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1  |  INTRODUC TION

Understanding the population structure of a species and the barri-
ers that disrupt dispersal is important to accurately assess the global 

conservation status and manage the risk of local extinction. This is es-
pecially true for species of commercial importance (Begg et al., 1999) 
or conservation concern (Moritz, 1994), which are impacted dispro-
portionally by anthropogenic or environmental pressures. Dispersal 
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Abstract
The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the 
world due to its coastal distribution. Information regarding population connectivity 
is crucial to evaluate its conservation status and local fishing impacts. In this study, 
we sampled 922 putative Bull Sharks from 19 locations in the first global assess-
ment of population structure of this cosmopolitan species. Using a recently devel-
oped DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear 
markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were 
sequenced. Reproductive isolation was found between and across ocean basins (east-
ern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island 
populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow 
coastal waters as dispersal corridors, whereas large oceanic distances and historical 
land-bridges act as barriers. Females tend to return to the same area for reproduc-
tion, making them more susceptible to local threats and an important focus for man-
agement actions. Given these behaviors, the exploitation of Bull Sharks from insular 
populations, such as Japan and Fiji, may instigate local decline that cannot readily be 
replenished by immigration, which can in turn affect ecosystem dynamics and func-
tions. These data also supported the development of a genetic panel to ascertain the 
population of origin, which will be useful in monitoring the trade of fisheries products 
and assessing population-level impacts of this harvest.

K E Y W O R D S
close-kin, DArTseq, DNA forensics, genetic connectivity, mitogenome, provenance
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can promote genetic connectivity across patches of suitable habitat 
(Ronce, 2007), but physical barriers and behaviors can ultimately limit 
gene flow, even when dispersal potential is high, and result in de-
mographically independent populations (Waples & Gaggiotti, 2006). 
When genetically isolated populations are reduced in size due to 
unsustainable harvest, there is a risk of inbreeding depression and 
the loss of genetic diversity, without the chance to be ‘rescued’ by 
individuals dispersing from adjacent populations, increasing the likeli-
hood of population extinctions (Frankham et al., 2017).

In marine taxa, gene flow tends to be restricted by environ-
mental or biogeographic barriers, movement ecologies, and 
habitat preferences (Bowen et al.,  2016; Dudgeon et al.,  2012; 
Hirschfeld et al., 2021; Rocha et al., 2007). In large-bodied coastal 
species with global distributions, such as marine turtles, ceta-
ceans, and many elasmobranchs (sharks and rays), large-scale 
marine biogeographic barriers shape population genetic struc-
ture (Dutton et al., 1999; Fontaine et al., 2007). For example, the 
Scalloped Hammerhead (Sphyrna lewini) shows genetic connectiv-
ity along the continental margins, yet limited gene flow across the 
East Pacific barrier, the Mid-Atlantic barrier, and the Isthmus of 
Panama (Daly-Engel et al., 2012; Green, Appleyard, et al., 2022). 
The permeability of environmental barriers, such as the Indo-
Australian Archipelago, changes across time and space, and conse-
quently determines the observed distribution of genetic variation 
(Cowman & Bellwood, 2013). The effect of these ocean barriers 
on the spatial structuring of populations is essential knowledge for 
management, given that threats, such as overfishing and habitat 
modification, should be assessed and managed at biologically rel-
evant spatial scales. For vagile marine taxa this often requires co-
operative strategies between nations (e.g., International Whaling 
Commission, Indian Ocean Tuna Commission, and Western and 
Central Pacific Fisheries Commission).

Delineation of population structure in species with high mobil-
ities and large population sizes have recently been improved with 
the use of genomic data (Layton et al., 2020; Luikart et al., 2019; 
Oleksiak & Rajora,  2020; Ovenden et al.,  2018). Complexity-
reduction genome-scan methods, such as Diversity Arrays 
Technology sequencing (DArTseq, Jaccoud et al.,  2001) and tar-
geted DNA-capture approaches, including Rapture and DArTcap 
(Ali et al.,  2016; Feutry et al.,  2020), have been widely used to 
assess genetic diversity and reproductive connectivity in natu-
ral populations (e.g., Green et al., 2019; Komoroske et al., 2019). 
Recently, these methods have also been applied to DNA foren-
sics or traceability studies in nonmodel species, with the objective 
to identify species, sex, provenance, and close-kin relationships 
(e.g., Arenas et al., 2017; Feutry et al., 2017; Nielsen et al., 2012; 
Stovall et al.,  2018). Moreover, in taxa with slow mitochondrial 
DNA (mtDNA) mutation rates, such as elasmobranchs and marine 
turtles (Avise et al., 1992; Martin et al., 1992), the sequencing of 
full mitochondrial genomes (mitogenomes) instead of single genes 
has improved the fine-scale resolution of matrilineal population 
structure (Feutry et al., 2014).

The Bull Shark (Carcharhinus leucas) is a cosmopolitan species 
that occupies tropical, subtropical, and temperate coastal waters 
and has an important ecological role in freshwater, estuarine, and 
marine environments (Matich et al., 2011; Smoothey et al., 2019; 
Trystram et al., 2017). This species experiences variable degrees 
of exploitation within its range and is assessed as Vulnerable on 
the IUCN Red List of Threatened Species (Rigby et al., 2021). The 
main threats affecting Bull Sharks are small- and large-scale fish-
eries for meat and fins (Glaus et al., 2015; Holmes et al., 2009), and 
shark control programs which directly target this species (Blaison 
et al.,  2015; Dudley & Simpfendorfer,  2006; Niella et al.,  2021). 
Because of its global catch, the Bull Shark is also frequently 
found in the international shark fin and meat trade, raising ques-
tions regarding the origin and trade routes of the fished products 
(Cardeñosa et al.,  2022; Clarke et al.,  2006; Fields et al.,  2018). 
Unsustainable exploitation may result in population declines 
and negative ecosystem impacts (Ferretti et al.,  2010; MacNeil 
et al., 2020).

The Bull Shark has shown capacity for long-distance coastal 
movement (Brunnschweiler et al., 2010; Daly et al., 2014; Espinoza 
et al., 2016, 2021; Heupel et al., 2015; Lea et al., 2015) and ge-
netic connectivity along continental shelves (Glaus et al.,  2020; 
Pirog et al., 2019; Testerman, 2014). However, females exhibit re-
productive philopatry to estuarine habitats at small spatial scales 
(~100 km; Karl et al.,  2011; Sandoval Laurrabaquio-Alvarado 
et al.,  2021; Tillett et al.,  2012). Genetic connectivity of Bull 
Sharks has been studied within specific regions, such as the west-
ern Atlantic (Karl et al.,  2011; Sandoval Laurrabaquio-Alvarado 
et al., 2019, 2021) and the Indo-West Pacific (Deng et al., 2019; 
Glaus et al., 2020; Kitamura et al., 1996; Pirog et al., 2019; Tillett 
et al., 2012). Yet, no studies have investigated genetic connectiv-
ity across its global distribution, which can provide crucial data 
to assess the population-level impacts of threats and identify the 
origin of fisheries products.

This study aims to apply genomic techniques (full mitoge-
nomes and nuclear Single Nucleotide Polymorphisms or SNPs) 
to investigate the population genetic structure of Bull Sharks 
at global and local scales. We hypothesize that gene flow is lim-
ited by large-scale biogeographic barriers, but that connectivity 
occurs along continuous coastlines. We further evaluate the fo-
rensic power of genomic data to assign sample provenance and 
establish a diagnostic SNP panel to aid monitoring the origin and 
trade of fisheries products and assess population-level impacts 
of this trade. To achieve these goals, we analyze a global set of 
samples with three different genomic sequencing approaches 
(DArTseq, DArTcap, and mitogenomes), which allows us to assess 
population structure and gene flow across putative barriers for 
dispersal (such as open-ocean expanses, strong temperature gra-
dients, and historical land-bridges). At a smaller spatial scale, con-
temporary reproductive connectivity is estimated by examining 
the spatial distribution of closely related individuals, such as full 
siblings and cross-cohort half siblings.
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2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and DNA extraction

A total of 922 putative Bull Shark samples (muscle or fin clip) were 
collected between 1980 and 2019 from 19 different countries or 
water bodies (termed ‘sampling locations’) around the globe in all 
major ocean basin regions: the eastern Pacific (E-PAC), western 
Atlantic (W-ATL), eastern Atlantic (E-ATL), and the Indo-West Pacific 
(IWP; Figure  1). Samples from Brazil, eastern Indian Ocean (E-IO), 
Fiji, and numerous Australian samples were sourced from previ-
ously published genetic studies (n  =  175; Glaus et al.,  2020; Karl 
et al.,  2011; Pirog et al.,  2019; Tillett et al.,  2012) while all other 
samples were novel. The samples from Japan included 10 individuals 
from the aquarium (Okinawa, locally sourced animals) with known 
pedigree and 38 wild-caught samples from the Urauchi River. Each 
sampling location had an approximately equal sex ratio, and total 
length (TL) ranged from 26.4 (in utero) to 406.0  cm (Supporting 
Information section 2). Sharks smaller than 150 cm TL (68% of all 
individuals) were considered juveniles with limited dispersal capac-
ity (Heupel et al., 2015; Pillans & Franklin, 2004; Simpfendorfer & 
Milward,  1993). DNA was extracted using the Qiagen Blood and 
Tissue kit following the standard protocol (Qiagen Inc., Valencia, 

California, USA). DNA quality and quantity was assessed on a 1% 
agarose gel, stained with SYBR safe (Invitrogen, USA), and with the 
NanoDrop ND-8000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA).

