressed in terms of parameters.

• Tuneable Connection (TCON): A TCON is a parame-
terized interconnection between the (T)LUTs.

A TCON has any number of input ports I = {ı̂0,
ı̂1, . . . , ı̂L−1} and any number of output ports O = {ô0,
ô1, . . . , ôM−1}. Every TCON has a connection function
ζp : P → (O → I) that expresses how the output ports are
connected to the input ports given a parameter value p ∈ P .
In this paper a TCON with the functionality of a 2×2 cross-
bar switch is used as an example. This TCON has two inputs
{̂i0, î1} and two outputs {ô0, ô1}. A schematic can be seen
in Figure 2.

TCONMAP [6] is a technology mapping algorithm, able
to exploit both the reconfigurable properties of the LUTs
and the interconnect network of the FPGA. TCONMAP pro-
duces a tunable circuit. This is a circuit containing four
types of functional blocks: (T)LUTs and (T)CONs.

2.1.3. Placement & Routing

During the placement step a physical LUT on the FPGA is
chosen to implement every instance of the (T)LUT primi-
tives, while during the subsequent routing step routing re-
sources are chosen to implement the (T)CONs.

The placement step makes extensive use of wirelength
estimates of the connections between LUTs to optimise the
routability and interconnect delay of the design. Since the
TCON is very different from a static connection, new ways
to estimate the length of connections are required. In what
follows the routing step will be discussed in more detail.

2.2. The TCON Routing Problem

The TCON routing problem is defined as follows. Given
a tunable circuit (TCONMAP) and a physical location for
each of the (T)LUTs (TPLACE), express the FPGA’s rout-
ing configuration as a Boolean function of the parameter in-
puts, so that the connections represented by the TCONs are
realized for every possible parameter value in P .

 
 

        

 
 

 
 

 
 

 
 

        

 
 

 
 

 
 

    

 
 

 
 

    

 
 

 
 

 
 

 
 

        

 
 

 
 

 
 

 
 

 
 

 
 

Tuning functions: 

𝐶𝐴 = ¬𝑝0 ∨ 𝑝0 ∧ 𝑝1 ∧ 𝑝2  
𝐶𝐵 = 𝑝0 ∨ ¬ 𝑝0 ∨ 𝑝1 ∨ 𝑝2  
𝐶𝐶 = ¬ 𝑝0 ∨ (𝑝1 ∧  𝑝2 ) 
𝐶𝐷 = 𝑝0 ∧ (𝑝1 ∨  𝑝2) 
𝐶𝐸 = ¬ 𝑝1 ∨ (¬𝑝0 ∧  𝑝2 ) 
𝐶𝐹 = 𝑝1 ∧ (¬𝑝0 ∨  𝑝2) 
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Fig. 3: An implementation of the 2×2 crossbar switch ex-
ample on a FPGA with 2×2 CLBs. The thick lines in the
schematic represent the wires of the FPGA, the thin lines
the switches

After refinement by place and route, the TCON should
be realized by a set of routing resources (wires and switches),
where each of the switches is controlled by a Boolean func-
tion of the parameter inputs, called a tuning function. A
possible implementation of the 2×2 crossbar switch exam-
ple is shown in Figure 3. The reader can verify that for every
parameter value, the correct pattern is realized.

2.3. TROUTE

In all of the routers discussed in this paper, the available
routing resources of the FPGA are represented in an easy-
to-explore data structure, the routing resource graph (RRG).
The RRG is a directed graph, where each node represents
a routing wire on the FPGA and each directed edge repre-
sents a connection that can be made between two wires by
closing a routing switch. A whole range of FPGA routing
architectures can be represented by the RRG, this makes our
algorithm more generic. For more information we refer to



while congestedResourcesExist () :
for each TCON τ do:
τ .ripUpRouting()
routeTCON(τ )
τ .resources.updateSharingCost ()

allResources () . updateHistoryCost ()

Fig. 4: Pseudo code for the negotiated congestion loop of
the TCON router.

