
A File-Based Approach for Recommender Systems in High-Performance Computing
Environments

Simon Dooms, Toon De Pessemier, Luc Martens
WiCa group, Dept. of Information Technology, Ghent University

Gaston Crommenlaan 8 box 201, B-9050 Ghent, Belgium
Email: {Simon.Dooms, Toon.DePessemier, Luc.Martens}@intec.ugent.be

Abstract—Since recommendation systems tackle the problem
of information overload, the processing of huge datasets can
not be avoided. When these datasets no longer fit into the
RAM memory of a computing node, a scalable data storage
approach is required. While database systems are frequently
used for this goal, they have their disadvantages and when
not properly designed may slow down the recommendation
process. In this paper we propose an alternative file-based
data storage approach that is particularly well suited for a
high-performance computing environment where the usage of
databases may not always be an option.

By breaking down the recommendation process in separate
phases and carefully structuring the input and output of each
phase, we have build a file-based recommendation system that
scales proportional with the number of computing nodes and
processor cores available in each node.

Keywords-recommender system, file-based, high-
performance computing, HPC, scalable, NoSQL

I. INTRODUCTION

Recommender systems try to counter information over-
load by sifting data and extracting only bits and pieces
relevant to the user. This implies recommendation algorithms
have to process very large datasets. Working with often
millions of users and items rules out the strategy of simply
reading all data into RAM memory and start processing.
Efficient data storage is therefore required to provide fast
data access with minimal delay.

Classical relational database management systems
(RDBMSes) are often put to the task [1][2] although they
may not always be the best option. The required data
throughput needed by recommendation algorithms is very
high. Massive amounts of small intermediate values must
be stored and retrieved during execution time. If for every
required value a data connection with the database needs
to be set up and closed down, the accumulated resulting
data delays would make out most of the total execution
time altogether. More optimized approaches may be to
fetch large chunks of data at once to minimize database
interaction. The most optimal being probably to prefetch
as much data as can possibly fit in RAM memory. This
leads to an interesting idea. If it is so important to keep
interaction with the database low, then why not try to
leave out the database entirely? It would free developers

of the sometimes cumbersome tasks of designing efficient
database structures, creating indexes and maintaining the
database management software.

Many alternatives to the classical database, often referred
to as NoSQL systems, have been developed and some even
found their way into the recommender systems domain [3].
We want however an alternative that easily maps on the HPC
infrastructure we have at our disposal (see section II) or for
that any interconnected network of nodes with both local
and shared storage capacity.

We believe scalability and the concept of keeping the
data close to the work are the main goals for data storage
optimized for recommender systems. File systems like the
Hadoop Distributed File System (HDFS [4]) look promising
but they often require a complete reorganization of the
recommendation algorithm. Hadoop for instance offers a
fast and fault-tolerant distributed computing environment
but demands that the algorithm is implemented in terms
of map and reduce operations, rendering it useless in any
other environment [5][6]. Furthermore, we did not want to be
bound by what technologies the infrastructure supports and
so we looked into the most obvious data storage approach
of all.

The most straightforward way to store data on a system is
by means of files. We found the file-based approach satisfy-
ing our needs for easy file system migrations, scalability
and performance by structuring input and output files as
described in the following sections.

II. HIGH-PERFORMANCE COMPUTING INFRASTRUCTURE

Fig. 1 shows the conceptual layout of one of the clusters
(called gengar) of the high-performance computing infras-
tructure we have at our disposal. Gengar has 194 computing
nodes each of which contains 8 cores at 2.5 GHz, 16 GB
RAM and 146 GB of local storage capacity. Every node is
also networked to shared storage in a RAID5 configuration.

III. THE RECOMMENDATION WORKFLOW

In contrast to much literature about recommender systems
this paper will not focus on the internals of the recommen-
dation algorithm. Instead the main focus will be on how
we can provide the algorithm with the required data and

Figure 1. The conceptual layout of the high-performance computing
infrastructure at our disposal. Every computing node disposes of a local
hard disk and has access to a shared storage device in the network.

structure files such that minimal read (and write) delays
can be traded off with scalability. To show our approach
works with any type of recommendation algorithm we
employ a hybrid of content-based (CB) and collaborative
filtering (CF) much like described by Cornelis et al. [7].
Since this hybrid algorithm internally mixes CB and CF, the
processing of the required input for both types of algorithms
can be demonstrated. As stated, we will however make an
abstraction of the algorithm itself and provide no further
in-depth information.

We abstract the recommendation process to a three-phase
workflow that requires the inputs and outputs as shown in
Fig. 2. The process starts off with the availability of item
metadata and consumptions of users. User consumptions can
be anything from explicit feedback by means of star-ratings
to implicit feedback like behavioral logfiles.