2.2  |  SNP bait design and DArTcap genotyping

Initially, 188 samples with a minimum of 10 samples per location 
were genotyped following the DArTseq approach (according to 
Feutry et al.,  2017). De novo SNP calling was performed with a 
proprietary software (DArTsoft14). The resulting markers were 
filtered using the ‘filter_rad’ function, as implemented in radiator 
v1.1.5 (Gosselin et al.,  2020). Filtering thresholds were chosen 
based on the empirical distribution of each filtering parameter 
(see Supporting Information sections 4–6). Briefly, the data were 
filtered for: (1) low DArT reproducibility based on replicated li-
braries (technical replicates), (2) monomorphic markers, (3) high 
degree of missing data, high levels of inferred heterozygosity, 
and low sequencing coverage per individual, (4) low minor allele 
count, (5) low and high SNP sequencing coverage to avoid unreli-
able SNP calls or paralogous sequences, (6) high missing data per 
SNP, (7) too many SNPs per sequence due to suboptimal sequence 

F I G U R E  1 Map indicating the Carcharhinus leucas sampling locations with red circles and the known species range distribution in 
yellow. The sample sizes for the SNP data are underlined with the number of samples before/after data filtering. The sample sizes for the 
mitogenome data are in italics with the number of samples before/after data filtering. Putative barriers for gene flow are indicated by dashed 
lines. GOC, Gulf of California; COR, Costa Rica; BRZ, Brazil; CAR, Caribbean Sea; GOM, Gulf of Mexico; WNA, Western North Atlantic; 
SIL, Sierra Leone; SAF, South Africa; MOZ, Mozambique; RUN, Réunion Island; SEY, Seychelles; ARP, Arabian Peninsula; SRL, Sri Lanka; TAI, 
Thailand; IND, Indonesia; PNG, Papua New Guinea; AUS, Australia; JAP, Japan; and FIJ, Fiji. Australian sampling locations were presented 
as an additional inset: FZR, Fitzroy River; VIR, Victoria River; DAR, Daly River; ADR, Adelaide River; DWC, Darwin Coastal; SAR, South 
Alligator River; EAR, East Alligator River; BMB, Blue Mud Bay; ROR, Roper River; TOR, Towns River; WER, Wenlock River; TRI, Trinity Inlet; 
CLR, Clarence River; SYH, Sydney Harbor; and UNK, Australian fisheries samples from unknown origin.
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clustering, (8) short-distance linkage by keeping one SNP per 
sequence, (9) individual DNA contamination based on high pro-
portion of heterozygous SNPs, (10) duplicated samples, and (11) 
departure from Hardy–Weinberg equilibrium. We further filtered 
out RAD-tags that were too short (<60 bp), with low complexity 
(>6 nucleotide repeats), or with high cluster size (>10) to allow 
efficient capture with the RNA baits. Of the markers satisfying 
the filtering criteria, 3200 population genetic markers were ran-
domly selected for DNA-capture bait development. Secondly, the 
unfiltered data were run through the ‘sexy_markers’ function from 
radiator (Devloo-Delva et al., 2022) to identify polymorphic sex-
linked markers (putatively located on sex chromosomes), which 
were subsequently included in the DNA capture panel. One bi-
otinylated RNA MYbait (Arbor Bioscience, USA) was synthesized 
per RAD-tag. DArTcap hybridization and washing followed the 
MYbaits standard protocol (https://arbor​biosci.com/wp-conte​
nt/uploa​ds/2020/08/myBai​ts_v5.0_Manual.pdf). The DArTcap-
enriched libraries were sequenced on a HiSeq 2500 (Illumina, San 
Diego, California, USA) as described by Feutry et al. (2020).

2.3  |  DArTcap SNP and individual filtering

Overall, 1014 sample libraries, including 92 technical replicates, 
were genotyped with the DArTcap protocol. Additional filtering 
was performed to remove any unspecific enrichment or low-
quality loci. This filtering was performed with the ‘filter_rad’ func-
tion as described previously (see Supporting Information sections 
7–12). Sex-linked markers were removed prior to population ge-
netic analyses.

The filtering steps were applied with different thresholds to six 
different subsets of the data (Table 1). A hierarchical approach was 
used for the clustering methods (e.g., Vähä et al.,  2007). The first 
DArTcap data set was filtered under less stringent thresholds (e.g., 
allow more missing data and higher levels of heterozygosity) to per-
mit the identification of species that were not Bull Shark (DATA1: 922 
sharks). The second dataset only contained confirmed Bull Sharks 
(DATA2: 868 sharks). Since unequal sample sizes can introduce bias 
in clustering algorithms (Foster et al., 2018; Puechmaille, 2016), in 
the third dataset, all sampling locations were included but Australia 
was represented by a random subset of 60 individuals (DATA3: 430 
sharks). The fourth and fifth datasets are comprised of sampling 
locations in the W-ATL and IWP, respectively (DATA4: 117 sharks; 
DATA5: 732 sharks). Lastly, within the IWP, samples from Japan and 
Fiji were removed and 60 Australian samples were again randomly 
selected to equalize the sample sizes and investigate unbiased sig-
nals of more subtle structure (DATA6: 221 sharks).

2.4  |  Mitogenome amplification and sequencing

Samples from the E-ATL, IWP, and E-PAC were used to investi-
gate their matrilineal evolutionary history (sample sizes indicated 

in Figure  1). The full mitochondrial genomes of 384 putative Bull 
Sharks were amplified with two primer pairs (A and B fragments; 
Supporting Information section 13.1). Polymerase chain reactions 
(PCR) were performed in 30 μL volumes, following the standard 
proofreading Takara LA Taq protocol (Takara, Otsu, Shiga, Japan). 
PCR conditions were set to 1 min at 94°C for initial denaturation, 
then 40 cycles of denaturation (94°C, 30 s), annealing (55°C, 30 s), 
and extension (68°C, 10 min); concluded with a 10 min extension at 
72°C. PCR products were cleaned following the Agencourt AMPure 
XP magnetic bead protocol (Beckman Coulter Inc., Indianapolis, 
Indiana, USA). Amplicons were quantified with a NanoDrop 8000 
Spectrophotometer and the purified A and B fragments were pooled 
at equimolar concentrations for each individual. Subsequently, 
these amplicons were simultaneously fragmented and barcoded 
with the Nextera XT DNA Sample Preparation kits and 96 sample 
Nextera Index kit (Illumina). The libraries were quantified with the 
Qubit dsDNA BR assay kit (Life Technologies, Carlsbad, California, 
USA) and normalized. Libraries were then pooled and sequenced on 
a MiSeq desktop sequencer using the 2 × 250 bp paired-end reads 
MiSeq reagent kit v2 (Illumina).

2.5  |  Mitogenome assembly and alignment

Demultiplexed fastq files were imported into Geneious prime soft-
ware v2020.1 (Biomatters Ltd., Auckland, New Zealand) and the 
reads were paired. The Nextera adapters were removed, and the 
reads were quality trimmed at a phred score < 20 for a k-mer of 20 
using the BBDuk tool as implemented in Geneious. Reads shorter 
than 60 bp after trimming were discarded from subsequent analyses. 
Merged reads for each individual were then mapped onto a previ-
ously published Bull Shark reference sequence (Chen et al., 2015) 
using “Map to Reference” tool in Geneious with the “high sensitivity” 
parameters and 10 iterations. The majority rule consensus (>50% 
of mapped reads for any single SNP, insertion, or deletion) for each 
shark was exported. All mitogenome sequences were aligned with 
the ‘multiple align’ tool and the MUSCLE algorithm (Edgar, 2004).

2.6  |  Species identification

The mitogenomes were blasted (megablast) in Geneious against the 
GenBank nr/nt database. All sequences with a match of identity 
≥98% to a database entry were assigned as that species. Samples 
without mitogenome information (only DArTcap genotypes, i.e., 
DATA1) were assigned to species using a principal component analy-
sis (PCA) as implemented in adegenet v2.1.1 (Supporting Information 
section 7; Jombart & Ahmed,  2011). Here, the species identified 
based on mitogenomes served as a baseline to detect species clus-
ters from PCA. To provide certainty, individuals needed to cluster on 
multiple PC axes with a mitochondrial-verified species. Where this 
was not possible, we marked the species as ‘unknown’. Only samples 
identified as Bull Shark were included in further analyses.
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2.7  |  Genetic diversity

Allelic richness (Ar), observed heterozygosity (HO), and unbiased 
expected heterozygosity (HE) were calculated for each sampling 
location with n > 1 using the R package diveRsity v1.9.90 (Keenan 
et al.,  2013). Heterozygosity was calculated across the global 
dataset (including monomorphic and polymorphic SNPs) to yield 
an unbiased estimate of HO (see Schmidt et al., 2021). Inbreeding 
coefficients (FIS) were calculated with hierfstat v0.04–22 
(Goudet, 2005), using 1000 bootstraps to determine a 95% con-
fidence interval. Mitochondrial nucleotide (πmt) and haplotype (h) 
diversities per location, and parsimony haplotype networks were 
calculated with the pegas v0.14 package (Paradis, 2010). All analy-
ses were performed in R 4.0.2 (R Core Team, 2020) and provided 
in the Supporting Information.