[1].
In [4] the TCON routing problem is solved by a recon-

figuration-aware router, called TROUTE. Figure 4 shows the
pseudo code for TROUTE. TROUTE is based on PATHFINDER
[8]. Both algorithms try to find disjoint subgraphs of the
RRG for each of the nets or TCONs in the input circuit, re-
spectively. Both algorithms do this iteratively by ripping up
and rerouting nets or TCONs, respectively. The subgraphs
are calculated independently of each other using a net or a
TCON router, which tries to find a minimum cost subgraph1,
but does not explicitly force the subgraphs to be disjoint. In
order to make the subgraphs disjoint, the cost of the routing
resources is manipulated. Congestion (overuse) is allowed
in the first iteration and solved in subsequent iterations by
gradually increasing the cost of congested routing resources.
After every routing iteration the cost of the overused nodes
goes up by increasing the history congestion factor h(n)
of the congested nodes. During each routing iteration con-
gestion is avoided by increasing the present congestion fac-
tor p(n). The total cost of a node in the RRG during the
PATHFINDER algorithm is given by c(n) = b(n)·h(n)·p(n),
with b(n) the base cost of the node. For more information
on negotiated congestion we refer to [8, 1] .

In order to find a minimum cost subgraph that imple-
ments a TCON a routing heuristic is used, the pseudo-code
can be found in Figure 5. A TCON is represented as a
set of connection patterns. The connection patterns of the
2×2 crossbar switch are depicted in Figure 2. A connec-
tion pattern, π ∈ Π, is one way of connecting the inputs
of a TCON to its outputs, where Π is the set of all possible
connection patterns. Mathematically a connection pattern is
a function, π(ô) : O → I, that maps every output of the
TCON to at most one of its inputs. The connection patterns
themselves can be represented as a set of nets. Each net con-
nects one of the TCON’s inputs to one or more of its outputs.

Each pattern is routed separately. The union of the rout-
ing graphs of all the patterns is the routing graph of the
TCON. Nets that are part of the same routing pattern need
to be realized at the same time and have to be disjoint (in
order to avoid short circuits). However, two nets that are

1The cost of a subgraph is equal to sum of the costs of the routing re-
sources it contains.

function routeTCON(Tcon τ ):
for each pattern π in τ do:

for each net η in π do:
routeNet (η)
η.resources. setCost (∞)

τ .resources. setCost (0)
τ .resources. resetCost ()

Fig. 5: Pseudo code for the TCON router function.

part of different patterns, are never realized at the same time
and can share routing resources. This last property is used
to minimize the routing cost of a TCON by maximizing the
overlap among different patterns.

The pseudo code of the heuristic algorithm is shown in
Figure 5. The outer for-loop loops over all patterns of the
TCON. The inner for-loop iterates over all nets in the current
pattern and routes them using a net router. The net router is
a heuristic that searches a minimum cost routing tree for a
given net. The same net router is used as in VPR [1] .

In order to apply the resource sharing rules, the costs
of the nodes are manipulated within the TCON router. Af-
ter routing a net, the cost of the resources used by that net
are set to infinity. So that the next net will avoid resources
that are already used by previously routed nets of the current
pattern. After routing a pattern, the cost of all the resources
that are already used by the current TCON are set to zero
to stimulate overlap between patterns. After routing the full
TCON, the resource costs are reset to the negotiated conges-
tion cost.

2.4. Limitations of TROUTE

TROUTE has two limitations. First, TROUTE is not able to
route complex patterns. The TCON router avoids overlap
between nets in the same pattern by setting the cost of the
routing resources used by the already routed nets to∞. This
mechanism is called obstacle avoidance. It is well known
that obstacle avoidance fails to find good quality solutions
for complex circuits [8] . Thus, when patterns become too
complex the TCON routing heuristic can in many cases not
find a routing graph.

