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Abstract
The Shapley value is the solution concept in cooperative game theory that is most 
used in both theoretical and practical settings. Unfortunately, in general, computing 
the Shapley value is computationally intractable. This paper focuses on computing 
the Shapley value of (weighted) connectivity games. For these connectivity games, 
which are defined on an underlying (weighted) graph, computing the Shapley value 
is #�-hard, and thus (likely) intractable even for graphs with a moderate number of 
vertices. We present an algorithm that can efficiently compute the Shapley value if 
the underlying graph has bounded treewidth. Next, we apply our algorithm to sev-
eral real-world (covert) networks. We show that our algorithm can quickly compute 
exact Shapley values for these networks, whereas in prior work these values could 
only be approximated using a heuristic method. Finally, it is demonstrated that our 
algorithm can also efficiently compute the Shapley value time for several larger 
(artificial) benchmark graphs from the PACE 2018 challenge.
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1  Introduction

Motivated by the need to identify important vertices in networks (graphs), many 
measures for ranking vertices have been suggested. Among these are the classical 
centrality measures, such as betweenness, closeness and degree (see e.g., Wasser-
man and Faust 1994). However, the drawback is that all of these measures only take 
the structure of the network into account. In light of this, game-theoretic central-
ity measures have received considerable interest. These measures not only take the 
structure of the network into account, but enable one to include special information 
with respect to individuals and links in the network. Further, such a measure also 
takes into account the coalitional strength of members in the network.

The Shapley value (Shapley 1953) is most used as centrality measure in these 
situations. This is not surprising since the Shapley value satisfies intuitive properties 
(cf. Shapley 1953; Young 1985) that are also considered as fair in many practical 
situations (e.g., airport landing fees (Littlechild and Owen 1973), water transporta-
tion (Deidda et  al. 2009), genetics (Moretti et  al. 2007) and terrorism (Lindelauf 
et al. 2013)). More applications of the Shapley value in different fields can be found 
in the survey of Moretti and Patrone (2008).

The biggest challenge in using the Shapley value in real-world applications is the 
time required to compute it, which generally increases exponentially with the num-
ber of players. More precisely, for many games it can be shown that computing the 
Shapley value is a #�-hard problem (Faigle and Kern 1992; Michalak et al. 2013a, 
b).

In this paper we focus on the Shapley value for network games in which the 
vertices are associated with players. In particular we consider connectivity games, 
introduced by Amer and Giménez (2004). These are {0, 1}-valued games in which a 
coalition has the value 1 if the subgraph induced by this coalition is connected, and 
has value 0 otherwise. In a vertex-weighted connectivity game, introduced by Lin-
delauf et al. (2013), the value equals the sum of the vertex weights of a coalition that 
induces a connected subgraph, and 0 if the subgraph is not connected.

Lindelauf et al. studied these centrality measures in the context of identifying the 
most important vertices in terrorist networks (Lindelauf et  al. 2013; van Campen 
et  al. 2017). They considered two networks: one (due to Koschade 2006) consist-
ing of 17 terrorists involved in a 2002 bombing in Bali, the second (due to Krebs 
2002) consisting of 69 terrorists involved in planning and executing the 9/11 attacks. 
Whereas for the first network they were able to compute the exact Shapley values, 
for the second networks this was infeasible and they considered only the part of the 
network made up by the 19 hijackers who actually carried out the attack (shown in 
Fig. 1).

Our contribution. We present a fixed-parameter tractable algorithm, parameter-
ized by the treewidth of the graph, that can compute the Shapley values associated 
with the weighted and unweighted connectivity games. Using our approach, we are 
able to compute the exact Shapley value for the full 69-vertex network of the 9/11 
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attacks. We are also able to compute the exact Shapley values for some much larger 
networks, having up to a thousand vertices. In the remainder of this introduction, 
we review prior work on algorithms for computing Shapley values of connectivity 
games, and briefly introduce the techniques (such as treewidth and parameterized 
algorithms) used in this paper.