2.8  |  Population structure

Fixation indices (mtDNA: sequence-based ΦST, SNPs: FST) were 
calculated between all sampling locations (n ≥ 1) and between/
across ocean basins with the ‘popStructTest’ function in the strataG 
v2.4.905 package (Archer et al.,  2017), and their significance as-
sessed by 1000 permutations. Next, dimensionality-reduction clus-
tering analyses were conducted with adegenet (PCA and Discriminant 
Analysis of Principal Components, DAPC; Jombart & Ahmed, 2011; 
Jombart et al., 2010). Individuals were grouped using the successive 
K-means algorithm implemented in the ‘find.clusters’ function. The 
goodness of fit, determined by the Bayesian information criterion 
(BIC), was employed to find the best number of clusters (K). To avoid 
overfitting, the optimal number of principal components was se-
lected through cross-validation with a 10% hold-out set and 1000 
replicates for all DAPC analyses, where individuals were grouped ac-
cording to their sample location.

2.9  |  Provenance assignment

The provenance assignment success of the DArTcap markers was 
tested with asssignPOP v. 1.2.2 (Chen, Marschall, et al., 2018) and 
rubias v.0.3.2 (Anderson et al., 2008; Moran & Anderson, 2019). 
Assignment accuracy was tested with assignPOP, using both the 
Monte-Carlo and K-fold cross-validation procedures to test the 
assignment of a hold-out data set with 1000 iterations. We tested 
power of the markers by selecting a subset of loci with the highest 
FST values (5%, 10%, 50%, and 100% of all loci) to train the as-
signment model. Similarly, the assignment accuracy of simulated 
mixed groups, based on a reference leave-one-out dataset, was 
evaluated with rubias (Anderson et al.,  2008). Known simulated 
proportions for each reporting unit were compared with the num-
bers estimated by rubias. Populations with a sample size of one 
(i.e., Sierra Leone, eastern Atlantic) were excluded from these 

analyses. We also examined the minimum number of informa-
tive markers needed to assign provenance by subsampling 5–500 
markers based on loading contributions of each principal compo-
nent from the DAPC analysis and testing the assignment accuracy 
with rubias.

2.10  |  Kinship assignment

To investigate fine-scale contemporary connectivity, close-kin re-
lationships were examined in each identified genetic cluster with 
>100 individuals to allow accurate allele frequency estimation, 
namely W-ATL and IWP. Kinship was tested using a log-likelihood-
ratio (LLR) approach developed by Bravington et al. (2016) and ap-
plied by Hillary et al.  (2018) and Feutry et al.  (2020). A statistical 
threshold was set to reduce the number of false positive detections 
(i.e., more distantly-related kin) due to the large number of pairwise 
comparisons. Replicated or recaptured individuals were already vis-
ually identified with the ‘filter_rad’ function based on the number 
of loci with the same genotype for each pair of individuals (<10% 
genotypic difference).

3  |  RESULTS

3.1  |  SNP genotyping, baiting success, and data 
filtering

One sample from Papua New Guinea (PNG) failed DArTseq library 
construction, resulting in 187 samples for DArTseq sequencing and 
genotyping. An average of 2,182,162 reads (of 69 bp length) per sam-
ple were obtained from the sequencing and a total of 250,945 SNPs, 
located on 168,810 unique RAD-tags, were called by the DArTsoft14 
program. Data filtering discarded 233,916 SNPs and 33 sharks, 
leaving a total of 17,029 high-quality SNPs. Of those, we randomly 
selected 3200 loci with at least one SNP (Supporting Information 
sections 4–6). We also identified 469 sex-linked markers (three Y-
linked and 466 X-linked markers; Supporting Information section 
4.2). Two Y- and 208 polymorphic X-linked sequences were included 
for DArTcap bait design.

Five samples failed DArTcap library construction. On average, 
583,809 reads per sample were obtained from the DArTcap se-
quencing. After sequence clustering and SNP calling, we obtained 
37,537 SNPs found on 26,335 RAD-tags. Quality-filtering was ap-
plied to six subsets of the DArTcap data (Table 1): the full data set 
(DATA1: 1014 sharks including replicates and other species; 5053 
SNPs), the global dataset with confirmed Bull Sharks (DATA2: 769 
sharks; 3409 SNPs), the global dataset with equalized samples 
sizes (DATA3: 382 sharks; 1849 SNPs), and regional Bull Shark data 
sets: W-ATL data (DATA4: 91 sharks; 931 SNPs), IWP data (DATA5: 
635 sharks; 3416 SNPs), and IWP data with equalized samples size 
(DATA6: 189 sharks; 1785 SNPs).
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3.2  |  Mitogenome sequencing and assembly

The mitogenome was sequenced for 384 individuals with an average 
of 49,766 reads. Six individuals had low sequence coverage (<5000 
mapped reads and mtDNA regions with no sequence coverage rela-
tive to the reference genome) and were subsequently removed from 
analyses (from South Africa, Sri Lanka, PNG, and Australia: Clarence 
River and Wenlock River). All reads that mapped to the reference 
genome were checked for ambiguous base calls at an 85% threshold 
(where a base needed to be present in >85% of mapped reads to be 
called unambiguous) to detect DNA cross-contamination, barcode 
slippage, or heteroplasmy. Seven individuals that had ambiguous 
base calls were removed due to signs of DNA contamination (origi-
nating from South Africa, PNG, Seychelles, Réunion, and Australia). 
Overall, the mitogenome length was 16,707–16,708 bp (Supporting 
Information section 13).

3.3  |  Species identification

Mitogenome sequencing revealed 11 individuals from the Arabian 
Peninsula, Réunion, Sri Lanka, PNG, Costa Rica, and Fiji that were not 
Bull Shark: Pigeye Shark (Carcharhinus amboinensis, n = 5), Spinner 
Shark (Carcharhinus brevipinna, n = 1), Graceful Shark (Carcharhinus 
amblyrhynchoides, n = 1), Gray Reef Shark (Carcharhinus amblyrhyn-
chos, n  =  1), Pacific Smalltail Shark (Carcharhinus cerdale, n  =  1), 
Dusky Shark (Carcharhinus obscurus, n  =  1), and Speartooth Shark 
(Glyphis glyphis, n = 1). Furthermore, in the PCA analysis carried out 
on DATA1 an additional 54 individuals grouped with one of these 
species and another four individuals were neither these nor Bull 
Shark (Supporting Information section 7.8). Consequently, these 
individuals were omitted, and 769 confirmed Bull Sharks were re-
tained in the filtered DArTcap data (DATA2) and 361 in the filtered 
mitogenome data.

3.4  |  Global genetic diversity

More than half the DArTseq and DArTcap (DATA2) markers were 
monomorphic at almost all locations (Table  2 and Supporting 
Information section 5.6). In both genotyping protocols, the HO 
for the E-PAC (HO  =  0.036 in Costa Rica) and the W-ATL (HO 
range = 0.048–0.052) were lower than those for the E-ATL and IWP 
(HO range = 0.056–0.069; Table 2). Most sampling locations exhib-
ited significantly positive inbreeding coefficients (Table 2), but this 
was most pronounced in the E-PAC (Costa Rica) and IWP (South 
Africa, Mozambique, and Fiji; FIS = 0.041–0.068).

A total of 165 polymorphic sites were identified across all 361 
mitogenome sequences, with an average nucleotide diversity of 
0.001 and a haplotype diversity of 0.890 (Supporting Information 
section 13.3.1). Mitochondrial nucleotide diversities per sampling 
location ranged from 0.0001 in northern Australia (e.g., Roper and 
Towns rivers) to 0.003 in Sri Lanka (Table 2). Of the 165 polymorphic 

sites, most were only present within the IWP group (Supporting 
Information section 13.3.4). Haplotype diversities were high in 
almost all sampling locations (h range = 0.80–0.99), with the low-
est values in the Seychelles, Trinity Inlet (Australia), and Japan 
(h = 0.50–0.70).

3.5  |  Population structure

Based on the nuclear DNA data (FST, DAPC, and PCA), we identi-
fied four major genetic clusters and additional hierarchical struc-
ture within these clusters (Figure 2, Table 3). The DAPC indicated 
that the optimal number of clusters for DATA3 (i.e., equal sample 
sizes) was K = 3–4 (Supporting Information section 9.9). These clus-
ters corresponded to the E-PAC, W-ATL, E-ATL, and IWP/Japan/Fiji 
(FST = 0.10–0.51, p < .001; Table 3). Further investigation within the 
latter group (i.e., DATA5; Supporting Information section 11.9) re-
vealed further clustering into three groups corresponding to IWP, 
Japan, and Fiji (Figure 2). Here, the FST values ranged from 0.06 be-
tween Japan and Fiji to <0.02 among IWP locations (p < .001). We 
saw high divergence between the two Japan locations (Okinawa 
and Urauchi River; Figure 2c; FST = 0.03, p < .001), where individu-
als from Okinawa clustered closer to the IWP group and individuals 
from the Urauchi River were split into two groups. While the DAPC 
grouped the E-ATL (one individual from Sierra Leone) with the IWP 
cluster, FST showed this location as distinctly different (Table  3). 
Nuclear differentiation between locations in the W-ATL were small 
(FST < 0.007), although the DAPC and PCA analyses showed signs 
of differentiation between the southern (Brazil) and the northern 
locations (Gulf of Mexico and Western North Atlantic; Supporting 
Information section 10). Overall, these results indicated significant 
genetic differentiation of the E-PAC, southern W-ATL, northern W-
ATL, E-ATL, IWP, Japan, and Fiji.

