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Abstract

In the classic version of the game of Firefighter, on the first turn a fire breaks out on a

vertex in a graph G and then k firefighters protect k vertices. On each subsequent turn,

the fire spreads to the collective unburnt neighbourhood of all the burning vertices and the

firefighters again protect k vertices. Once a vertex has been burnt or protected it remains

that way for the rest of the game. A common objective with respect to some infinite graph

G is to determine how many firefighters are necessary to stop the fire from spreading after

a finite number of turns, commonly referred to as containing the fire. We introduce the

concept of distance-restricted firefighting where the firefighters’ movement is restricted so

they can only move up to some fixed distance d per turn rather than being able to move

without restriction. We establish some general properties of this new game in contrast to

properties of the original game, and we investigate specific cases of the distance-restricted

game on the infinite strong, hexagonal, and square grids. We conjecture that two firefighters

are insufficient on the square grid when d = 2, and we pose some questions about how many

firefighters are required in general when d = 1.
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Lay summary

The Firefighter Problem is a process in which a fire spreads in a network while a team of

firefighters seek to defend against this fire. The fire and the firefighters take turns spreading

to new parts of the network and defending parts of the network respectively. The firefighters

are generally trying to achieve some predetermined goal, usually related to limiting the

spread of the fire. These goals can include minimizing how much of the network is burnt,

determining if specific parts of the network can be saved, and determining if the fire will

burn forever in the case of infinite networks.

A common thread among applications of this model is that there are not any restric-

tions imposed on how the firefighters move from one turn to the next. This is somewhat

unrealistic and in general the model is improved by adding such restrictions. We propose

implementing two restrictions. First we restrict the distance that a firefighter can move on

any given turn to be less than some fixed value d. We can see that this is very applicable

to the idea of fighting an actual fire since the firefighters can’t just move instantly between

two positions, so there will be some maximum distance they can travel during their turn.

Our second restriction is to require that when the firefighters move from one position to

the next they do not move through any parts of the network that have been burnt. This

restriction is hugely applicable, for example when fighting against a cyber attack sending

messages through a compromised node gives the attacker the opportunity to view and po-

tentially manipulate those messages. When these restrictions are in place we refer to the

game as Distance-Restricted Firefighting to distinguish it from the original game.

In this thesis we examine the game on certain classes of networks with both restrictions

for the most part, but we do also draw some conclusions about how the game behaves with

only the first restriction. Our main focus is on determining if the fire will burn forever with

these restrictions on some commonly studied infinite grids. We also examine some general

properties of the game with these restrictions in contrast to the original game.
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Chapter 1

Introduction

1.1 Background on Graph Theory

In order to understand the content of this thesis we first review some basic graph theory. For

additional information on graph theory we recommend the textbook by West [18]. Firstly,

a graph G consists of a set called the vertex set (typically denoted V (G)) and a set of 2-

subsets of the vertex set called the edge set (typically denoted E(G)). A pair of vertices

u,v ∈ V (G) are adjacent if the edge {u,v} ∈ E(G). Using this terminology we can now

define a subgraph. A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and if

{u,v} ∈ E(H) then {u,v} ∈ E(G). Essentially a subgraph is just a graph contained within

a larger graph, which is depicted in Figure 1.1.1.

A

D E

H

B C

F G

Figure 1.1.1: A graph with a subgraph highlighted within it.
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A special case of this concept comes about when discussing distance in a graph. In

order to define the distance between a pair of vertices u and v we first define a uv-path. A

uv-path of length n is a sequence of n+ 1 distinct vertices u1, . . . ,un+1 such that u = u1,

v = un+1, and {ui,ui+1} ∈ E(G) for all 1 ≤ i ≤ n. The distance between two vertices u and

v in a graph G is simply defined as the length of a shortest uv-path and is commonly written

dG(u,v) or d(u,v) when it is clear what graph we are referring to.

The degree of a vertex u in a graph G is defined to be the number of vertices which

are adjacent to u. A k-regular graph is a graph where every vertex has degree k. For the

introduction of distance-restricted firefighting the concept of a neighbourhood is important.

The neighbourhood of a vertex u in a graph G is the set of vertices which are adjacent to u,

denoted N(u). Similarly we can describe the neighbourhood of a set S ⊆V (G) in G as the

union of the neighbourhoods of all vertices in S (∪u∈SN(u)), and we write this as N(S).

A graph isomorphism is a bijection φ between the vertex sets of two graphs G and H

such that u is adjacent to v in G if and only if φ(u) is adjacent to φ(v) in H. If G and H

are the same graph we call this a graph automorphism and if for every pair of vertices u,v

in G there is an automorphism φ such that φ(u) = v then we say G is vertex transitive. A

subdivision is a map which replaces an edge {u,v} ∈ E(G) by adding a new vertex w to

V (G), removing the edge {u,v}, and adding in the edges {u,w} and {w,v}. Any graph

that can be obtained from G by applying zero or more of these maps is referred to as a

subdivision of G.

The concept of a planar graph is also briefly mentioned in this thesis but it is not the

focus of our study, so we will simply say that planar graphs are graphs which can be

drawn in the plane without any pair of edges crossing over each other. For examples of

planar graphs, observe the graphs in Figures 1.1.2 and 1.1.3.

For the purposes of this thesis we will be focusing on three specific graphs with a

few exceptions. These graphs are known as the infinite Strong (G⊠), Square (G�), and

Hexagonal (G ) grids. The latter of these two grids are easily defined as the vertices

and edges of a tiling of the plane with squares and hexagons respectively as depicted in

Figures 1.1.2 and 1.1.3. For the strong grid we simply take the square grid and add in the

‘diagonal’ edges as depicted in Figure 1.1.4.
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Figure 1.1.2: A 9×8 portion of the

square grid.

Figure 1.1.3: A portion of the hexagonal

grid.

Figure 1.1.4: A 9×8 portion of the strong grid.

As noted in [14] these graphs have a relationship such that V (G�) =V (G⊠) and

E(G�)⊂ E(G⊠). This nesting can be further extended to the infinite hexagonal (G ) grid

by noting V (G ) =V (G�) and E(G )⊂ E(G�) as illustrated in Figure 1.1.5.

Figure 1.1.5: 7×7 Portion of the hexagonal grid as a subgraph of the square grid.