Second, routing a TCON scales exponentially with the
complexity of that TCON. In the worst case scenario, the
number of times that the Dijkstra algorithm needs to be in-
voked to (re)route a TCON with inputs I and outputs O, is
equal to |I||O|(|I| + 1)|O|−1, which is clearly exponential
in the number of outputs. The TCON of the 2×2 crossbar
has 8 patterns (see Figure 2) and needs 12 Dijkstra invoca-
tions. For a 4×4 crossbar the number of patterns increases
to 624 patterns and the number of invocations to 2000.

In [4] these two issues were addressed by manually re-



Table 1: The connection representation of the 2×2 crossbar
switch

Connection Condition
(i0, o0) CD = ¬(p0 ∨ (p1 ∧ p2))
(i0, o1) CF = p1 ∧ (¬p0 ∨ p2)
(i1, o0) CC = p0 ∧ (p1 ∨ p2)
(i1, o1) CE = ¬p1 ∧ (p0 ∨ ¬p2))

ducing the complexity of the input tunable circuit. This
was done by splitting up larger TCONs into several smaller
TCONs. E.g. a TCON representing a 4×4 crossbar was split
into four smaller TCONs each representing a 4:1 multiplexer
for each output of the 4×4 crossbar. The patterns of these
TCONs contain only one net, and thus the obstacle avoid-
ance problem is avoided. Additionally, each TCON con-
tains only four patterns, which reduces the routing complex-
ity. The process of finding a division of the functionality
over different TCONs, such that the size of the TCON is ac-
ceptable and the patterns only contain one net, is difficult to
automate.

3. A CONNECTION-BASED REPRESENTATION

In order to solve the problems of TROUTE, a new routing al-
gorithm is proposed in [9], the connection router. The most
significant difference with TROUTE is the internal represen-
tation of the parameterized interconnections in the tunable
circuit. The Connection router uses a unique connection-
based representation instead of the pattern-based represen-
tation in TROUTE . The connection-based representation
represents a tunable circuit as a set of (T)LUTs and connec-
tions. Each connection is associated to a connection condi-
tion, expressed in terms of the parameter inputs of the de-
sign. The condition is true for those parameter values that
require the connection to be activated. The connection rep-
resentation of the 2×2 crossbar switch example in Figure 2,
is listed in Table 1. The connection-based representation
is more scalable than the pattern representation. . A TCON
with inputs I and outputsO will in worst case lead to |I||O|
different connections, this is also the number of Dijkstra in-
vocations needed to route the TCON. To route a 4 by 4 cross-
bar, only 16 Dijkstra invocations are needed, compared to
the 2000 Dijkstra invocations needed to route the crossbar
once using TROUTE.

3.1. The Connection Router

The pseudo-code of the connection router can be found in
Figure 6 . The negotiation loop of the Connection router rips
up and reroutes connections instead of TCONs. Dijkstra’s
algorithm is used to calculate the lowest cost path between
the source and the sink of the connections.

while congestedResourcesExist () :
for each connection ζ do:
ζ.ripUpRouting()
ζ.path = dijkstra (ζ.source, ζ.sink)
ζ.resources.updateCongestionCost()

allResources () . updateHistoryCost ()

Fig. 6: Pseudo code for the negotiated congestion loop of
the Connection router.

To update the history h(n) and the present congestion
cost p(n), the negotiated congestion mechanism needs to
know how congested a routing node is. PATHFINDER sim-
ply counts the number of nets that were sharing the node,
but now things are more complicated. The difficulty lies in
the fact that under certain circumstances, connections are
allowed to share resources, which is not the case for nets in
PATHFINDER and TCONs in TROUTE. Connections are al-
lowed to overlap if they carry the same signal or if they are
not active at the same time. In order to find the occupation
(and the congestion) of a node the Connection router has to
find a minimum partition of the connections that share the
routing resource under consideration, so that each partition
only contains connections that are allowed to overlap. This
reduces to a so called minimum clique cover problem, which
is NP-complete [7] . This problem has to be solved in the
inner loop of the routing algorithm and leads to exuberant
runtimes.