The mitogenome distance-based ΦST values showed high dif-
ferentiation between and across ocean basins (ΦST  =  0.67–0.99, 
p < .001; Table  3) and the haplotype network demonstrated four 
major clusters (Figure 3): E-PAC, E-ATL, western Indian Ocean (W-
IO), and the E-IO and western Pacific combined (E-IO/W-PAC). All 
haplotypes, except four, were unique to a single sampling location 
(Figure 3). Within the Indian Ocean, differentiation was strong be-
tween the W-IO and E-IO locations (ΦST  =  0.75–0.96, p < .001), 
while the northern Indian Ocean locations (N-IO; i.e., Arabian 
Peninsula, Sri Lanka, and Thailand) showed intermediate diver-
gence (ΦST  =  0.46–0.52, p < .001; Supporting Information section 
13.5.3). The latter is demonstrated in the haplotype network with 
individuals from the N-IO split between the W-IO and E-IO/W-
PAC haplogroups. Between the W-IO and E-IO/W-PAC groups, 
the haplotypes of several individuals indicated matrilineal move-
ment at an evolutionary-recent time scale: two haplotypes, sam-
pled from the Fitzroy River (Australia) and Fiji, clustered with the 
W-IO group and one haplotype from South Africa grouped with 
the E-IO/W-PAC group (indicated in Figure 3). Haplotypes sampled 
from Japan (n = 4) and Fiji (n = 8) grouped with the E-IO/W-PAC 
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F I G U R E  2 Population clustering analysis for the global Carcharhinus leucas dataset with a subsample of Australian sharks (DATA3: 382 
sharks; 1849 SNPs). Panel a shows the Discriminant Analysis of Principal Components (DAPC) assignment barplot for K = 6 and 51 principal 
components (PC). Each bar represents an individual and is colored according to the posterior membership probabilities. Panels b–d represent 
the principal component analysis (PCA) scatterplot, where each point represents an individual shark, triangles indicate the mean PCA score 
per sampling location, and colors represent the sampling country or oceanographic location. (b) PCA scatterplot with PC1 on the x-axis and 
PC2 on the y-axis. (c) PCA scatterplot with PC3 on the x-axis and PC4 on the y-axis. (d) PCA scatterplot with PC3 on the x-axis and PC5 on 
the y-axis.
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    |  11 of 22DEVLOO-­DELVA et al.

cluster, where the Japanese haplotypes did not correspond to the 
three Japanese clusters identified with the nuclear SNPs. Within 
Australia, the mitochondrial ΦST showed structure between western 
(Fitzroy River), northern (Victoria River, Daly River, Adelaide River, 
Alligator Rivers—encompassing the South Alligator River and East 
Alligator River—Blue Mud Bay, Roper River, Towns River, Wenlock 
River), and eastern Australian sites (Trinity Inlet, Clarence River, and 
Sydney Harbor; Table  3). The haplotype network of all Australian 
individuals indicated three major haplotype clusters with no obvious 
geographic pattern, yet most haplotypes were unique to a sampling 
site (Supporting Information section 13.4.2.3).

3.6  |  Provenance assignment

After population structure was identified with the nuclear DArTcap 
markers, we tested the accuracy to assign provenance to a hold-
out data set (Figure 4). Using the marker contributions of the DAPC 
analysis, we found that at least 250–500 highly differentiating 
markers were required for 100% provenance assignment accuracy 
(Supporting Information section 8.10.9). Individuals from Japan and 
Fiji were unlikely to be assigned to the inferred genetic cluster with 
less than 500 markers. A minimum of 50–100 markers were needed 
to obtain a reliable assignment (>80%) to each inferred population 
and only 5–50 markers were required to differentiate individuals 
from the E-PAC, W-PAC, and E-ATL, but sites within the IWP re-
quired up to 100 markers (Figure 4).

3.7  |  Individual and kinship assignment

In total, 102 duplicate individuals were identified in the dataset. 
Most represented the technical replicates that were purposely in-
cluded, but we also detected six recaptured sharks from Sydney 
Harbor, Japan, and Fiji (time-at-liberty = 38–741 days). These recap-
tures were always assigned to the same age-cohort where length 
data were available, thus providing confidence in the length-at-age 
function from Tillett et al. (2011). Within the W-ATL, we performed 
4095 pairwise comparisons and found two full-sibling pairs (FSPs) 
in Brazil. The IWP revealed more kin pairs due to the large num-
ber of pairwise comparisons (201,295). Overall, we found 18 full-
sibling pairs (FSPs), all within the same sampling locations (Brazil, 
Réunion, Indonesia, Fiji, and within Australia: Daly, South Alligator, 
East Alligator, Towns, and Clarence rivers), and 40 half-sibling pairs 
(HSPs). Of the 40 HSPs, 32 were found within the same locations 
(Seychelles, Réunion, PNG, and within Australia: Sydney Harbor, 
South Alligator, East Alligator, Wenlock, and Clarence rivers), where 
10 and 8 HSPs had the same and different haplotypes, respectively; 
14 pairs had missing haplotype information. Eight HSPs were dis-
tributed between rivers within northern Australia (Daly River/South 
Alligator River, n  =  4; Adelaide River/South Alligator River, n  =  1; 
South Alligator River/East Alligator River, n = 2; and Towns River/
Wenlock River, n = 1). Seven of those eight ‘cross-river’ HSPs were 

juveniles (<150 cm TL) from different age cohorts, and six pairs had 
different mitochondrial haplotypes.

4  |  DISCUSSION

This study provides the first global assessment of genetic population 
structure of the Bull Shark, a cosmopolitan coastal predator, using 
thousands of SNP markers and full mitogenome data. We identify 
distinct genetic divergence driven by significant biogeographic bar-
riers and philopatric behavior. These results further facilitate the de-
velopment of a SNP panel for species, sex, provenance, and kinship 
identification.

4.1  |  Global population structure across 
ocean barriers

Population structure in large coastal sharks tends to be driven by 
environmental barriers, movement ecology, and habitat prefer-
ence (Dudgeon et al., 2012; Hirschfeld et al., 2021). The DArTcap 
results revealed four global genetic clusters (E-PAC, W-ATL, E-
ATL, and IWP), with Japan and Fiji each supporting additional 
isolated Bull Shark populations. Our results concur with previous 
studies in the Western Atlantic and Indo-Pacific regions, which 
showed genetic differentiation between the W-ATL, IWP, and Fiji 
using microsatellite data (Pirog et al., 2019; Testerman, 2014). We 
show that the E-PAC is strongly differentiated from the W-ATL, 
likely coinciding with the closure of the Isthmus of Panama (~3 
Myr; Knowlton et al.,  1993; O'Dea et al.,  2016). Previously, Bull 
Shark connectivity has been suggested between the E-PAC and 
W-ATL, based on microsatellite data, through the Panama Canal 
(Pirog et al.,  2019; Testerman,  2014), but our results indicate 
these populations are demographically isolated and that gene flow 
through the Panama Canal is negligible, if existent at all. Rather, 
we believe the differences between our results are likely due to 
higher power delivered by thousands of SNPs compared to fewer 
microsatellites (e.g., Green et al., 2019; Layton et al., 2020). In ad-
dition, the latter can suffer from homoplasy caused by high muta-
tion rates (i.e., identical by state, not identical by descent; Estoup 
et al., 2002).

The greater divergence between the W-ATL and E-ATL, compared 
to the E-ATL and IWP, demonstrates that the Mid Atlantic Barrier (an 
open ocean distance barrier) forms a stronger and more enduring 
barrier than the Benguela Upwelling System (a thermal barrier). The 
permeability of the latter barrier may fluctuate over time due to os-
cillations in climate (Hirschfeld et al., 2021). Fiji and New Caledonia 
have previously been identified as differentiated island populations, 
although New Caledonia showed less differentiation than Fiji from 
other sites (Glaus et al.,  2020; Pirog et al.,  2019). This was also at-
tributed to the long distances across deep water trenches and is 
consistent with our results for Fiji. Similarly, individuals from Japan 
could be isolated by deep water trenches (>500 m deep, e.g., Okinawa 
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Trough), since the Bull Shark generally prefers shallow waters (<160 m; 
Rigby et al., 2021). Yet, sea levels between Japan and continental Asia 
were low until 17 Kyr ago (Voris,  2000), although the high latitudi-
nal location of Japan may have formed a thermal barrier at that time. 
Additionally, historical land-bridges such as the Taiwan Strait, Tokara 
Strait, or Tsushima/Korea Strait could have restricted dispersal be-
tween Japan and the IWP (Chen, Wang, et al., 2018; Yin et al., 2009).

Historical land-bridges also play a potential role for the genetic 
structuring of Bull Sharks across northern Australia. Despite a lack 

of structure inferred from the nuclear markers, the mitogenome 
ΦST differentiation showed three separate clusters (western, 
northern, and eastern Australia). Here, the Torres Strait land-
bridge between Australia and Papua New Guinea has been impli-
cated for genetic structuring in a variety of marine taxa across 
this region (Mirams et al.,  2011). This signal from the Bull Shark 
haplotype network is less structured, and may indicate either re-
cent separation or historical isolation followed by gene flow (e.g., 
Puckridge et al., 2013).

TA B L E  3 Pairwise comparison of fixation indices for Carcharhinus leucas.