We define a cycle on n vertices as the graph with vertex set v1, . . . ,vn where v1 and vn

are adjacent and vi is adjacent to vi+1 for 1 ≤ i ≤ n− 1 and we denote this graph as Cn.

By adding one extra vertex to Cn and making it adjacent to every vertex we obtain a wheel
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graph. A complete rooted n-ary tree of height m is best defined by its construction. The

construction starts with a single vertex known as the root and then n vertices which are all

adjacent to the initial vertex are added and no other vertices. Then for each vertex of degree

one add n more vertices and make them all adjacent to that degree one vertex and no other

vertices. Repeat this process until there are nm−1 vertices of degree 1. Figure 1.1.6 depicts

a 3-ary tree of height 3 to better illustrate the concept. We can also define a complete rooted

n-ary tree of infinite height as the graph obtained from repeating this process indefinitely

rather than stopping once a certain number of vertices has been reached.

Figure 1.1.6: A 3-ary tree of height 3.

We now define two infinite graphs, the infinite ray PN and the infinite path PZ. The

graph PN has vertex set N= {0,1,2, . . .} where i is adjacent to i+1 for all i ∈N. Similarly,

we define PZ to be the graph with vertex set Z where i is adjacent to i+1 for all i ∈ Z.

The Cartesian product of two graphs G,H, denoted G�H, is a graph with vertex set

V (G)×V (H). Two vertices (u,v) and (x,y) are adjacent if u = x and v is adjacent to y in

H, or if u is adjacent to x in G and v = y. We can consider the infinite square grid as the

Cartesian product of PZ with itself.

1.2 Background on Firefighting

The game of firefighter was first introduced by Hartnell in 1995 [11] as a model for com-

batting the spread of a fire. In his version, the game starts with a fire breaking out on a

single vertex in a graph G. The game then alternates between having a single firefighter

defend a vertex and the fire spreading to all undefended vertices which have a burning

neighbour. Once a vertex is burning or defended it stays that way for the remainder of

the game. This process continues until the fire can no longer spread. This problem has
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since been generalized to allow for multiple firefighters as well as multiple initial burning

vertices [8].

There are a number of objectives that can be pursued with respect to firefighting. Some

common objectives that have been studied are minimizing the expected number of vertices

that will burn given a random initial burning vertex [17], saving the maximum number of

vertices [12], and determining if a specific subset of vertices can be saved [12]. The related

decision problem for determining the maximum number of vertices that can be saved has

been shown to be NP-complete even when restricted to trees of maximum degree three [7].

Furthermore the decision problem of determining if a specific subset of vertices can be

saved has been shown to be NP-complete even when restricted to trees of maximum degree

three with the leaves of the tree being the set of vertices to be saved [12]. For further

information on firefighting on finite graphs we recommend the survey paper by Finbow

and MacGillivray [8] or the recent thesis by Wagner [16].

Another well studied goal of firefighting is determining whether or not the fire will

continue burning forever in an infinite graph. This is referred to as containment and gener-

ally the objective is to determine the minimum number of firefighters needed to contain a

fire for some fixed graph G. We define f (G,u) to be the minimum number of firefighters

needed to contain a fire that breaks out at vertex u in graph G and we refer to this quantity

as the firefighter number of G for a fire at u. If the graph is vertex transitive, like the grids

we will be focusing on, we can simply write f (G) since the choice of u does not matter and

we refer to this simply as the firefighter number of G.

One of the first major results on containment came from the 2002 paper by Wang and

Moeller [17] where it was shown that the square grid requires exactly two firefighters.

Shortly afterwards Fogarty proved Theorem 1.2.1 in her MSc thesis [9], which has been a

very good tool for establishing lower bounds on the number of firefighters required for a

given graph.

Theorem 1.2.1 ([9]). Let Dk denote the set of vertices at distance k from the original

burning vertex and let Bk ⊆ Dk denote the set of burned vertices after k time intervals that

are distance k from the original burning vertex. Also let f denote the number of firefighters

available at each iteration and let rk denote the number of firefighters in Dk+1∪Dk+2∪·· ·
after k time intervals. Finally for A ⊆ Dk let N+(A) = N(A)∩Dk+1.

If G is a graph such that for all k, every A ⊆ Dk satisfies |N+(A)| ≥ |A|+ f , then
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|Bn| ≥ 1+ rn for all n.

Theorem 1.2.1, and the stronger version of the theorem described in [6] have been the

main tools for proving lower bounds in firefighting since their conception. Fogarty also

gave lower bounds for the number of firefighters required for the triangular grid and proved

that two firefighters suffice to contain any finite source fire on the square grid. In her MSc

thesis [13], Messinger introduced the concept of fractional firefighting, which was later

renamed to be average firefighting, where the number of firefighters available is no longer

constant and is computed as the average number of firefighters available. In her MSc thesis

and in a 2008 paper on average firefighting [14], Messinger showed that for any positive

integer T , 3
2
+ 1

3T+2
firefighters suffice on the square grid, 3+ 1

T
firefighters suffice on the

strong grid, and 2+ 1

T+ 1
2T+4

firefighters suffice on the triangular grid.

Messinger also conjectured that one firefighter does not suffice to contain a fire on

the hexagonal grid [13], which has come to be known as Messinger’s Conjecture. This

conjecture is still unproven but it has been shown that small relaxations to the conjecture

do allow for the fire to be contained. In 2014 Gavenčiak et al. [10] showed that if there are

two (possibly equal) integers t1, t2 such that there is an extra firefighter available at time t1

and another extra firefighter available at time t2 then the fire can be contained. This has

recently been improved by Dean et al. [5] to only need an extra firefighter at a single time

t1.

The remainder of this thesis focuses on our new variant of the game which we introduce

in Chapter 2. In Chapters 3 and 4 we examine how this new variant plays out on the square,

strong and hexagonal grids. In Chapter 4 we also outline a special case of Messinger’s

conjecture and give a brief overview of how one might attempt to prove this special case

and why it is likely easier to prove than Messinger’s conjecture. In the final chapter we

pose some questions about some general properties of the game as well as some questions

about a specific case of our variant. Several of the results in this thesis are also included in

the manuscript [2] created by the author which has been submitted for publication.