In a first phase, item similarity is calculated. The item
similarity can rely on item metadata, user consumptions or
both. The resulting item similarities in their turn serve as the
input of the user similarity calculation together with the user
consumptions. In the final phase all three user consumptions,
item similarities and user similarities are used to generate
the recommendations. For a non-hybrid recommendation
algorithm this three-phase workflow can be reduced to two
phases by leaving out the first (if CF) or second phase (if
CB) according to the input requirements for the specific
algorithm.

The following sections will show how the input and output
of each phase can be structured to allow a file-based and
scalable data handling approach.

A. Phase 1: Item Similarity

Item similarity has been a hot topic in the information
retrieval domain for several years. The problem to be solved
is how similar two given items in a dataset are. There

Figure 2. The abstracted workflow of the recommendation process focused
on the ins and outs of every phase.

are numerous ways to go about this, the most popular
ones are Cosine Similarity and Pearson Correlation [8] but
many more have been researched. Again we will make an
abstraction of the problem, and assume we have an algorithm
that given two items calculates their similarity. We focus
on the problem of matching every item in the dataset and
providing the necessary input to the algorithm.

Table I shows the item similarities for 5 items. Every item
must be compared to every other item, but item similarity is
symmetric so only the half size triangular matrix needs to be
calculated. Since an item is equal to itself, the total number
of comparisons that need to be done will be ni(ni−1)

2 with
ni the number of items.

Table I
THE ITEM SIMILARITIES FOR 5 ITEMS

i1 i2 i3 i4 i5
i1 x 0? 1? 2? 3?
i2 x x 4? 5? 6?
i3 x x x 7? 8?
i4 x x x x 9?
i5 x x x x x

The non-scalable approach would be to read all the
metadata from one big file into memory and start comparing
items. More scalable is to divide the similarity comparisons
amongst the available nodes (and cores). To do this, we
project the calculation jobs in a one-dimensional space as
follows.

0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

Parallelizing the item similarity calculation is now a
matter of splitting the one-dimensional job list in m equally

large chunks (with m the number of nodes available). For
every node, jobs can be split up even further between
the available cores per node. Below an example of the
parallelizing of item similarity with 5 items over 5 nodes
with each 2 cores.

0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

Splitting up the calculations in this way, turns the problem
of item similarity into an embarrassingly parallel problem
with very few dependencies between the jobs. In fact the
only thing that the jobs share is the input data. Job 0? will
need the metadata of items i1 and i2, job 1? from items
i1 and i3 and so on. If sufficient RAM is available in a
node, all the metadata can be loaded. Otherwise a slicing
of the metadata will be required to make sure every node is
capable of loading its data. For our dataset of 53,000 items
(see section IV) the metadata was but 50 MB and could
easily be loaded.

The (file-based) output of the item similarity phase should
be carefully structured so that easy and efficient accessibility
is possible in the next phase. Since the output growth of
item similarity is quadratic by nature, disk usage will rapidly
increase. For the similarity of 53,000 items over a billion
comparisons must be calculated and stored.

Two extreme options would be dumping all calculated
similarities in one big file or writing to a new file for every
item, none of which are scalable. In the latter case, our
modest dataset would implicate the creation of 53,000 files
(or 26,500 if not considering symmetric similarities). It is
clear that a meet-in-the-middle approach is the only way out.

In our implementation we use the concept of file buckets
to balance the similarities output. We define a file bucket as
a container of individual files. A file bucket itself is in fact
again a file. Instead of creating a similarity file for every
item, we spread out the similarities over the number of file
buckets available. So a file bucket contains the similarities
of 1 or more items depending on the number of file buckets
used.

To decide which file bucket a similarity (e.g. (i1, i2))
should be written to, we assign a private numerical id to
every available item in the system, ids ranging from 1 to ni

(the total number of items). Item similarities are then spread
out over the file buckets using a modulo function. Table II
shows how the similarities of our earlier example would be
divided amongst 3 file buckets (ranging from 0 to 2).

We found that it was more efficient for the processing
in the following phases to actually write every similarity
to the file buckets instead of just the half triangle matrix.
So for every calculation two values are written e.g. for 0?
we write both (i1, i2) to bucket 1 and (i2, i1) to bucket 2.
Note that similarities will be evenly spread out over the

Table II
THE DIVIDING OF THE OUTPUTS IN FILE BUCKETS.

item simil (x, y) file bucket
0? (i1, i2) 1 (1 mod 3)
1? (i1, i3) 1
2? (i1, i4) 1
3? (i1, i5) 1
4? (i2, i3) 2 (2 mod 3)
5? (i2, i4) 2
6? (i2, i5) 2
7? (i3, i4) 0 (3 mod 3)
...

available buckets but similarities of the same item (e.g.
(i1, i2), (i1, i3), (i1, i4) and (i1, i5)) will always be in
the same bucket. This allows for efficient loading of the
similarities of an item (i.e. only one file bucket needs to be
read), which will be required in the next phase.