E-PAC W-ATL E-ATL IWP Japan Fiji

Australia

GOC COR BRZ CAR GOM WNA SIL SAF MOZ RUN SEY ARP SRL TAI IND PNG FZR VIR DAR ADR DWC SAR EAR BMB ROR TOR WER TRI CLR SYH UNK OKI URR FIJ

GOC 0.124 NA NA NA NA NA 0.788 NA 0.968 *0.967 0.804 0.664 0.677 0.951 0.931 0.649 *0.951 *0.934 0.923 NA *0.977 0.944 *0.988 0.988 0.985 *0.932 1.000 *0.966 0.936 NA 0.937 0.989 0.848

COR NA NA NA NA NA 0.958 *0.913 NA *0.969 *0.968 *0.877 *0.832 *0.887 *0.965 *0.951 *0.891 *0.959 *0.947 *0.944 NA *0.975 *0.956 *0.979 *0.973 *0.974 *0.949 *0.975 *0.968 *0.954 NA *0.957 0.981 *0.925

BRZ *0.220 *0.237 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

CAR *0.229 *0.248 *0.007 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

GOM *0.225 *0.243 *0.004 *0.006 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

WNA *0.229 *0.251 *0.005 *0.003 *0.004 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

SIL NA NA 0.467 0.473 0.473 0.476 0.788 NA 0.968 0.967 *0.802 0.662 0.676 0.950 0.930 0.646 *0.950 *0.933 0.922 NA *0.977 0.943 0.988 0.988 0.985 0.931 1.000 0.966 0.935 NA 0.937 *0.989 0.846

SAF *0.478 *0.497 *0.472 *0.473 *0.476 *0.479 0.098 NA 0.211 *0.159 *0.590 0.113 0.048 0.747 *0.782 0.276 *0.828 *0.813 *0.784 NA *0.897 *0.808 *0.846 *0.736 *0.757 *0.800 *0.741 *0.849 *0.781 NA *0.777 *0.884 *0.643

MOZ *0.489 *0.508 *0.481 *0.482 *0.485 *0.488 0.107 *0.004 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

RUN *0.485 *0.502 *0.476 *0.478 *0.481 *0.483 0.104 *0.002 *0.006 *0.606 *0.776 *0.456 *0.520 *0.941 *0.919 *0.713 *0.933 *0.915 *0.911 NA *0.958 *0.929 *0.963 *0.953 *0.954 *0.918 *0.956 *0.946 *0.925 NA *0.931 *0.967 *0.864

SEY *0.486 *0.502 *0.476 *0.478 *0.481 *0.483 0.107 *0.002 *0.006 *0.003 *0.776 *0.395 *0.399 *0.937 *0.916 *0.678 *0.929 *0.912 *0.907 NA *0.955 *0.925 *0.959 *0.949 *0.950 *0.915 *0.952 *0.943 *0.922 NA *0.928 *0.964 *0.862

ARP *0.479 *0.496 *0.470 *0.472 *0.475 *0.477 0.102 *0.002 *0.005 *0.002 *0.002 *0.292 *0.387 0.135 *0.286 *0.203 *0.322 *0.252 *0.224 NA *0.483 *0.256 *0.392 0.256 *0.287 *0.227 0.228 *0.362 *0.272 NA *0.256 *0.326 *0.219

SRL *0.492 *0.507 *0.480 *0.481 *0.484 *0.487 0.107 *0.003 *0.006 *0.003 *0.005 0.001 0.000 *0.391 *0.504 0.000 *0.563 *0.552 *0.500 NA *0.692 *0.524 *0.561 *0.404 *0.434 *0.520 *0.393 *0.585 *0.490 NA *0.476 *0.610 *0.334

TAI 0.492 *0.509 *0.480 *0.482 *0.484 *0.487 0.122 *0.011 *0.013 *0.010 *0.012 *0.009 *0.011 *0.550 *0.648 0.030 *0.713 *0.691 *0.646 NA *0.825 *0.677 *0.729 *0.544 *0.580 *0.666 *0.539 *0.741 *0.638 NA *0.621 *0.780 *0.451

IND 0.478 *0.497 *0.468 *0.470 *0.473 *0.475 0.102 *0.009 *0.013 *0.012 *0.014 *0.012 *0.014 *0.020 *0.424 *0.345 *0.463 *0.320 *0.255 NA *0.705 *0.389 *0.762 *0.651 *0.673 *0.308 *0.629 *0.571 *0.409 NA *0.425 *0.660 *0.321

PNG *0.483 *0.497 *0.471 *0.472 *0.475 *0.478 0.108 *0.004 *0.012 *0.005 *0.006 *0.006 *0.006 *0.013 *0.015 *0.405 *0.290 *0.245 *0.153 NA *0.486 *0.277 *0.475 *0.343 *0.380 *0.257 *0.429 *0.427 *0.116 NA *0.411 *0.639 *0.339

FZR NA *0.512 *0.483 *0.483 *0.487 *0.489 NA 0.002 0.006 0.003 *0.007 0.005 *0.009 0.016 0.017 0.005 *0.439 *0.433 *0.375 NA *0.611 *0.404 *0.469 0.197 *0.256 0.405 0.288 *0.543 *0.399 NA *0.431 *0.666 *0.210

VIR *0.483 *0.497 *0.472 *0.473 *0.476 *0.479 0.105 0.001 *0.005 *0.004 *0.004 *0.003 *0.004 *0.011 *0.014 *0.006 0.004 *0.063 0.039 NA *0.042 0.030 *0.133 0.009 0.073 *0.069 *0.502 *0.440 *0.317 NA *0.501 *0.667 *0.410

DAR *0.485 *0.500 *0.476 *0.477 *0.480 *0.483 0.103 *0.001 *0.006 *0.002 *0.002 *0.002 *0.003 *0.011 *0.012 *0.003 *0.006 *0.002 0.025 NA *0.206 0.005 *0.268 0.145 *0.194 *0.029 *0.377 *0.366 *0.259 NA *0.386 *0.514 *0.358

ADR *0.485 *0.501 *0.475 *0.477 *0.479 *0.482 0.108 *0.002 *0.005 *0.002 *0.002 0.001 *0.003 *0.011 *0.009 *0.004 0.001 *0.003 *0.001 NA *0.223 0.028 *0.234 0.110 *0.156 *0.018 *0.335 *0.338 *0.184 NA *0.356 *0.514 *0.312

DWC *0.475 *0.493 *0.468 *0.469 *0.472 *0.475 0.099 0.001 *0.006 *0.004 *0.003 *0.003 *0.005 *0.012 *0.011 *0.005 0.003 0.001 *0.002 *0.002 NA NA NA NA NA NA NA NA NA NA NA NA NA

SAR *0.485 *0.500 *0.475 *0.476 *0.479 *0.482 0.105 0.001 *0.005 *0.003 *0.002 *0.002 *0.003 *0.009 *0.012 *0.004 *0.004 *0.002 *0.001 *0.001 *0.002 *0.148 *0.147 0.062 *0.148 *0.233 *0.720 *0.603 *0.527 NA *0.687 *0.802 *0.594

EAR *0.483 *0.499 *0.475 *0.476 *0.479 *0.482 0.104 *0.001 *0.006 *0.003 *0.002 *0.002 *0.002 *0.011 *0.013 *0.004 *0.004 *0.002 *0.001 0.001 *0.002 0.000 *0.245 0.103 0.163 *0.044 *0.449 *0.411 *0.294 NA *0.435 *0.615 *0.363

BMB *0.486 *0.502 *0.476 *0.477 *0.480 *0.483 0.109 *0.005 *0.008 *0.005 *0.006 *0.006 *0.007 *0.013 *0.016 *0.008 *0.009 *0.006 *0.005 *0.004 *0.006 *0.005 *0.005 *0.296 *0.331 *0.236 *0.873 *0.646 *0.528 NA *0.691 *0.883 *0.512

ROR *0.481 *0.502 *0.475 *0.476 *0.479 *0.482 0.098 *0.002 0.006 *0.004 *0.004 *0.003 0.003 *0.010 *0.013 *0.006 *0.006 *0.004 *0.002 0.003 0.003 *0.002 0.002 *0.006 0.000 *0.132 *0.911 *0.578 *0.394 NA *0.574 *0.880 *0.326

TOR *0.495 *0.508 *0.481 *0.483 *0.485 *0.489 0.114 *0.006 *0.011 *0.007 *0.006 *0.004 *0.008 *0.015 *0.019 *0.010 0.006 *0.007 *0.006 *0.005 *0.005 *0.005 *0.005 *0.008 0.005 *0.175 *0.885 *0.597 *0.428 NA *0.598 *0.879 *0.367

WER *0.488 *0.503 *0.477 *0.478 *0.481 *0.484 0.111 *0.003 *0.008 *0.002 *0.003 *0.002 *0.003 *0.012 *0.014 *0.005 0.004 *0.004 *0.002 *0.002 0.002 *0.001 *0.001 *0.006 *0.004 *0.006 *0.357 *0.348 *0.255 NA *0.378 *0.529 *0.328

TRI 0.478 *0.498 *0.470 *0.472 *0.475 *0.477 0.103 *0.004 0.010 *0.007 *0.006 *0.005 *0.011 0.013 0.013 0.008 0.002 0.006 0.002 *0.006 0.003 *0.004 0.002 0.007 0.002 0.010 0.004 0.000 0.186 NA *0.551 *0.882 0.000

CLR *0.473 *0.488 *0.465 *0.466 *0.469 *0.472 0.103 *0.002 *0.005 *0.003 *0.003 *0.002 *0.004 *0.010 *0.012 *0.005 *0.004 *0.003 *0.002 *0.001 *0.002 *0.001 *0.001 *0.005 *0.003 *0.005 *0.002 *0.004 *0.188 NA *0.570 *0.750 *0.178

SYH *0.485 *0.500 *0.475 *0.476 *0.479 *0.482 0.104 *0.002 *0.005 *0.003 *0.003 *0.002 *0.003 *0.011 *0.013 *0.004 0.003 *0.002 *0.001 0.000 0.002 *0.001 *0.001 *0.005 *0.003 *0.005 *0.002 *0.004 *0.001 NA *0.446 *0.666 *0.178