Chapter 2

Distance-Restricted Firefighting

2.1 A New Variant of Firefighting

In the original game there is no relationship between the firefighters’ positions at time t

and time t + 1, which is not always a good representation of the real world since fire-

fighters are often restricted by how fast they can move. This concept has been previ-

ously studied in [3, 4] but only for the case where firefighters are restricted to moving

to a neighbour of their previous position. Our variation of the rules, which we have

dubbed distance-restricted or distance d firefighting, seeks to make the game more re-

alistic by forcing each firefighter to only move a maximum of some specified distance d

between time t and time t + 1. This condition can be explicitly defined by saying that

given a fixed, positive integer d and k firefighters labelled as F1,F2, . . . ,Fk, then for

every t ∈ N, there must exist a bijection gt between the sets POSt and POSt+1 where

POSt = {(Fi,ui) |Fi occupies vertex ui at time t} and gt(Fi,u) = (F j,v) implies that the

distance between u and v is at most d and that i = j. Notice that there is an ambiguity in

whether or not the distance between u and v is determined with respect to the entire graph

or just the subgraph induced by the unburnt vertices. We will be using the distance in the

induced subgraph since it is a more realistic model, but will occasionally make note of how

things may be different if the firefighters are allowed to move through the fire.

Following the literature on firefighting, it is natural to introduce the concept of average

distance-restricted firefighting. Average firefighting, which is introduced in [14], simply

allows the number of firefighters available on any given turn to fluctuate in a cyclic manner
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with respect to some finite length sequence. That is to say, if the sequence is of length n

then the number of firefighters available at time t is determined by t mod n. Here, as the

name might suggest, the number of firefighters is counted as the average of this sequence.

Note that our definition of the distance-restricted game requires some refinement to make

it compatible with instances where the number of firefighters available varies from turn

to turn. If the number of firefighters increases by ℓ on any given turn, then before the

firefighters move, the ℓ additional firefighters are placed on vertices that currently have at

least one firefighter on them, and then the firefighters move as normal. If the number of

firefighters decreases by ℓ on any given turn, then before the firefighters move, ℓ of them

are chosen and removed from play, and then the remaining firefighters move as normal.

So the concept of average firefighting along with this refinement of the rules for distance-

restricted firefighting yields the idea of average distance-restricted firefighting.

We can now define fd(G,u) analogously to f (G,u) by considering the distance d fire-

fighting game and refer to fd(G,u) and fd(G) as the distance-restricted firefighter number.

The notation f ∗d (G,u) is defined analogously to fd(G,u), except that the firefighters are

allowed to move through the fire.

2.2 General Properties of Distance-Restricted Firefight-

ing

There are some nice properties of the original game that do not hold in the distance-

restricted game. For example, in the original game, if H is a subgraph of G with u ∈V (H)

then f (G,u) ≥ f (H,u). This is apparent from the fact that a strategy that contains the fire

with k firefighters on G can be slightly modified and then played on H as well. For any

placement of the firefighters there are two cases to consider. At time t if all the vertices

that would have been protected in the strategy on G exist in H and are unprotected, then

the firefighters protect those vertices. Otherwise, any missing vertices can be considered as

protected since the fire cannot spread to them and so rather than protecting those missing

vertices, an arbitrary set of vertices can be protected without hindering the strategy. Since

the fire cannot spread to any additional vertices due to the fact that all the same vertices

from G are either protected or missing, the fire cannot spread on H more than it did on G

and thus the fire is contained in H as it is contained in G. However, this property does not
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hold in the distance-restricted firefighting game. This fact will become apparent shortly

after observing some properties of certain infinite grids.

Observe that the graph in Figure 2.2.1 is both a subdivision and a subgraph of the

hexagonal grid. This subgraph will be denoted as sub(G ). The paths of length 3 formed

by the degree 2 vertices and their neighbours can be replaced with single edges in order to

recover the hexagonal grid.

Figure 2.2.1: 7×7 Portion of the subdivided hexagonal grid as a subgraph of the hexagonal

grid.

If d is sufficiently large then sub(G ) only requires one firefighter when d ≥ 11 as de-

picted1 in Figure 2.2.2, but sub(G ) contains an infinite path2 which stretches out in two

directions and requires two firefighters to contain the fire for any value of d. Thus the fire-

fighter number of a subgraph is not bounded by the firefighter number of the original graph

in the distance-restricted game. In fact, Theorem 2.2.1 states that the ratio and difference of

fd(G,u) and fd(H,u) for H a subgraph of G and u ∈V (H) can in fact both be unbounded.

1There are many diagrams in this thesis that all follow the same labelling conventions, which we outline

here. The firefighters are usually labelled so that the even numbered turns have black vertices and the odd

numbered turns have gray vertices. The fire follows a similar convention with the even turns being red and

the odd turns being orange. We also adopt the convention that the first turn is turn zero and the vertices

where the fire and firefighters start are diamond shaped. There are also diagrams where there is no fire, and in

those cases the first firefighters may be diamond shaped if necessary for clarity. We also occasionally have a

firefighter who is distinguished from the other firefighters in some way, and in those cases the firefighter may

be coloured blue instead of black or gray.
2Simply consider any set of vertices {(x,y) | x ∈ Z} for some fixed value of y.
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Figure 2.2.2: A strategy to contain the fire in 4 turns on the subdivided hexagonal grid when

d = 11. The case where the fire begins on a degree 2 vertex is trivial and thus omitted.

Figure 2.2.3: The first 3 layers of PN�C5

modified as described in the proof of

Theorem 2.2.1.

Figure 2.2.4: An infinite subgraph of

the graph in Figure 2.2.3 with distance-

restricted firefighter number 5.

Theorem 2.2.1. There exist graphs G,H such that H is a subgraph of G with u ∈V (H)⊆
V (G) such that the value of

(

fd(H,u)− fd(G,u)
)

as well as the value of
(

fd(H,u)
fd(G,u)

)

can be

arbitrarily large for any value of d.

Proof. The graph in Figure 2.2.3 can be thought of as taking PN�Cm (the Cartesian product

of an infinite ray and a cycle) and replacing the cycle corresponding to the end vertex of the

ray with a wheel on m+ 1 vertices. This graph has distance-restricted firefighter number

1 for a fire breaking out at the center of the wheel for any value of d since if we start our

firefighter in the (m+ 1)th cycle then the firefighter can just walk around the cycle and

form a barrier. However if we consider the subgraph depicted in Figure 2.2.4, then any fire

breaking out at the center of the wheel will require m firefighters to contain for any value

of d. Thus both the difference and the ratio are unbounded.