3.2. Simplified Partitioning

In [9] an approximation of the congestion of a node is pro-
posed. It only allows overlap between connections that ei-
ther share the same source or the same sink;

• Connections that share the same source are allowed to
overlap, because they carry the same signal.

• Connections that share the same sink are allowed to
overlap, because they are never active at the same
time, at least if the input to the router is assumed to
be a legal tunable circuit (no shorts).

These simplified overlap rules allow a heuristic approach
of the minimum clique cover problem. In this approach only
two partitionings are considered: the partitioning according
to the sources and the partitioning according to the sinks.
The partition according to the sources divides the connec-
tions that use the node in bundles. Each bundle contains
connections that have the same source. In the same way
the partition according to the sink divides the connections
in bundles that contain only connections with the same sink.
Depending on whether the source or the sink partitioning is



minimal, the congestion of a node is then approximated by
the number of different sources or the number of different
sinks in the set of connections that share the node, respec-
tively. These approximations can be calculated a lot faster
than the exact solution of the clique cover problem (NP com-
plete) and thus lead to a large reduction in runtime.

The Connection router minimizes the cost of the solu-
tion, which is the sum of the costs of each of the nodes used
in the solution. Therefore, it is important for the Dijkstra
algorithm to accurately assess how a node used in the path
for a connection contributes to the cost of the complete solu-
tion. If a node is legally shared between several connections
this node should only partially contribute to the cost of the
path, so that the sum of all the path costs equals the cost of
the complete solution. The cost of a node is thus given by:

c(n) =
b(n) · h(n) · p(n)

share(n)
, (1)

where share(n) is the number of connections that legally
share node n with the connection that is being routed. It is
easy to see that once the partitioning from the previous para-
graph is performed, this number is equal to the cardinality
of the partition the current connection is part of.

3.3. Quality of the Connection Router Solutions

The simplified overlap rules do not cover all routing resource
sharing possibilities. This affects the quality of the routing
results. The solutions contain up to 29% more wires. An-
other downside is the execution time. The connection router
needs a factor 6 or more time than TROUTE to find a solu-
tion. In Section 5 the performance of the connection router
is discussed in more detail.

4. MAXIMIZING RESOURCE REUSE BETWEEN
CONNECTIONS

To improve routing quality, the routing resource sharing rules
are expanded. One possibility is to compare connection con-
ditions at run-time. Connections are routed in the inner loop
of the routing algorithm in Figure 6. The nodes in the RRG
are explored and the node costs are calculated. To calculate
the node cost, the connection conditions need to be set side
by side. So the comparison is needed in the kernel of the
routing algorithm. This leads to very long execution times.

A new approach is to decide which connections may
share routing resources before the negotiated congestion loop
begins. In this new approach, connection conditions only
need to be compared once at the beginning of the routing
algorithm. In our approach we use a heuristic, were we
partition the connections in bundles. The connections are
then partitioned in bundles. A bundle is a set of connections
that may share resources. The new problem that needs to be
faced is how and which connections are bundled.

while congestedResourcesExist () :
for each bundle β
β.ripUpRouting()
for each connection ζ in β do:
ζ.path = dijkstra (ζ.source, ζ.sink)
ζ.resources.updateCongestionCost()
ζ.resources. setCost (0)

β.resources. resetCost ()
allResources () . updateHistoryCost ()

Fig. 7: Pseudo code for the negotiated congestion loop of
the Connection Bundle router.

4.1. Merging Bundles

In the new router bundling starts from the simplified re-
source sharing rules. The simplified resource sharing rules
of the Connection router in subsection 3.2 imply two differ-
ent partitionings. The connections are bundled in sink bun-
dles and in source bundles. Source bundles are sets that con-
tain connections that have the same source and sink bundles
are sets that contain connections with the same sink. This
simplified partitioning is now expanded by merging bundles.
Two bundles can share routing resources if all the connec-
tions of the first bundle are allowed to share resources with
all the connections of the second bundle. For example, a
connection of a sink bundle can share resources with a con-
nection of a second sink bundle if they share the same source
or if they are not active at the same time. To check this, con-
nection conditions need to be compared.