Prior work on algorithms.  Michalak et  al. (2013b) showed that computing the 
Shapley value for the unweighted game is unfortunately #�-hard. As such, it is 
unlikely that an efficient algorithm for computing these values exists. On the other 
hand, Michalak et al. also proposed an algorithm that is slightly more efficient than 
the brute-force approach1 used by Lindelauf et al., called FasterSVCG. Using this 
algorithm, the authors computed Shapley values for a larger version of the 9/11 net-
work, with 36 vertices (corresponding to the hijackers and some key accomplices). 
Their approach, rather than considering all 2|V| coalitions, considers only the con-
nected coalitions, of which there may be considerably fewer than 2|V| . However, in 
the worst case, the number of connected coalitions may still be exponential. As such, 
for the full 69-vertex network, running this algorithm is still infeasible.

Michalak et  al. (2013b) also considered an approximation method based on 
random sampling and studied its performance on the 36-vertex 9/11 network. van 
Campen et  al. (2017) proposed a different sampling method, structured random 
sampling, that aims to be more efficient than random sampling. Using this method, 
they computed approximate Shapley values for the 69-vertex 9/11 network. Unfor-
tunately, neither method comes with any formal guarantees on the quality of the 
approximation.

Exploiting treewidth to get more efficient algorithms.  While, in general, one 
should not expect to find an efficient algorithm for computing the exact Shapley 

Fig. 1   Graph showing the connections between the 19 hijackers that carried out the 9/11 attacks. Vertices 
are coloured according to the flights they were on. Note that the full network consists of 69 vertices

1  Lindelauf et  al. do not state explicitly how they computed the Shapley value, but straightforwardly 
evaluating the formula would take �(2|V|) time.
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values of these games (due to the #�-hardness), we can attempt to exploit the struc-
ture that the networks may have in order to obtain more efficient algorithms.

In this paper, we show that the Shapley value (for both the weighted and the 
unweighted game) can be computed efficiently on graphs of bounded treewidth. 
Exploiting the fact that a graph has bounded treewidth is a celebrated and widely-
used technique from theoretical computer science, and many problems are known to 
be solvable in polynomial time on graphs of bounded treewidth (Bodlaender 1997). 
We use this idea to derive a fixed-parameter tractable algorithm for computing 
Shapley values. Our result is not merely theoretical: we also provide an implementa-
tion and show that it can be used to compute Shapley values for graphs of practical 
interest.

Treewidth is often said to be a measure of how “tree-like” a graph is. If a graph, 
on a macroscopic scale, resembles a tree, then treewidth in some sense measures 
how much it deviates from being a tree. The treewidth of a graph is defined in terms 
of tree decompositions. Such a decomposition is based around a tree, to each vertex 
of which is associated a set of vertices of the original graph in a way that respects 
the structure of the graph. The largest number of vertices associated in this way to 
any given vertex of the tree, determines the treewidth of the graph. We will make 
this definition more precise in the following section.

Thanks to the simple structure of trees, many ��-hard problems can be solved 
in polynomial time on trees. Very often, such problems can also be solved in poly-
nomial time on graphs of bounded treewidth: while the best known algorithms for 
such problems in general require exponential time, we can often construct an algo-
rithm that is only exponential in the treewidth (by doing some exponential computa-
tion within each vertex of the tree, which contains a bounded number of vertices of 
the original graph), and then using the properties of the problem that allow it to be 
solved in polynomial time on trees to combine the results computed within each tree 
vertex to provide a solution for the original problem.

Of course, our method crucially depends on the network having bounded tree-
width. Fortuitously, the network of the 9/11 attacks has a rather low treewidth of 
only 8. In general, one cannot expect social networks to have small treewidth: social 
networks often have large cliques, and the size of the largest clique forms a lower 
bound on the treewidth of a graph (see e.g., Adcock et al. 2016, for a study of tree 
decompositions of social networks). However, terrorist and criminal organizations 
are often well-served by keeping their networks sparsely connected, as this helps 
to avoid detection and as such one would not expect large cliques (Lindelauf et al. 
2009). As another example of networks that may have low treewidth, the interaction 
networks in a hierarchical organization would naturally be tree-like.