UNK *0.484 *0.499 *0.473 *0.474 *0.477 *0.480 0.104 *0.003 *0.008 *0.005 *0.004 *0.005 *0.006 *0.015 *0.013 *0.009 0.005 *0.005 *0.003 0.003 0.003 *0.002 *0.002 *0.007 *0.004 0.005 *0.004 0.003 *0.002 *0.002 NA NA NA

OKI *0.507 *0.516 *0.486 *0.488 *0.490 *0.494 0.125 *0.017 *0.024 *0.017 *0.018 *0.018 *0.023 *0.028 *0.023 *0.022 *0.018 *0.019 *0.016 *0.017 *0.018 *0.017 *0.017 *0.021 *0.019 *0.023 *0.018 *0.019 *0.016 *0.017 *0.016 *0.555 *0.611

URR *0.509 *0.519 *0.492 *0.493 *0.496 *0.499 0.142 *0.021 *0.026 *0.023 *0.020 *0.021 *0.025 *0.033 *0.034 *0.024 *0.023 *0.024 *0.022 *0.021 *0.021 *0.021 *0.021 *0.027 *0.024 *0.028 *0.021 *0.024 *0.021 *0.022 *0.021 *0.032 *0.389

FIJ *0.499 *0.514 *0.486 *0.487 *0.491 *0.493 0.116 *0.018 *0.023 *0.017 *0.017 *0.016 *0.019 *0.027 *0.026 *0.019 *0.017 *0.018 *0.018 *0.017 *0.019 *0.017 *0.016 *0.020 *0.019 *0.021 *0.018 *0.022 *0.016 *0.017 *0.018 *0.032 *0.037

Note: FST values are presented in the bottom diagonal and sequence-based ΦST are in the top diagonal. ‘NA’ values indicate that no or too few 
samples were available to estimate genetic differentiation. Asterisks (*) indicate statistical significance of p < .05. No pairwise comparisons were 
significant after Bonferroni correction. Fixation indices are colored from high (red) to medium (yellow) to low (blue) values. GOC, Gulf of California; 
COR, Costa Rica; BRZ, Brazil; CAR, Caribbean Sea; GOM, Gulf of Mexico; WNA, Western North Atlantic; SIL, Sierra Leone; SAF, South Africa; 
MOZ, Mozambique; RUN, Réunion Island; SEY, Seychelles; ARP, Arabian Peninsula; SRL, Sri Lanka; TAI, Thailand; IND, Indonesia; PNG, Papua New 
Guinea; FZR, Fitzroy River; VIR, Victoria River; DAR, Daly River; ADR, Adelaide River; DWC, Darwin Coastal; SAR, South Alligator River; EAR, 
East Alligator River; BMB, Blue Mud Bay; ROR, Roper River; TOR, Towns River; WER, Wenlock River; TRI, Trinity Inlet; CLR, Clarence River; SYH, 
Sydney Harbor; and UNK, Australian fisheries samples from unknown origin; OKI, Churaumi Aquarium, Okinawa; URR, Urauchi River; and FIJ, Fiji.
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Our study shows strong influences of land-bridges, long ocean 
distances, cold upwelling or high latitudes, and deep-water trenches 
on the genetic population structure of the Bull Shark. We hypothe-
size that these barriers will equally affect elasmobranch species with 
similar dispersal capacity, distribution, and habitat use. To date, the 
global population structure of only a few large-bodied shark spe-
cies has been investigated (e.g., Galapagos Shark, C.  galapagensis; 
Sandbar Shark, C. plumbeus; and Scalloped Hammerhead, S.  lewini; 
Daly-Engel et al., 2012; Pazmiño et al., 2018; Portnoy et al., 2010). 

Known biogeographic barriers have similarly affected the popula-
tion structure of these species (reviewed in Hirschfeld et al., 2021). 
For example, the Galapagos Shark, which occupies insular habitats, 
shows limited gene flow across oceanic barriers, such as the East 
Pacific Barrier (Pazmiño et al., 2018). Similarly, both the Scalloped 
Hammerhead and Sandbar Shark exhibited increased connectivity 
along continuous coastlines within ocean basins but showed signif-
icant divergence due to the East Pacific Barrier and closure of the 
Isthmus of Panama (Daly-Engel et al.,  2012; Portnoy et al.,  2010). 

TA B L E  3 Pairwise comparison of fixation indices for Carcharhinus leucas.

E-PAC W-ATL E-ATL IWP Japan Fiji

Australia

GOC COR BRZ CAR GOM WNA SIL SAF MOZ RUN SEY ARP SRL TAI IND PNG FZR VIR DAR ADR DWC SAR EAR BMB ROR TOR WER TRI CLR SYH UNK OKI URR FIJ

GOC 0.124 NA NA NA NA NA 0.788 NA 0.968 *0.967 0.804 0.664 0.677 0.951 0.931 0.649 *0.951 *0.934 0.923 NA *0.977 0.944 *0.988 0.988 0.985 *0.932 1.000 *0.966 0.936 NA 0.937 0.989 0.848

COR NA NA NA NA NA 0.958 *0.913 NA *0.969 *0.968 *0.877 *0.832 *0.887 *0.965 *0.951 *0.891 *0.959 *0.947 *0.944 NA *0.975 *0.956 *0.979 *0.973 *0.974 *0.949 *0.975 *0.968 *0.954 NA *0.957 0.981 *0.925

BRZ *0.220 *0.237 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

CAR *0.229 *0.248 *0.007 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

GOM *0.225 *0.243 *0.004 *0.006 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

WNA *0.229 *0.251 *0.005 *0.003 *0.004 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

SIL NA NA 0.467 0.473 0.473 0.476 0.788 NA 0.968 0.967 *0.802 0.662 0.676 0.950 0.930 0.646 *0.950 *0.933 0.922 NA *0.977 0.943 0.988 0.988 0.985 0.931 1.000 0.966 0.935 NA 0.937 *0.989 0.846

SAF *0.478 *0.497 *0.472 *0.473 *0.476 *0.479 0.098 NA 0.211 *0.159 *0.590 0.113 0.048 0.747 *0.782 0.276 *0.828 *0.813 *0.784 NA *0.897 *0.808 *0.846 *0.736 *0.757 *0.800 *0.741 *0.849 *0.781 NA *0.777 *0.884 *0.643

MOZ *0.489 *0.508 *0.481 *0.482 *0.485 *0.488 0.107 *0.004 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

RUN *0.485 *0.502 *0.476 *0.478 *0.481 *0.483 0.104 *0.002 *0.006 *0.606 *0.776 *0.456 *0.520 *0.941 *0.919 *0.713 *0.933 *0.915 *0.911 NA *0.958 *0.929 *0.963 *0.953 *0.954 *0.918 *0.956 *0.946 *0.925 NA *0.931 *0.967 *0.864

SEY *0.486 *0.502 *0.476 *0.478 *0.481 *0.483 0.107 *0.002 *0.006 *0.003 *0.776 *0.395 *0.399 *0.937 *0.916 *0.678 *0.929 *0.912 *0.907 NA *0.955 *0.925 *0.959 *0.949 *0.950 *0.915 *0.952 *0.943 *0.922 NA *0.928 *0.964 *0.862

ARP *0.479 *0.496 *0.470 *0.472 *0.475 *0.477 0.102 *0.002 *0.005 *0.002 *0.002 *0.292 *0.387 0.135 *0.286 *0.203 *0.322 *0.252 *0.224 NA *0.483 *0.256 *0.392 0.256 *0.287 *0.227 0.228 *0.362 *0.272 NA *0.256 *0.326 *0.219

SRL *0.492 *0.507 *0.480 *0.481 *0.484 *0.487 0.107 *0.003 *0.006 *0.003 *0.005 0.001 0.000 *0.391 *0.504 0.000 *0.563 *0.552 *0.500 NA *0.692 *0.524 *0.561 *0.404 *0.434 *0.520 *0.393 *0.585 *0.490 NA *0.476 *0.610 *0.334

TAI 0.492 *0.509 *0.480 *0.482 *0.484 *0.487 0.122 *0.011 *0.013 *0.010 *0.012 *0.009 *0.011 *0.550 *0.648 0.030 *0.713 *0.691 *0.646 NA *0.825 *0.677 *0.729 *0.544 *0.580 *0.666 *0.539 *0.741 *0.638 NA *0.621 *0.780 *0.451

IND 0.478 *0.497 *0.468 *0.470 *0.473 *0.475 0.102 *0.009 *0.013 *0.012 *0.014 *0.012 *0.014 *0.020 *0.424 *0.345 *0.463 *0.320 *0.255 NA *0.705 *0.389 *0.762 *0.651 *0.673 *0.308 *0.629 *0.571 *0.409 NA *0.425 *0.660 *0.321

PNG *0.483 *0.497 *0.471 *0.472 *0.475 *0.478 0.108 *0.004 *0.012 *0.005 *0.006 *0.006 *0.006 *0.013 *0.015 *0.405 *0.290 *0.245 *0.153 NA *0.486 *0.277 *0.475 *0.343 *0.380 *0.257 *0.429 *0.427 *0.116 NA *0.411 *0.639 *0.339

FZR NA *0.512 *0.483 *0.483 *0.487 *0.489 NA 0.002 0.006 0.003 *0.007 0.005 *0.009 0.016 0.017 0.005 *0.439 *0.433 *0.375 NA *0.611 *0.404 *0.469 0.197 *0.256 0.405 0.288 *0.543 *0.399 NA *0.431 *0.666 *0.210

VIR *0.483 *0.497 *0.472 *0.473 *0.476 *0.479 0.105 0.001 *0.005 *0.004 *0.004 *0.003 *0.004 *0.011 *0.014 *0.006 0.004 *0.063 0.039 NA *0.042 0.030 *0.133 0.009 0.073 *0.069 *0.502 *0.440 *0.317 NA *0.501 *0.667 *0.410