Writing with a lot of different nodes (and cores) to the
same file (bucket) can slow down the file system substan-
tially. Therefore every core in every node should write to
its own dedicated file buckets on its local disc. For every
node the file buckets can then be merged locally first for the
cores in that node, next over all nodes. Finally, the merged
file buckets from all nodes and cores can then be stored on
the shared storage. Fig. 3 visualizes this output process for 2
nodes with each 3 cores mapped on the HPC infrastructure.

Figure 3. The merging file buckets strategy for two nodes with 3 cores.
Every core writes to dedicated file buckets for optimal file system write
efficiency. The file buckets are then merged per node and finally over all
the nodes to the shared storage.

B. Phase 2: User Similarity

User similarity defines some degree of matching between
two users. The term similarity here is somewhat misleading
as we are interpreting the similarity of u1 towards u2 as
the degree to which u1 may provide interesting items for
u2 [7]. In contrast to the item similarity, the user similarity
is not symmetric. The calculation of all the user similarities
will therefore result in nu(nu−1) comparisons with nu the
number of users. Table III shows the user similarities for
nu = 4.

Table III
THE USER SIMILARITIES FOR 4 ITEMS.

u1 u2 u3 u4

u1 x 0? 1? 2?
u2 3? x 4? 5?
u3 6? 7? x 8?
u4 9? 10? 11? x

In our implementation, the calculation of the user similar-
ity (u1, u2) requires as input the consumptions of both users
and the item similarities of the items that u1 consumed. If
u1 has rated for example two items ix and iy then the item
similarities of ix and iy with every other item in the system
must be loaded.

To load all the item similarities of a given item, we must
simply load the corresponding file bucket determined by the
private id of the item and the modulo function. Because of
this file buckets structure there is no need to load all the item
similarities except for in the worst case scenario where the
needed items are spread out over all file buckets. This can
of course be easily prevented by playing with the number
of file buckets.

The loading of the consumptions should not pose any
problems since even for big datasets like the movielens
dataset with 10M ratings, the consumption file is but 262
MB and can easily be loaded in memory.

For optimization reasons, we parallelize the user similarity
calculation tasks on a different granular level then we did for
the item similarity. The calculation of the user similarity of
(u1, u2) requires the item similarities of the items consumed
by u1 as does the (user) similarity calculation of (u1, u3)
and (u1, u4). It therefore makes sense to load these item
similarities once and then process (u1, u2), (u1, u3) and
(u1, u4). In the situation of 4 nodes with each 3 cores
available, we would divide the calculation tasks as follows.

node1 0? 1? 2?

node2 3? 4? 5?

node3 6? 7? 8?

node4 9? 10? 11?

So all the similarity calculation tasks of a user are handled
by the same node, within the node the tasks can further be
delegated towards the available cores.

The same output strategy as we proposed for the item
similarities (Fig. 3) can be applied here. For efficiency
reasons every core must again write to dedicated file buckets
to be merged first locally on the node and then globally to
the shared storage.

C. Phase 3: Recommendations

A recommendation is a match between an item and a
user. To calculate the complete set of recommendations such
a matching between every item and user must be made as
shown in table IV.

Table IV
THE RECOMMENDATIONS FOR 5 ITEMS AND 4 USERS.

u1 u2 u3 u4

i1
i2
i3
i4
i5

Our recommendation algorithm requires for the recom-
mendation of an item i to a user u both the user similarities
of u and the item similarities of i. This maps directly onto
the file buckets structure generated by the item and user
similarity phases.

To match every user with every item, every generated file
bucket in the item similarity phase must be matched with
every file bucket from the user similarity phase (Fig. 4).
This approach again allows easy scaling, since the couples
of item and user file buckets can be divided amongst the
available nodes (and cores) in the infrastructure.

Figure 4. In the recommendation phase all the file buckets of the item
and user similarities must be matched with each other.

A node needs only to load the item similarity file bucket
and the user similarity file bucket as input for the recom-
mendations of the items and users contained in the buckets.
By increasing the number of file buckets, their file size can
be reduced allowing a node to fully load the required data
into RAM memory. A trade-off between the number of jobs
(couples of buckets) and the size of the job (size of the
buckets) will have to be made.