In fact since in the proof of Theorem 2.2.1 fd(G,u) = 1 and fd(H,u) could take on any

positive integer value, it is also true that the ratio and difference of these values can take on

any positive integer value.
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This leads us to the question of how large the difference between the firefighter number

and the distance-restricted firefighter number can be.

Theorem 2.2.2. There exists a graph G such that the value of
(

fd(G,u)− f (G,u)
)

as well

as the value of
(

fd(G,u)
f (G,u)

)

can be arbitrarily large for any value of d.

Proof. Simply observe the subgraph from the proof of Theorem 2.2.1. This graph clearly

only requires one firefighter in the original game, but requires m firefighters in the distance-

restricted game. Thus both the ratio and the difference are unbounded.

We can also consider taking a rooted complete n-ary tree of infinite height and replacing

each edge with a path of length n+1. If the fire breaks out at the root of the tree then in the

original game a single firefighter can contain the fire by defending the vertices of degree

n+1 which were initially adjacent to the root. However in the distance-restricted game, if

we have fewer than n firefighters then, since the fire burning the root splits the graph into

n subgraphs that the firefighters cannot move between, there will be a subgraph which is

undefended. Since all these subgraphs will burn forever if left undefended, there must be n

firefighters in order to contain the fire. Thus we have a second example of a graph where

the firefighter number and the distance-restricted firefighter number have an arbitrarily large

ratio and difference.

Observe that Theorem 2.2.2 does not extend to when the firefighters are allowed to pass

through the fire (i.e. it is false that there exists a graph where
(

f ∗d (G,u)− f (G,u)
)

can be

arbitrarily large for every value of d). If G is a connected graph where f firefighters suffice

in the original game, then there is a finite distance d where for all t the firefighters at time

t and the firefighters at time t + 1 are within distance d. The existence of d is apparent

from the fact that the firefighters only move for a finite number of turns so it is guaranteed

that a maximum distance moved by the firefighters exists. This is due to the fact that the

firefighters can move through the fire so there is always a set of paths from the positions at

time t to the positions at time t +1. Thus there is always a value of d where the values of

f (G,u) and f ∗δ (G,u) are the same for all δ ≥ d.

It is also true that if we fix d then f ∗d (G,u)− f (G,u) and
f ∗d (G,u)

f (G,u) can be arbitrarily large.

Consider the modified n-ary trees discussed after the proof of Theorem 2.2.2 and take n to

be much larger than d. Containing a fire only requires a single firefighter in the original

game as before. However, since n is much larger than d the firefighters will not be able to
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defend more than d of the subtrees since after time d the fire has spread far enough down

the tree that the smallest distance between an unburnt vertex in one undefended subtree

and an unburnt vertex in another undefended subtree is at least d. A single firefighter can

now save no more than d subtrees. Now if n > ℓd from some ℓ ∈ Z
+ then clearly at least ℓ

firefighters are required to contain the fire. Thus the difference f ∗d (G,u)− f (G,u) and the

ratio
f ∗d (G,u)

f (G,u) can both be unbounded if we fix d.

Similarly, if d is fixed then Theorem 2.2.1 extends to f ∗d which is apparent from the

same reasoning as used in the previous paragraph, but using the graph from the proof of

Theorem 2.2.1. This result clearly does not extend if d is not fixed since for a large enough

value of d, f ∗d (G,u) = f (G,u)≥ f (H,u) = f ∗d (H,u).



Chapter 3

Square Grid

Our consideration of G� can be divided into two parts: the case of d = 2 and the case of

d 6= 2. The case of d = 2 has shown to be much more complex than the case of d 6= 2 so

the majority of this chapter focuses on this more complex case.

3.1 Square Grid when d 6= 2

The case of d = 1 on the square grid was shown to require four firefighters in [3, 4]. The

idea in this case is that in order to stop the fire from burning along the four infinite straight

paths that start at the origin, there must be four firefighters, and four firefighters are obvi-

ously sufficient because the fire can be trivially surrounded on turn zero.

The case of d = 3 also has an easy solution. Figure 3.1.1 portrays a strategy that works

with two firefighters. The two firefighters form a barrier by spiraling around the fire until

they are able to contain the fire.

Lemma 3.1.1. Two firefighters are necessary and sufficient to contain the fire on the square

grid in the game with d = 3.

Proof. Figure 3.1.1 illustrates a strategy with two firefighters. Thus two firefighters suffice.

One firefighter does not suffice since if one firefighter was sufficient for d = 3 then one

firefighter would be sufficient for the original game which is not true [17].
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Figure 3.1.1: A strategy for containment when d = 3. For extra clarity, this figure is aug-

mented so that the turn numbers are visible on the vertices.

For any distance greater than three the same strategy portrayed in Figure 3.1.1 can be

played so for any d > 3 two firefighters are also necessary and sufficient.

The more interesting case when d = 3 is if we allow the fire to burn for one or more

turns before the two firefighters start defending vertices. If we attempt to use the same

strategy of spiraling around the fire, we can equate the problem of whether or not the fire

will be contained with a problem related to the growth of a recurrence relation that can

be derived from the strategy. In order to set up this recurrence we first have to derive the

number of turns it takes for two firefighters to cover the first k corners1 when d = 3, denoted

as tk for all k ≥ 1. We can derive this as a recurrence relation by considering the number of

turns it takes to go from the (k−1)th corner to the kth corner, represented as tk − tk−1. This

is done indirectly by instead finding the absolute value of the difference in the x-coordinate

of the corners on the turn when the (k− 1)th corner is covered since this difference is in

fact the number of turns it takes to go from the (k−1)th corner to the kth corner. First we

will demonstrate that it takes 3+ 3tk−6 + 2(k− 6) turns for the fire to reach the (k− 6)th

corner. In order to understand this first observe Figure 3.1.2.

1A corner is the vertex where the firefighters change direction in their strategy.
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Figure 3.1.2: An illustration of how the fire moves along the outside of the firefighters

placed in previous turns.

Figure 3.1.2 represents a situation where in previous rounds the firefighters, while spi-

raling around the fire, have created a barrier (alternating black and gray vertices) and fire

has just moved along the top of the barrier. For each firefighter turn there is a red vertex

that is in the same position relative to the firefighters’ positions. These red vertices are all

distance 3 apart, so the fire will take 3 turns per firefighter turn to move along this barrier.