Our goal is to develop an algorithm that, given a graph G with n = |V| and tree 
decomposition of G of width tw, computes the Shapley value in time f (tw)nO(1) , 
where f is some exponential function and nO(1) a (low-degree) polynomial. As such, 
we hope to “hide” the exponential behaviour of computing the Shapley value in a 
function that depends only on the treewidth of the graph, and obtain an algorithm 
whose running time is (for graphs of bounded treewidth) polynomial in n.

Specifically, we show that for a graph G of treewidth tw and a vertex v ∈ V  , 
the Shapley value of the vertex-weighted connectivity game of vertex (player) v 
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can be computed in time 2O(tw log tw)n4 log n . Note that our algorithm for computing 
the Shapley value requires multiplying large (O(n)-bit) integers; this running time 
is achieved if using the O(n log n)-time algorithm of Harvey and van  der Hoeven 
(2019). Moreover, we usually want to know the Shapley value for all vertices rather 
than for a specific vertex. Rather than running the previous algorithm n times, we 
also show that computing the Shapley value for all vertices can be done in the same 
time, by reusing the intermediate results of previous computations.

For instance, the graph considered by Lindelauf et  al. that represents the com-
munications between the perpetrators of the 9/11 attacks, consists of 69 vertices but 
only has treewidth 8. While evaluating all 269 subsets of vertices is clearly infeasible, 
our algorithm can compute the Shapley value in a couple of seconds thanks to the 
low treewidth of the graph.

Of course, our method crucially depends on being given a tree decomposition of 
low width. Note that while in general, computing a minimum width tree decomposi-
tion is an ��-hard problem, for many graphs of practical interest this can be done 
efficiently (see e.g., Dell et al. 2018, for an overview of recent—and very competi-
tive—implementations for computing treewidth).

Comparison of running times. Given a graph G = (V ,E) , the algorithm of Micha-
lak et  al. (2013b) runs in time O((|V| + |E|)|C|)2, where |C| denotes the number 
of connected induced subgraphs of G. This algorithm, while offering a moderate 
improvement over the brute-force approach still requires exponential time on almost 
all interesting classes of graphs.

So, how does our 2O(tw log tw)n4 log n running time compare to this? Observe 
that there exist graphs of low treewidth that have a very large number of con-
nected induced subgraphs (for example, the star on n vertices has treewidth 1 and 
more than 2n−1 induced connected subgraphs), while graphs with a small number 
of induced connected subgraphs also have low treewidth: a graph with at most |C| 
induced connected subgraphs has treewidth at most 2 log |C|3. While this bound is 
tight up to a constant factor (for instance on an n-vertex clique), in many instances 
the treewidth is much smaller than log |C| . Thus, the set of graphs on which the 
algorithm of Michalak et  al. would perform well (graphs with a small number of 
induced connected subgraphs) is a strict subset of the set of graphs on which our 
algorithm would perform well (graphs with low treewidth).

Other uses of treewidth in computing solution concepts. Treewidth was first con-
sidered in the context of connectivity games by Aziz et al. (2009). They considered 
a game wherein the players are the edges and a winning coalition is one that spans 
the vertex set. They proved that computing the Banzhaf index can be done in poly-
nomial time for a graph with bounded treewidth, but gave no experimental results 

2  Michalak et al. (2013b) ignore in the analysis of their running time the fact that the numbers involved 
in the computation of the Shapley value can get exponentially large, and thus we can no longer presume 
that arithmetic operations can be done in O(1) time. Our running times do account for this, and are thus a 
factor n log n higher.
3  In fact, pathwidth at most 2 log |C| : if we fix some arbitrary vertex v, then there are at most log |C| ver-
tices at distance exactly r from v.
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and stated as an open problem whether Shapley values could be computed in a simi-
lar manner.