DAR *0.485 *0.500 *0.476 *0.477 *0.480 *0.483 0.103 *0.001 *0.006 *0.002 *0.002 *0.002 *0.003 *0.011 *0.012 *0.003 *0.006 *0.002 0.025 NA *0.206 0.005 *0.268 0.145 *0.194 *0.029 *0.377 *0.366 *0.259 NA *0.386 *0.514 *0.358

ADR *0.485 *0.501 *0.475 *0.477 *0.479 *0.482 0.108 *0.002 *0.005 *0.002 *0.002 0.001 *0.003 *0.011 *0.009 *0.004 0.001 *0.003 *0.001 NA *0.223 0.028 *0.234 0.110 *0.156 *0.018 *0.335 *0.338 *0.184 NA *0.356 *0.514 *0.312

DWC *0.475 *0.493 *0.468 *0.469 *0.472 *0.475 0.099 0.001 *0.006 *0.004 *0.003 *0.003 *0.005 *0.012 *0.011 *0.005 0.003 0.001 *0.002 *0.002 NA NA NA NA NA NA NA NA NA NA NA NA NA

SAR *0.485 *0.500 *0.475 *0.476 *0.479 *0.482 0.105 0.001 *0.005 *0.003 *0.002 *0.002 *0.003 *0.009 *0.012 *0.004 *0.004 *0.002 *0.001 *0.001 *0.002 *0.148 *0.147 0.062 *0.148 *0.233 *0.720 *0.603 *0.527 NA *0.687 *0.802 *0.594

EAR *0.483 *0.499 *0.475 *0.476 *0.479 *0.482 0.104 *0.001 *0.006 *0.003 *0.002 *0.002 *0.002 *0.011 *0.013 *0.004 *0.004 *0.002 *0.001 0.001 *0.002 0.000 *0.245 0.103 0.163 *0.044 *0.449 *0.411 *0.294 NA *0.435 *0.615 *0.363

BMB *0.486 *0.502 *0.476 *0.477 *0.480 *0.483 0.109 *0.005 *0.008 *0.005 *0.006 *0.006 *0.007 *0.013 *0.016 *0.008 *0.009 *0.006 *0.005 *0.004 *0.006 *0.005 *0.005 *0.296 *0.331 *0.236 *0.873 *0.646 *0.528 NA *0.691 *0.883 *0.512

ROR *0.481 *0.502 *0.475 *0.476 *0.479 *0.482 0.098 *0.002 0.006 *0.004 *0.004 *0.003 0.003 *0.010 *0.013 *0.006 *0.006 *0.004 *0.002 0.003 0.003 *0.002 0.002 *0.006 0.000 *0.132 *0.911 *0.578 *0.394 NA *0.574 *0.880 *0.326

TOR *0.495 *0.508 *0.481 *0.483 *0.485 *0.489 0.114 *0.006 *0.011 *0.007 *0.006 *0.004 *0.008 *0.015 *0.019 *0.010 0.006 *0.007 *0.006 *0.005 *0.005 *0.005 *0.005 *0.008 0.005 *0.175 *0.885 *0.597 *0.428 NA *0.598 *0.879 *0.367

WER *0.488 *0.503 *0.477 *0.478 *0.481 *0.484 0.111 *0.003 *0.008 *0.002 *0.003 *0.002 *0.003 *0.012 *0.014 *0.005 0.004 *0.004 *0.002 *0.002 0.002 *0.001 *0.001 *0.006 *0.004 *0.006 *0.357 *0.348 *0.255 NA *0.378 *0.529 *0.328

TRI 0.478 *0.498 *0.470 *0.472 *0.475 *0.477 0.103 *0.004 0.010 *0.007 *0.006 *0.005 *0.011 0.013 0.013 0.008 0.002 0.006 0.002 *0.006 0.003 *0.004 0.002 0.007 0.002 0.010 0.004 0.000 0.186 NA *0.551 *0.882 0.000

CLR *0.473 *0.488 *0.465 *0.466 *0.469 *0.472 0.103 *0.002 *0.005 *0.003 *0.003 *0.002 *0.004 *0.010 *0.012 *0.005 *0.004 *0.003 *0.002 *0.001 *0.002 *0.001 *0.001 *0.005 *0.003 *0.005 *0.002 *0.004 *0.188 NA *0.570 *0.750 *0.178

SYH *0.485 *0.500 *0.475 *0.476 *0.479 *0.482 0.104 *0.002 *0.005 *0.003 *0.003 *0.002 *0.003 *0.011 *0.013 *0.004 0.003 *0.002 *0.001 0.000 0.002 *0.001 *0.001 *0.005 *0.003 *0.005 *0.002 *0.004 *0.001 NA *0.446 *0.666 *0.178

UNK *0.484 *0.499 *0.473 *0.474 *0.477 *0.480 0.104 *0.003 *0.008 *0.005 *0.004 *0.005 *0.006 *0.015 *0.013 *0.009 0.005 *0.005 *0.003 0.003 0.003 *0.002 *0.002 *0.007 *0.004 0.005 *0.004 0.003 *0.002 *0.002 NA NA NA

OKI *0.507 *0.516 *0.486 *0.488 *0.490 *0.494 0.125 *0.017 *0.024 *0.017 *0.018 *0.018 *0.023 *0.028 *0.023 *0.022 *0.018 *0.019 *0.016 *0.017 *0.018 *0.017 *0.017 *0.021 *0.019 *0.023 *0.018 *0.019 *0.016 *0.017 *0.016 *0.555 *0.611

URR *0.509 *0.519 *0.492 *0.493 *0.496 *0.499 0.142 *0.021 *0.026 *0.023 *0.020 *0.021 *0.025 *0.033 *0.034 *0.024 *0.023 *0.024 *0.022 *0.021 *0.021 *0.021 *0.021 *0.027 *0.024 *0.028 *0.021 *0.024 *0.021 *0.022 *0.021 *0.032 *0.389

FIJ *0.499 *0.514 *0.486 *0.487 *0.491 *0.493 0.116 *0.018 *0.023 *0.017 *0.017 *0.016 *0.019 *0.027 *0.026 *0.019 *0.017 *0.018 *0.018 *0.017 *0.019 *0.017 *0.016 *0.020 *0.019 *0.021 *0.018 *0.022 *0.016 *0.017 *0.018 *0.032 *0.037

Note: FST values are presented in the bottom diagonal and sequence-based ΦST are in the top diagonal. ‘NA’ values indicate that no or too few 
samples were available to estimate genetic differentiation. Asterisks (*) indicate statistical significance of p < .05. No pairwise comparisons were 
significant after Bonferroni correction. Fixation indices are colored from high (red) to medium (yellow) to low (blue) values. GOC, Gulf of California; 
COR, Costa Rica; BRZ, Brazil; CAR, Caribbean Sea; GOM, Gulf of Mexico; WNA, Western North Atlantic; SIL, Sierra Leone; SAF, South Africa; 
MOZ, Mozambique; RUN, Réunion Island; SEY, Seychelles; ARP, Arabian Peninsula; SRL, Sri Lanka; TAI, Thailand; IND, Indonesia; PNG, Papua New 
Guinea; FZR, Fitzroy River; VIR, Victoria River; DAR, Daly River; ADR, Adelaide River; DWC, Darwin Coastal; SAR, South Alligator River; EAR, 
East Alligator River; BMB, Blue Mud Bay; ROR, Roper River; TOR, Towns River; WER, Wenlock River; TRI, Trinity Inlet; CLR, Clarence River; SYH, 
Sydney Harbor; and UNK, Australian fisheries samples from unknown origin; OKI, Churaumi Aquarium, Okinawa; URR, Urauchi River; and FIJ, Fiji.
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14 of 22  |     DEVLOO-­DELVA et al.

Consequently, future studies could use our results as a foundation 
to construct hypotheses for other exploited and threatened species 
with similar vagility, ecology, and life-history characteristics (such as 
the Spinner Shark, the Graceful Shark, or the Dusky Shark).

4.2  |  Fine-scale structure and sex-biased dispersal

Minor nuclear differentiation was detected between the southern 
and northern W-ATL locations. This concurs with other Bull Shark 
studies showing strong mitochondrial and weak nuclear population 
structure in the W-ATL (Karl et al.,  2011; Sandoval Laurrabaquio-
Alvarado et al., 2021) and that long-distance movement is rare in the 
Gulf of Mexico (Carlson et al., 2010). This would suggest that a weak 

or recent barrier to dispersal may be present in this region. Such a 
barrier can be attributed to oceanographic features (e.g., Caribbean 
Current) or reproductive asynchrony caused by seasonal differences 
between the hemispheres (Carrillo et al., 2015, 2017; Castro, 2011; 
Jensen, 1976). Similarly, genetic differentiation may be present in the 
IWP (as suggested by Pirog et al.,  2019), but our ability to detect 
significant nuclear differences is constrained by high gene flow and/
or recent separation (Bailleul et al., 2018; Waples, 1998). A different 
set of genetic markers (e.g., whole genome analysis) combined with 
alternative approaches, like telemetry or parasitology, may provide a 
new perspective on population structure within the IWP (reviewed 
in Green, Simpfendorfer, & Devloo-Delva, 2022).