The fire has moved beyond the barrier when it reaches the green vertex, which is in the

same position as the initial red vertex but relative to the next barrier the firefighters have

created. As a result it takes the fire 2 extra turns for every corner that it passes. From

here we combine these two pieces to see that the fire will take 3 turns per firefighter turn

(3tk−6), plus 2 turns per corner (2(k− 6)) to reach the initial vertex, plus however many

turns it takes the fire to get to the first initial vertex relative to the first barrier. Figure 3.1.3

represents an initial configuration for the game when the fire spreads twice before any fire-

fighters are deployed, and demonstrates that it takes 3 turns for the fire to get to the initial

vertex, represented by the green vertex, relative to the first barrier. This gives +3 on the

end of the expression. Thus to reach the (k−6)th corner it takes the fire 3tk−6+2(k−6)+3

turns as desired.



16

Figure 3.1.3: An illustration of how the fire gets to the desired initial position.

The fire will then have to burn for 2(tk−5 − tk−6)+1 turns to have a clear path straight

towards the initial vertex next to the (k−5)th corner. This is due to the fact that the firefight-

ers move 2 towards the (k−5)th corner each turn in the desired direction. The firefighters

need to defend one past this position, which gives us 2(tk−5 − tk−6)+ 1 turns for the fire

to reach the next inital position. This is also along the line towards the (k−1)th corner, so

the downward2 growth of the fire from here is exactly how far away the furthest downward

direction vertex on fire will be when the firefighters reach the (k−1)th corner.

Now until turn tk−1 the fire is burning in this downward direction, enlarging the dis-

tance between the position where the firefighters will reach corner k− 1 and the furthest

downward vertex on fire until the firefighters reach the position for corner k−1. So we take

the two quantities, 3tk−6 +2(k−6)+3 and 2(tk−5 − tk−6)+1, and subtract them from tk−1

to get an equation for tk − tk−1 which gives:

tk = 2tk−1 −2tk−5 − tk−6 −2k+8

A reference image is shown in Figure 3.1.4 to aid in understanding all of this.

This recurrence along with the initial conditions t1 = 2, t2 = 5, t3 = 11, t4 = 22, t5 = 41,

t6 = 74 counts the number of turns if the fire is only allowed to burn for one turn before the

firefighters play. By varying these initial conditions we can have the recurrence model what

happens for different numbers of turns that the firefighters don’t initially play. If we can

show that tk ≥ 3+ 3tk−3 + 2(k− 3) then the firefighters can never catch up to the leading

edge of the fire since it takes more turns for the firefighters to reach corner k than it does

for the fire to burn past corner k−3 (and thus guarantees the existence of corner k+1). We

also conjecture that if the sequence ever begins to decrease or becomes negative then the

fire is contained using this strategy.

2By downward here we mean in reference to the rotation of the game that gives the same concept as in

Figure 3.1.4.
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Conjecture 3.1.2. If, for some set of initial conditions and some value k ∈ N, tk > tk+1,

then two firefighters can contain the fire in the game corresponding to the given initial

conditions using the spiraling strategy.

2(tk−5 − tk−6) turns

“Downwards Growth”

3tk−6 +2(k−6)+3 turns

tk−6

tk−5

Figure 3.1.4: A sketch of how the recurrence relation is derived.

It is also worth noting that if we change our initial conditions to t1 = 1, t2 = 2, t3 = 4,

t4 = 7, t5 = 11, t6 = 16, which matches up with the case of a single source fire, then the

sequence stops growing after turn 8 which corresponds to when the fire is contained. This

is the only piece of evidence we have about how the recurrence behaves in a situation where

the fire is contained.

We made attempts to solve the recurrence in order to see how it grows, but solving it

by hand would be a serious undertaking of its own, and when we gave it to the Sympy

rsolve recurrence solver [15] to solve, it ran for 90 days without coming to a solution. It

did, however, produce the general form of the solution as displayed in Equation 3.1:

tk = A(i)k +A(2k+4)+B(−i)k +
C(A+Bk)

A

(

1−
√

5

2

)k

+
D(A+Bk)

A

(

1+
√

5

2

)k

. (3.1)
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3.2 Square Grid when d = 2

As previously mentioned, the case of d = 2 has proven to be much more challenging than

the case of d 6= 2, so we need to introduce more complex strategies. Observe that in The-

orem 3.2.1 we refer to corralling the fire to a column, which simply means that the two

firefighters are moving in the same direction in two parallel lines and if they continued

like this then only vertices between those two lines would burn (See Figure 3.2.1). We

also require that this column of fire is only burning in one direction, rather than in two

directions.

Figure 3.2.1: Two firefighters corralling the fire to a column.

Theorem 3.2.1. Let d = 2. If two firefighters can corral the fire to a column of finite width

in the infinite square grid, then they can contain the fire.

Proof. The proof of this theorem relies on the fact that two firefighters can contain any finite

source fire in the half grid when d = 2. To see this consider a half diamond of fire along

the border of the half grid such that the diamond of fire extends out some distance k from

the vertices on the border of the grid (see Figure 3.2.2). Initially, place the firefighters at

the edge of the fire with one firefighter on the border and the other on the first firefighter’s

neighbour that is not on the border (see Figure 3.2.2). From here the firefighters move

upwards until they are 2k vertices above the peak of the fire, and they then move over the

fire and are high enough above the fire that they will have a clear path across. They can then

follow the same strategy but rotated ninety degrees to get far enough past the far edge of

the fire that they can then move downwards and contain the fire. Since this initial diamond

can be arbitrarily large it can cover all sources of fire, and thus any finite source fire can be

contained as well.

So now suppose the fire is contained to a column in the full grid. Both firefighters
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can continue building the protective barriers on either side of the column for an arbitrarily

large number of turns, thus these protective barriers can be arbitrarily long. One of the

firefighters continues to move up the side of the fire while the other begins to move two

spaces at a time in order to move up above the fire, across the top, and down to where the

other firefighter is. At this point the firefighters can build a protective barrier up ahead of

the fire on that side and then build a protective barrier across so they are now back in the

column where the firefighter that was skipping vertices was. From here observe that there is

a finite number of vertices burning on the outer side of the protective barriers that form the

column, and the length of these protective barriers is arbitrarily large. Thus the firefighters

can contain the fire if they treat the remainder of the game as if the protective barrier of the

column is the border of a half grid since both firefighters are on the same side of that border

as the fire.