4.2. Connection Bundle Router

To route bundles of connections, the routing algorithm in
Figure 6 only needs to be adapted slightly. The pseudo code
for the adapted routing algorithm can be found in Figure 7.
The congestion loop of the Connection Bundle Router con-
tains two nested for-loops. The outer loop loops over all
bundles. The inner loop loops over all connections in the
current bundle. In order to stimulate resource reuse in one
bundle the cost of the resources of other connections in the
bundle are set to zero in the inner loop.

5. EXPERIMENTS AND RESULTS

The reconfiguration-aware routers are compared and vali-
dated when routing Multistage Interconnect Networks that
are known as Clos Networks [5] . The Clos network used
for validation and comparison, uses 4×4 crossbar switches
as building blocks. The 4×4 crossbar switches are used be-
cause these can be efficiently implemented with four 4-input
TLUTs or four TCONs, as described in Section 2.4 .
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Fig. 8: The two implementations of the 16×16 Clos
network, that use reconfiguration to control the crossbar
switches

A simple FPGA architecture2 with logic blocks contain-
ing one 4-LUT and one flip-flop is used. The wire segments
in the interconnection network only span one logic block.
The architecture is specified by three parameters: the num-
ber of logic element columns (cols), rows (rows) and the
number of wires in a routing channel (W ). Although we test
on a simple FPGA architecture, the routing algorithms ex-
plore FPGA architectures via an RRG and that makes them
inherently generic.

5.1. The Benefits of Reconfigurable Routing

In this section the results of the Clos switch experiment demon-
strate the usefullness of parameterized interconnections. Three
implementation types, called Conv, Tlut, Tcon, each for three
sizes: 16×16 (3 stages), 64×64 (5 stages) and 256×256
(7 stages) are compared. Conv uses signals to control the
crossbar switches while Tlut, Tcon use reconfiguration. Tlut
only uses reconfiguration of LUT truth tables while Tcon
uses both reconfiguration of LUTs and reconfiguration of
the interconnect network. In Tlut all the crossbar switches
are implemented with 4 TLUTs while in Tcon the crossbar
switches in the even stages are implemented using TLUTs
and the crossbar switches in the odd stages are implemented
with reconfigurable interconnections. This last implementa-
tion results in a good balance between TLUTs and reconfig-
urable routing.

The routing of the Conv and Tlut implementations is
done with the VPR routability-driven router. Their place-
ment is done using the VPR routability-driven placer with
default settings. The placement of the TCON implementa-
tions is done using an adapted version of the VPR routability-
driven placer, called TPLACE (beyond the scope of this pa-
per). Each TCON implementation is routed with three re-
configuration-aware routers;

• Troute*: The pattern representation of the tunable cir-
cuit is manually optimized, as described in subsec-
tion 2.4 and routed with TROUTE

2A description of this architecture is provided with the VPR tool suite
in 4lut sanitized.arch.

Table 2: Properties of six multi stage Clos network im-
plementations for the different methods, Conv, TLUT and
TCON. The TCON implementations have been routed us-
ing three different routing algorithms.