IV. RESULTS

To validate our file-based recommendation approach we
used a dataset collected from a popular cultural events
website. For over 5 months we logged the explicit and
implicit user feedback provided about the events by means
of rating systems and page visits. This events dataset was
particularly interesting to test our recommendation algorithm
because events are one-and-only items [9] and difficult to
recommend with a non-hybrid recommender.

The dataset contains the metadata of 53,000 items (events
in this case) and consumptions of 1700 users. We aggregated
the 14,000 consumptions (implicit and explicit) they pro-
duced, into 6800 consumptions by using a simple weighing
scheme. In total 4700 unique events of the dataset were
eventually consumed at least once.

Since the focus of this research is on the applicability of
file-based approaches for recommendation systems, we will
not present any quality metrics about the recommendations
themselves. Instead we have plotted (Fig. 5) the execution
time of the three introduced phases of our recommendation
workflow.

By doubling the number of used nodes of the HPC
infrastructure we can see the execution time of each of
the phases decreases to halve the time. When repeating the
experiment with a fixed amount of nodes but varying the
number of cores in each node, similar results were obtained.

The execution time of the first phase differs significant
towards the second and third phases. This is a result of
the number of items versus the number of users available
in the dataset (53,000 versus 1700) and therefore not a
consequence of the employed algorithm. Note that in the
third phase (as described in section III-C) the recommen-
dation value for every item for every user in the system is
calculated.

Figure 5. The execution time of the three phases executed on the HPC
infrastructure by 10, 20, 40, 80 and 160 computing nodes. All nodes having
three processor cores available. For phase 1, 200 file buckets where used.
Only 1 file bucket was used for phase 2 considering the small number of
users.

V. CONCLUSION

We set out to see if we could free recommender systems
from using databases without becoming irreversibly depen-
dent on a custom NoSQL technology. We have managed to
build a recommender system by using nothing more than
a file-based data approach. The recommendation process
was split up in three phases based on the input that a
recommendation algorithm would require. We then showed
for each phase how data could be structured in the form
of file buckets so that computing nodes can simply read
chunks of data into RAM memory and start processing
independently of each other reducing the recommendation
problem into an embarrassingly parallel computation prob-
lem. By deploying the recommender on a high-performance
computing infrastructure and scaling the number of nodes

put to the task, we found that our approach was both scalable
and memory efficient.

VI. FUTURE WORK

Our future work will entail the validation of this work
on larger datasets (like movielens and netflix) to find out
the system’s true potential and possible limitations. We also
plan on implementing the recommendation algorithm on the
Hadoop platform to see how it compares to our file-based
approach in terms of performance.

ACKNOWLEDGMENT

Research funded by a PhD grant to Simon Dooms of the
Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT Vlaanderen). This work
was carried out using the Stevin Supercomputer Infrastruc-
ture at Ghent University, funded by Ghent University, the
Hercules Foundation and the Flemish Government depart-
ment EWI. We are grateful for technical support from the
ICT Department of Ghent University.

REFERENCES

[1] D. Lemire and S. McGrath, “Implementing a rating-based item-
to-item recommender system in php/sql,” Ondelette.com, Tech.
Rep. D-01, January 2005.

[2] W. Woerndl, C. Schueller, and R. Wojtech, “A hybrid recom-
mender system for context-aware recommendations of mobile
applications,” in Proceedings of the 2007 IEEE 23rd Interna-
tional Conference on Data Engineering Workshop, 2007, pp.
871–878.

[3] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet,
U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, and
D. Sampath, “The youtube video recommendation system,” in
Proceedings of the fourth ACM conference on Recommender
systems, ser. RecSys ’10, 2010, pp. 293–296.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, pp. 107–
113, January 2008.

[5] Z.-D. Zhao and M.-S. Shang, “User-based collaborative-
filtering recommendation algorithms on hadoop,” in Knowl-
edge Discovery and Data Mining, 2010. WKDD ’10. Third
International Conference on, jan. 2010, pp. 478–481.

[6] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google
news personalization: scalable online collaborative filtering,”
in Proceedings of the 16th international conference on World
Wide Web, ser. WWW ’07, 2007, pp. 271–280.

[7] C. Cornelis, X. Guo, J. Lu, and G. Zhang, “A fuzzy relational
approach to event recommendation,” in Proceedings of the In-
dian International Conference on Artificial Intelligence, 2005.

[8] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, “Data
mining methods for recommender systems,” in Recommender
Systems Handbook, 2011, pp. 39–71.

[9] C. Cornelis, J. Lu, X. Guo, and G. Zhang, “One-and-only item
recommendation with fuzzy logic techniques,” Information
Sciences, vol. 177, no. 22, pp. 4906–4921, 2007.