Figure 3.2.2: The beginning of the strategy described in the proof of Theorem 3.2.1 with

k = 3. Note that this is a half grid for which the border is along the bottom of the diagram.

We conjecture that the converse of Theorem 3.2.1 also holds.

Conjecture 3.2.2. Let d = 2. Two firefighters can contain the fire in the square grid if and

only if they can contain the fire to a column.

Determining f2(G�) has proven to be a very stubborn problem. We can easily es-

tablish that f2(G�) ≥ 2 since two firefighters are optimal in the original game. With
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three firefighters the fire is contained in seven turns as illustrated in Figure 3.2.3, and thus

2 ≤ f2(G�)≤ 3.

Figure 3.2.3: A strategy for containment with three firefighters when d = 2.

However a successful strategy with two firefighters remains elusive. It appears that two

firefighters can only contain the fire to a quarter plane in the case of d = 2. On the other

hand, observe that the square grid without the vertices of the form (0,n), for all n ∈ Z
− is

containable with two firefighters when d = 2.

Lemma 3.2.3. Let d = 2. Then a fire in the infinite square grid, minus the vertices of the

form (0, t) for all t ∈ Z
−, can be contained by two firefighters.

Proof. First, if the fire starts on a vertex (±1, t) for some t ∈ Z
− then the first firefighter

starts directly above the fire and the second starts right of the fire if the fire is at (1, t) and

left of the fire if the fire is at (−1, t). The firefighters then build a wall downwards through

(±2, t) until they are ahead of the fire, which is guaranteed because the firefighters are

building the wall two vertices at a time and the fire is moving one vertex at a time. Then

the firefighters turn in towards the y-axis and have thus surrounded the fire.

Now suppose the fire starts on a vertex that is not of the form (±1, t) for t ∈ Z
−. Then

the firefighters can corral the fire to a quarter plane within the modified square grid. This

quarter grid can always be set up so that one firefighter (F1) is moving in the negative

y-direction and the other (F2) is moving away from the missing vertices in the x-direction.

If F1 is between the fire and the missing vertices, then F1 turns and moves towards the

missing vertices until reaching the missing vertices. Otherwise it must be that F1 is on the

line x= 0 and so will continue moving in the negative y-direction until reaching the missing
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vertices. From here it is easy to observe that F1 can retrace steps and then follow the steps

of F2 at twice the speed as before and meet up with F2. At this point the firefighters can

clearly contain the fire.

Figure 3.2.4: The beginning of the firefighters’ strategy for the grid with a straight path

removed.

It is difficult to remove a simpler infinite connected structure from the grid, so we can

see that containing the fire here with two firefighters is very close to being able to contain

the fire in the original grid. Based on this it appears that two firefighters are nearly sufficient

in the square grid when d = 2. This notion of being nearly sufficient is further strengthened

by Lemma 3.2.4.

Lemma 3.2.4. In the firefighter game with two firefighters on the infinite square grid with

d = 2, if there is one extra firefighter on an unspecified turn, then the firefighters can contain

the fire.

Proof. Without loss of generality, suppose the fire starts at (1,1) since G� is vertex transi-

tive. Observe that if the fire is initially corralled by moving along the positive x- and y-axes,

then when the extra firefighter is available one of the firefighters can turn ninety degrees

and corral the fire to a column (see Figures 3.2.5, 3.2.6, and 3.2.7). Theorem 3.2.1 then

tells us the fire can be contained.

Figure 3.2.5 depicts examples of how some strategies work when deploying the extra

firefighter on different turns. The fire starts in the bottom left of the column in all four

diagrams on the left with the extra firefighter being deployed on the fourth, third, second,

and first turns respectively. Figure 3.2.6 shows how the right firefighter moves over to
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We can also allow for a slightly different variation on our rules to further solidify that

two firefighters are almost sufficient in the case of d = 2. If we require that the firefighters’

average distance moved on each turn is at most two, then the firefighters can very nearly

contain the fire. In fact the firefighters can contain the fire if they are permitted to move

through the fire once. We refer to this modified game as sum-distance firefighting and

we can see the aforementioned containment with two firefighters in Figure 3.2.8. Observe

that the firefighters have the fire corralled to a column at the last turn in the figure, so by

Theorem 3.2.1 the firefighters can contain the fire. Notice that both relaxations of the rules

are necessary for this strategy to work. From turn 0 to turn 1 the top firefighter both moves

through the fire and moves a distance of 3, and from turn 1 to turn 2 the left firefighter also

moves a distance of 3.
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Figure 3.2.8: The initial part of the strategy for containing the fire in the sum-distance game

with two firefighters when d = 2.

From Theorem 3.2.1, Lemma 3.2.3, Lemma 3.2.4, and Figure 3.2.8 it is clear that very

slight deviations from the problem of containing the fire with two firefighters when d = 2

results in the firefighters being able to contain the fire. This is despite the fact that it

appears to be impossible for two firefighters to contain the fire on the infinite square grid

when d = 2, which we formalize in Conjecture 3.2.5.

Conjecture 3.2.5. Two firefighters do not suffice to contain the fire on the infinite square

grid when d = 2.

We further expand upon Conjecture 3.2.5 below in Conjecture 3.2.6 using a notion

from [10] with different notation. The notion of saving some portion ρ ∈ [0,1] of the

vertices with some predetermined strategy is defined as liminfn→∞

|Bn|
|Dn| = ρ . Here Dn is the

set of vertices at distance n or less from where the fire broke out and Bn is the set of vertices

at distance n or less from where the fire broke out that will eventually burn.
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Conjecture 3.2.6. Two firefighters cannot save more than 3
4

of the vertices on the square

grid when d = 2.

If Conjecture 3.2.6 is true then it represents a tight bound since the firefighters can

easily save 3
4

of the grid by initially defending the vertices left of the fire and below the fire

and then moving along the edge of the fire as it spreads.

We can also note that if two firefighters were to suffice to contain the fire, the strategy

used would have to be somewhat clever since as we will see in the proof of Theorem 3.2.7

the firefighters cannot simply defend vertices which are about to burn.

Theorem 3.2.7. A fire on G� cannot be contained by two firefighters when d = 2 if the

firefighters only play in the set of vertices that are about to burn.