Within the IWP, the mitogenome results demonstrated maternal 
structure at a finer spatial scale than the SNP results, supporting the 

F I G U R E  3 Carcharhinus leucas mtDNA haplotype network, based on the full mitogenome (16,707–16,708 bp). Panel a presents the 
network for all 361 sharks from the eastern Pacific, eastern Atlantic, Indo-West Pacific, Japan, and Fiji. The distance between haplotypes 
reflects the number of mutations between them. Panel b shows the ‘eastern Indian Ocean/western Pacific/Japan/Fiji’ cluster in detail (285 
sharks). Here, the number of mutations between haplotypes are represented by small black dots. In panels a and b, the size of the shape is 
equivalent to the square root of the number of individuals that share this haplotype. The color and shape of each haplotype corresponds 
to the sampling location where they were found. The three black arrows indicate haplotypes that represent recent maternal movement 
between haplotype clusters.
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growing evidence of long-term female philopatry and male-biased 
dispersal in Bull Sharks (Karl et al.,  2011; Sandoval Laurrabaquio-
Alvarado et al., 2019; Tillett et al., 2012) and other elasmobranchs 
(reviewed in Chapman et al., 2015; Phillips et al., 2021). Specifically, 
the mtDNA shows a separation between the W-IO and E-IO/W-
PAC, not evident from the nuclear DNA, and greater differentiation 
of the E-ATL. The presence of haplotypes from multiple distinct 
mitochondrial lineages in South Africa, Sri Lanka, Thailand, Fiji, and 
the Fitzroy River (Australia) represents signals of secondary female 
contact after historical isolation or low ongoing female gene flow. 
However, we see that almost every haplotype is unique to a sam-
pling location (except for locations within Australia). This could in-
dicate that each location has experienced sufficient female isolation 
for the mitogenome to mutate (i.e., complete lineage sorting), and/or 
is a consequence of high haplotype diversity as a result of sequenc-
ing complete mitogenomes. In addition, demographic events affect 
the non-recombining haploid mtDNA and recombining diploid nu-
clear DNA differently (Heist, 2012; Lawson Handley & Perrin, 2007), 
and, therefore, the mito-nuclear discordance may not necessarily be 
driven by sex-biased dispersal (Toews & Brelsford, 2012).

The spatial distribution of close-kin, and the cross-cohort 
HSPs in particular, is valuable to identify contemporary dispersal 
and sex bias therein (e.g.,Feutry et al., 2017, 2020). In the IWP, we 
found that all FSPs and most HSPs were sampled from the same 
sampling location. The 32 same-river, cross-cohort HSPs had an 
equal likelihood of being maternally (same haplotype) or paternally 
(different haplotype) related, indicating contemporary biparental 
philopatry to a finer scale than detected by conventional popu-
lation genetic methods (Tillett et al.,  2012). However, the seven 
cross-river, cross-cohort HSPs in northern Australia were most 
likely paternally related, suggesting a bias toward male dispersal 
between rivers. This unconfounded result supports the mito-
nuclear findings and suggests that male-biased dispersal may be 
occurring at a broader scale, yet this needs to be confirmed with 
larger samples sizes.

Within Japan, the SNP data grouped the individuals into three 
separate clusters, with individuals from Okinawa clustering more 
closely with the IWP and those from the Urauchi River forming two 
separate groups. The sharks from the Churaumi Aquarium, Okinawa 
were originally sourced from Japanese waters near Okinawa Island 
and several individuals were known to be related. The close similar-
ity of the Okinawa group to the IWP cluster may represent ongoing 
genetic connectivity or recent colonization, where the strong nu-
clear differentiation may be caused by an accumulation of mutations 
at the edge of a range expansion due to the more pronounced ef-
fect of drift on a small and recently established population (Peischl 
et al., 2013). This divergence may be reinforced through high relat-
edness within a small population and seasonal differences in partu-
rition, which would also explain why we observed multiple genetic 
clusters within the Urauchi River. The sample size within Japan was 
too small to accurately estimate kinship; thus, family structure due 
to extremely small population size cannot be excluded (e.g., Devloo-
Delva et al., 2019; Feutry et al., 2017). Similarly, the Fiji population 

contains many related individuals (see Glaus et al., 2020), yet these 
were not removed from our analyses as they could signify an artifact 
of a small population size (Waples & Anderson, 2017). Mitochondrial 
haplotypes from individuals in Japan and Fiji are part of the E-IO/
W-PAC haplogroup, supporting that these are recently established 
populations.

4.3  |  Species, sex, provenance, and kinship 
identification

Increasingly, there is need to monitor wild populations and the 
global trade of wildlife products through DNA forensics (Cardeñosa 
et al.,  2022). Our DArTcap panel of 3400 SNPs can identify spe-
cies, sex, provenance, and kinship, which allows future monitoring 
of multiple demographic aspects at low cost (~AU$15 per sample; 
see Feutry et al., 2020). We were able to identify most of the indi-
viduals to species-level using the DArTseq and DArTcap data (i.e., 
Bull Shark, Pigeye Shark, Spinner Shark, Graceful Shark, Gray Reef 
Shark, Smalltail Shark, Dusky Shark, and Speartooth Shark), vali-
dated alongside mitochondrial species verification and a complete 
mtDNA reference database. Given the global scale of shark product 
trade (Clarke et al., 2006) and the morphological similarity between 
juveniles of many carcharhinid species, a selection of these SNP 
markers could be developed into a rapid tool for species identifica-
tion of various shark products (Johri et al., 2019; Liu et al., 2017). 
While the species composition of shark fin trade has been studied 
using mtDNA (Cardeñosa et al., 2022; Fields et al., 2018), some spe-
cies, like the Galapagos Shark and Dusky Shark, show mitochon-
drial introgression (Corrigan et al., 2017; Naylor et al., 2012). Here, 
the use of nuclear SNPs can resolve the ability to separate species 
with such introgression or incomplete lineage sorting (e.g., Kyne & 
Feutry, 2017; Liu et al., 2017). Moreover, the presence of sex-linked 
markers, specifically Y-linked markers, in the DArTseq data allowed 
us to identify the genetic sex of our samples when the visual sex 
information was missing. Unfortunately, the RNA baits failed to 
capture these markers appropriately with DArTcap sequencing, al-
though future studies could assess sex ratios from fisheries or trade 
samples by redesigning the RNA baits for these Y-linked markers 
(e.g., Stovall et al., 2018).

The DArTcap panel also shows great promise and power to as-
sign individuals to their respective populations (ocean-basin scale), 
and we estimated that a minimum of 100 markers are needed to 
achieve an accuracy of >80%. Few studies have specifically investi-
gated the power of genetic markers to assign samples from traded 
shark products to their population of origin, and, to date, most 
forensic studies of shark trade have employed mtDNA to identify 
broad geographic origins (e.g., Cardeñosa et al.,  2021; Chapman 
et al., 2009; Fields et al., 2020). Here, by genetically characterizing 
the source populations with 769 sharks and 3409 SNPs, the regional 
contributions of Bull Shark products to the global trade market can 
be estimated in future studies and highlight key regions of harvest 
to inform management actions. Furthermore, our results suggest 
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a diagnostic SNP panel of 100–500 markers could be designed to 
identify species, sex, and provenance from tissue samples. New 
genotyping technologies, such as DNA microarrays, may provide a 
more cost-efficient method for monitoring of Bull Shark exploita-
tion (e.g., Arenas et al.,  2017; Wenne et al.,  2016). However, this 
panel needs further testing prior to use as an enforcement tool. This 
will involve obtaining additional samples from undersampled loca-
tions (e.g., E-PAC and E-ATL) and testing the assignment accuracy 
on these newly acquired samples.

Finally, we were able to identify close-kin relationships with the 
selected DArTcap markers. These relationships are important to es-
timate contemporary dispersal patterns (Feutry et al., 2017, 2020) or 
total adult abundance of a population (Bravington et al., 2016). This 
application requires a large sample size (relative to the total popula-
tion size) and sufficient biological information (such as sex, age-at-
length, and age-at-maturity), which can pose a challenge in studies 
of rare or threatened species. While the number of kin was limited 
in this dataset, the identified kin pairs provided insights into local 
demographic and genetic connectivity in Australia.

4.4  |  Conservation and management 
considerations

Coastal shark species, such as the Bull Shark, are particularly sus-
ceptible to anthropogenic pressures such as fishing, shark control 
programs, and habitat modification, due to their close proximity to 
human populations (Knip et al.,  2010). These species fulfill an im-
portant role in maintaining the ecosystem dynamics and functions 
(Ferretti et al.,  2010), where a reduction in the abundance of top 
predators may lead to cascading effects in the food web and eco-
system health (e.g., Dudley & Simpfendorfer, 2006). Understanding 
the patterns of reproductive isolation of coastal sharks is essential to 
assess the impact of these threats at the population level (Frankham 
et al., 2017). Given our results of large-scale gene flow, we advocate 
for international collaboration to monitor the impacts on dispersing 
individuals (predominantly males) as they maintain the gene flow and 
genetic diversity between populations, and likely experience threats 
across many different countries. Similarly, coastal development near 
nursery areas may affect philopatric females disproportionally, with 
potential consequences for a wider region if other countries depend 
on recruitment from those nurseries. In addition, genetically isolated 
and small island populations, such as Japan and Fiji, currently face 
a number of threats, such as targets or bycatch in fisheries (Glaus 
et al., 2015) and require close monitoring as even low levels of catch 
may cause a population reduction. Any decline in abundance is un-
likely to be replenished by migration from neighboring populations. 
Overall, this study suggests that coastal species with comparable 
characteristics exhibit similar dispersal patterns, and consequently, 
risk and vulnerability assessments and management actions should 
be considered at the smallest spatial scales, in accordance with the 
philopatric behaviors of these species, in order to prevent local 
depletion.
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