Size Type Area Architecture Time(s) 

LUTs Wires Wm W Rows Cols 

16 Conv 202 2131 6 7 20 20 7.96 

TLUT 48 526 4 5 10 10 1.06 

TCON – Troute* 16 456 6 7 8 8 0.45 

TCON – Con  16 428 5 7 8 8 1.90 

TCON – Bundle 16 355 5 7 8 8 0.20 

64 Conv 1016 13613 6 7 47 47 294.73 

TLUT 320 3511 8 10 23 23 24.71 

TCON – Troute* 128 4178 11 13 18 18 24.37 

TCON – Con  128 4372 11 13 18 18 45.32 

TCON – Bundle 128 3328 10 13 18 18 10.01 

256 Conv 6760 97994 9 11 114 114 15415.51 

TLUT 1792 25353 13 16 53 53 1234.66 

TCON – Troute* 768 24851 19 24 39 39 1011.63 

TCON – Con  768 35229 20 24 39 39 6398.97 

TCON – Bundle 768 21793 15 24 39 39 1233.76 

• Con: The connection representation is routed with the
Connection router with simplified overlap rules

• Bundle: The connection representation is routed with
the Connection Bundle router

For each implementation the number of LUTs, the min-
imum channel width (Wm) and the number of wires of a
low-stress routing is measured. Table 2 shows the results
and the parameters of the FPGA architecture. A low-stress
routing [1] is assured by choosing the number of wires per
channel 20% larger than Wm, the minimum channel width
(W), because this is typical routing problem. FPGA man-
ufacturers normally build enough routing into their FPGAs
that average ciruits have some spare routing available.

The TCON implementation saves a factor of 7.9 up to
12.6 in the number of LUTs compared to the Conv imple-
mentation and up to a factor of 3 compared to the Tlut im-
plementation. A factor of 4.1 up to 6 can be saved in the
number of wires compared to the Conv networks and up to a
factor of 1.5 compared to Tlut. Because the LUTs get placed
closer togetherWm goes up for the 64×64 and the 256×256
TCON implementations.

The Connection Bundle router (bundle) gives the best
quality routing solution, with 12% up to 22% less wires than
the TROUTE solutions and with 17% up to 38% less wires
than the Con solutions. And also solutions with lower track
widths can be found. This improvement is more pronounced
for the larger 256×256 switch network. The minimum track



0

5000

10000

15000

20000

25000

18 19 20 21 22 23 24 25 26 27 28 29

R
u

n
 T

im
e

(s
) 

Track Width 

Troute*

Con

Bundle

Fig. 9: The runtime to route the 256×256 Clos
switch networks for a given track width for the different
reconfiguration-aware routers

width found for the 256×256 network is 21% smaller than
TROUTE and 25% smaller than the connection router.

5.2. Runtime vs. Track Width Trade-off

In this subsection the 256×256 clos network is used to show
the runtime vs. track width trade-off. The execution time
of the three reconfiguration-aware routers Troute*, Con and
Bundle are plotted in Figure 9. Note that the extra design
time needed to optimize the pattern representation, in case
of Troute*, as described in subsection 2.4, is not accounted
for in the chart. The timing experiments are executed with
an Intel Core 2 processor running at 2.13 GHz with 2 GB of
memory running the Java HotSpotTM 64-Bit Server VM.

A general trend is that routers need more time to solve a
routing problem as the track width of the FPGA gets smaller.
The main cause is that more congestion occurs. The nego-
tiated congestion mechanism needs more iterations to solve
this congestion.

Although there is a general trend, the different recon-
figuration-aware routing algorithms scale differently. If the
256×256 clos network is routed on a FPGA with track width
24, then Bundle finds a routing solution a factor 5.2 faster
than Con (see Table 2). This is mainly due to extending the
resource sharing possibilities. More routing resource shar-
ing means less congestion, so the runtime drops. As the
track width becomes smaller, this gap in runtime between
Con and Bundle increases. The Connection Bundle router
needs about the same amount of time to route circuits as
Troute*.

6. CONCLUSION

In this paper the Connection Bundle router is introduced,
an automated method to route a circuit with parameterized
interconnections. The Connection Bundle router uses the
scalable, unique connection-based representation for the re-
configurable interconnections and automatically bundles the

connections that may share resources. It produces routing
solutions in less time (up to a factor 5.2) and with a better
quality in terms of number of wires (up to 38%) and mini-
mum track width (up to 25%) than its predecessors, TROUTE
in [4] and the Connection router in [9] .
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