Proof. This proof can be split into three cases.

Case 1: The firefighters initially protect two vertices that are diagonal from one another.

In this case we can see that the firefighters will only ever have one choice for where to

go and that the resulting strategy does not contain the fire. Figure 3.2.9 below represents

burned vertices in red, protected vertices in black, and vertices that are about to be burned

and can be protected in green. Clearly the firefighters will only be able to move along the

sides of the fire and thus will never contain it.

Figure 3.2.9: First strategy when d = 2.

Case 2: The firefighters initially protect two vertices on opposite sides of the fire.

In this case the firefighters initially have two choices as to where they can move, but

once they have picked their initial move the rest of their moves are determined and will not

contain the fire, as seen in Figure 3.2.10.
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Figure 3.2.10: Second strategy when d = 2.

Case 3: The firefighters initially both protect the same vertex.

This case is essentially the same as the previous case. The firefighters each initially

have one choice and can then only move along the edge of the fire. This is demonstrated

below in Figure 3.2.11.

Figure 3.2.11: Third strategy when d = 2.

Thus since these three cases represent all possible starting configurations (up to isomor-

phism) we have proven the Theorem.



Chapter 4

Strong and Hexagonal Grids

4.1 Strong Grid

One of the main results from [4] shows that eight firefighters are necessary on the strong

grid when d = 1 (i.e. f1(G⊠) = 8), and the strategy illustrated in Figure 4.1.1 shows that

f2(G⊠) ≤ 4. It is also known that in the original game four firefighters is the minimum

number of firefighters where the fire can be contained on the strong grid [13]. Thus the

firefighters cannot contain the fire with three firefighters at any distance. If the distance is

increased, the same strategy can be used to contain the fire, so all distances greater than

two also require four firefighters.

Lemma 4.1.1. Four firefighters are necessary and sufficient to contain the fire on the strong

grid when d ≥ 2.

Proof. Refer to Figure 4.1.1 to see that four firefighters are sufficient1. To confirm that four

firefighters are necessary, see Theorem 22 from [13] which states that three firefighters do

not suffice in the original game and therefore they do not suffice for the distance-restricted

game as well. Thus four firefighters are both necessary and sufficient to contain the fire on

the strong grid when d = 2.

1There are instances in Figure 4.1.1 where a vertex will have a firefighter on that vertex on multiple turns.

In these cases we colour the inside of the vertex the colour the second firefighter would have, and the outside

of the vertex is coloured the colour of the initial firefighter. This could cause issues if both firefighters are

there on even turns or they are both there on odd turns. However, for us this does not happen so we can

disregard it.
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Figure 4.1.1: A strategy for containment with four firefighters on the strong grid when

d = 2. One firefighter moves across the top while the other three spiral around from the

other side.

In terms of average firefighting, note that a strategy is given for the strong grid which

uses 3 + 1
T

firefighters for any T ∈ Z
+ in [14]. Specifically, there is a strategy where

whenever the turn number is 0 (mod T ) there are four firefighters available, and the rest of

the time there are three firefighters available. This strategy almost satisfies the restrictions

of the distance-restricted game when d = 2 and only needs slight modification to satisfy

the restrictions.

The initial part of the strategy has the firefighters contain the fire to a quarter plane, but

then has one of the firefighters jump from being on the right side to being on the left side.

We simply modify this so that instead of maintaining the right wall and moving around

the fire from top to bottom on the left, we maintain the top wall and move around the fire

from right to left along the bottom. The first four moves of this strategy are drawn below

in Figure 4.1.2, when T = 2.

Figure 4.1.2: The start of a strategy for containment for a sequence with an average of

3+ 1
T

firefighters on the strong grid when d = 2 and T = 2.
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4.2 Hexagonal Grid

The hexagonal grid represents an interesting challenge as the minimum number of firefight-

ers required in the original firefighting game is the subject of Messinger’s Conjecture [13].

Messinger’s Conjecture states that on the hexagonal grid, one firefighter is insufficient to

contain the fire. It was shown in [10] that a fire can be contained on the hexagonal grid if

there is always one firefighter available except on turns t1, t2 where there is one additional

firefighter. The bound was further improved to only require one extra firefighter on a single

turn t1 in [5]. This presents a new challenge for us as unlike previous cases we do not

inherit a good lower bound from the original game.

First we will observe another interesting difference about the distance-restricted game

in comparison to the original game. If we consider the strategies for containing the fire with

one firefighter plus an extra firefighter on an extra turn or two and try to find a distance that

will always allow the strategy to be transferred, then we will quickly see that a problem

arises. Namely, the distance becomes a monotonic increasing function of the turn number

on which the extra firefighter is available. Thus no matter what distance we pick, there will

be a turn number t1 where if the extra firefighter comes on or after t1 then the strategy given

in [5] will violate our distance restriction. So we can see that in this case, there may be

no strategy for which one firefighter with one extra firefighter or even two extra firefighters

can always contain the fire for some fixed distance, although given a large enough distance

there will be small values of t1 where the firefighters can contain the fire.

For the case of d = 1 observe in Figure 4.2.1 that every vertex has three paths that can

be drawn out in a similar way as the four paths from the case of d = 1 on the square grid.

That is to say that defending one of these paths stops that firefighter from defending either

of the other two paths. This can be formalized by saying that the ith vertices (assuming the

initial shared vertex is the 0th vertex) in any pair of these paths are at a minimum distance

of i from each other. Thus when d = 1 three firefighters are required and clearly three

firefighters suffice.

Lemma 4.2.1. Three firefighters are necessary and sufficient to contain the fire on the

hexagonal grid when d = 1.
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Figure 4.2.1: The three paths used to show that two firefighters do not suffice on the hexag-

onal grid when d = 1.

Now observe that in the case of d = 2 the fire can be contained in five turns as illustrated

in Figure 4.2.2. For any distance greater than 2 the same strategy can be applied and thus

two firefighters are also sufficient when d > 2.

Lemma 4.2.2. Two firefighters suffice to contain the fire on the hexagonal grid when d = 2.

Proof. See Figure 4.2.2.

Figure 4.2.2: A strategy for containment with two firefighters on the hexagonal grid when

d = 2.

We also conjecture that two firefighters are necessary to contain the fire in the case

of d = 2 which we formalize in Conjecture 4.2.3. This conjecture is a weaker version of

Messinger’s Conjecture, since if one firefighter is insufficient for the original game then it

is certainly the case that one firefighter is insufficient for the distance-restricted game. Thus

at least two firefighters would be necessary as stated in Conjecture 4.2.3.

Conjecture 4.2.3. One firefighter does not suffice to contain the fire in the hexagonal grid

when d = 2.
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This special case of Messinger’s Conjecture has a nice property which should make a

proof more attainable. Namely, whenever the firefighter moves a distance of 2 its start and

end point have exactly one neighbour in common. This common neighbour vertex now

has all but one of its neighbours protected, and so this vertex is essentially protected since

the fire reaching this vertex does not change anything in terms of how much the fire will

spread as it cannot spread from this vertex to any new vertices. So in essence, any strategy

that the firefighter employs is equivalent to protecting the vertices of some walk in the grid.

This could be used to show that any strategy containing the fire would imply that a spiral

strategy would work. In Figure 4.2.3 the start of the spiral strategy on the hexagonal grid

is demonstrated.

Figure 4.2.3: The spiral strategy on the hexagonal grid. Here the hexagonal grid is repre-

sented as a subgraph of the square grid.

We initially planned to tackle this problem similarly to how we approached the problem

of a radius k fire on the square grid with two firefighters when d = 3 as seen in Section 3.1.

The problem with building a recurrence relation for this spiral is that, unlike with the square

grid, when the firefighters turn a corner they do not follow the same pattern to build the

next segment of the barrier. Thus it becomes much more complicated to build a recurrence

since the length of each segment is not only dependent on how many times the firefighter

has turned, but also on the parity of the number of times the firefighter has turned.

Graphs of maximum degree 3 have previously been examined using a similar idea.

In [7] it is shown that any graph with maximum degree at most 3 that has a vertex r of

degree at most 2 permits a polynomial time solution to the firefighter decision problem

when the fire breaks out at r. This proof relies on the fact that using a single firefighter

the fire can be forced to follow a path of the firefighter’s choosing and so the solution only
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requires finding the shortest path that is either about to self intersect or ends at a vertex of

degree less than 3. However our work differs from this as the firefighter is the one forming

a walk in our case, rather than the fire.



Chapter 5

Conclusions

Throughout this thesis we have seen many upper bounds on fd(G,u) for fixed G and d,

and progress has been made towards establishing some lower bounds to complement them.

Lower bounds are of particular interest in general, and especially for this game. The proofs

of these lower bounds cannot make use of widely used tools like Fogarty’s Hall-type con-

dition [9] as the firefighters’ positions are no longer a sequence of arbitrary moves. The

way that every move affects all moves that follow makes the problem of distance-restricted

firefighting more complicated than the original game.

Alongside these questions about lower bounds for particular graphs, there are also ques-

tions about the game in general. For example we initially wondered if every infinite, planar,

k-regular, vertex-transitive graph would require k firefighters to contain the fire when d = 1.

If we consider PZ�Cn for any n ∈ {3,4,5, . . .}, observe that two firefighters can contain the

fire by starting far enough away from the fire along PZ in either direction and then forming

a protective barrier in the form of an n-cycle. Moreover, for any vertex in the graph, the

subgraph induced by the set of vertices within distance ⌊n−2
2
⌋ is isomorphic to the subgraph

induced by the same process for any vertex in the square grid.

The embedding we have for this graph places the cycles corresponding to the nonnega-

tive integer vertices on the circles of radius 1,2,3, . . . centered around the origin in R
2 and

the cycles corresponding to the negative integers on the circles of radius 1
2
, 1

3
, 1

4
, . . . centered

around the origin in R
2. However, in [1] infinite planar graphs are required to be embed-

dable with a proper embedding. A proper embedding requires the embedding to not have

an accumulation point, which our embedding clearly does at (0,0). It is still open as to
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whether or not every infinite, planar, k-regular, vertex-transitive graph G which also admits

a proper embedding in R
2 has f1(G) = k.

Another question we have is under which conditions fd(H,u) ≤ fd(G,u) for H a sub-

graph of G and u ∈ V (H). We have seen that this inequality does not hold in general, but

we have seen that the strong, triangular, square, hexagonal and our subdivided hexagonal

grid all have this property. All the examples we have of the condition not holding have to

do with the fact that, unlike in the original model, the set of vertices the firefighters can

eventually reach is reduced if the set of burnt vertices is a vertex cut. Due to this fact,

the condition likely involves the connectedness of both G and H, potentially in relation to

the degree of their vertices. For example, all of our grids except the subdivided hexagonal

grid are k-regular and k-connected, but the subdivided hexagonal grid is not regular. So it

is possible that G and H being r-regular and k-connected (for possibly different values of

k) could imply that fd(H,u)≤ fd(G,u), but a different condition than regularity would be

needed for a full characterization.

We of course also have the conjectures we made through the thesis which we reiterate

here.

Conjecture 3.2.2. Let d = 2. Two firefighters can contain the fire in the square grid if and

only if they can contain the fire to a column.

Conjecture 3.2.5. Two firefighters do not suffice to contain the fire on the infinite square

grid when d = 2.

Conjecture 3.2.6. Two firefighters cannot save more than 3
4

of the vertices on the square

grid when d = 2.

Conjecture 4.2.3. One firefighter does not suffice to contain the fire in the hexagonal grid

when d = 2.

We consider Conjectures 3.2.5 and 3.2.6 to be the more interesting conjectures as Con-

jecture 3.2.2 is something that would likely be proven in order to then prove the other

two conjectures from Chapter 3. Even if Conjecture 3.2.6 is unsolved, Conjecture 3.2.5

would still be an interesting result as it would represent a new proof of a lower bound in

firefighting that is non-trivial and does not use Fogarty’s Hall-type condition.

Conjecture 4.2.3 would also be an interesting result, especially if Messinger’s conjec-

ture was shown to be false. If Messinger’s conjecture were false, Conjecture 4.2.3 would
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remain open and would open up a new question of which values of d permit a strategy

where one firefighter can contain the fire on the hexagonal grid. Alternatively, proving

Conjecture 4.2.3 would imply that any counterexample to Messinger’s conjecture would

require the firefighter to move a distance greater than 2 at least once. In any case, Conjec-

ture 4.2.3 could lead to some interesting explorations into how the game behaves when the

firefighters’ strategy can be considered as a walk.
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