Recently, Greco et al. (2017, 2020) proposed using treewidth to compute Shapley 
values for matching and allocation games in graphs. In a matching game, the value 
of a coalition is the size of the maximum matching in the graph induced by that 
coalition; allocation games are similar but the nodes in the coalition are picked from 
one half of a bipartite graph. However, their algorithm is based on a formulation 
in Monadic Second Order Logic and the application of theoretical frameworks that 
allow counting of satisfying assignments of MSO formulas. For graphs of bounded 
treewidth, this yields a polynomial-time algorithm, where the degree of the polyno-
mial may depend on the treewidth. In contrast, the degree of the polynomial in our 
algorithm is fixed, and only the constant factor in the running time is affected by the 
treewidth (i.e., we obtain a fixed-parameter tractable algorithm). Moreover, due to 
the application of these algorithmic metatheorems, their algorithm is not very effi-
cient in practice: Greco et al. (2017) report that, even for the graph coauth-5 of tree-
width only 3 with 30 vertices, their implementation (using the MSO solver Sequoia 
(Langer 2013)) took nearly 8 minutes to determine the Shapley values. Greco et al. 
(2020) report taking over 8 minutes for a graph with treewidth 2 and 50 vertices. We 
are able to process much more complex (i.e., higher treewidth) graphs with signifi-
cantly more vertices in a much shorter time.

Structure of the paper.  We will first present some preliminaries on both graph 
theory and game theoretic centrality, then present the algorithm for computing the 
Shapley value: we first show how we can compute the Shapley value for one spe-
cific vertex (that appears in the root bag of our decomposition), then we show how a 
(nice) tree decomposition can be modified to quickly compute the Shapley value for 
all vertices (more quickly than computing it for each vertex individually). We then 
present an experimental evaluation of our algorithm, evaluating the performance 
of our network on several benchmark graphs and real-world examples of covert 
networks.

2 � Preliminaries

2.1 � Graphs and treewidth

Let G = (V ,E) be an undirected graph, where V is its vertex set and E its edge set. 
To avoid confusion when dealing with multiple graphs (with different vertex sets), 
we may use the notation V(G) to refer to the vertex set V of G (and similarly, E(G) to 
refer to its edge set E). Given a subset V ′

⊆ V  , we denote by G[V �] the subgraph of G 
induced by V ′ . We say that a vertex set S separates vertex sets A, B if any path from a 
vertex in A to a vertex in B must necessarily include a vertex in S. Where confusion 
is unlikely, we may write v ∈ G instead of v ∈ V(G) and V ′ instead of G[V �] . In the 
following, we let n = |V(G)|.

Given a graph G = (V ,E) , a tree decomposition of G is a tree T together with for 
each vertex t ∈ V(T) a subset Xt ⊆ V(G) (called bag) such that 
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1.	 for all v ∈ V(G) , there is a t ∈ V(T) such that v ∈ Xt,
2.	 for all (u, v) ∈ E(G) , there is a t ∈ V(T) such that {u, v} ⊆ Xt,
3.	 for any v ∈ V(G) , the subset {t ∈ V(T) ∣ v ∈ Xt} induces a connected subtree of 

T.

The width of a tree decomposition is maxt∈T |Xt| − 1 , and the treewidth of a graph G 
is the minimum width taken over all tree decompositions of G. To avoid confusion, 
from now on we shall refer to the vertices of T as “nodes”, and “vertex” shall refer 
exclusively to vertices of G.

We may designate an arbitrary node of T as root of the tree decomposition. Given 
a node t ∈ T  , we denote by G[t] the subgraph of G induced by Xt and the vertices 
in bags of nodes which are descendants of t in T (i.e. bags corresponding to vertices 
which can be reached from t without going closer to the root). The following well-
known lemma is an important fact, stating that the bags of a tree decomposition are 
separators:

Lemma 1  (equivalent to Cygan et al. (2015), Lemma 7.3) The vertices in Xt separate 
G[t] from the rest of the graph, i.e., for every edge (u, v) ∈ E(G) for which u ∈ G[t] 
and v ∉ G[t] , it holds that u ∈ Xt.

Any tree decomposition can be converted (in linear time) into a decomposition in 
nice form, that is, each of the nodes t ∈ T  is one of four types (Kloks 1994):

–	 Leaf: t is a leaf of T, and |Xt| = 1.
–	 Introduce: t has a single child node t′ . Xt ⊃ Xt′ and Xt contains exactly one ver-

tex v ∈ V(G) that is not in Xt′ , i.e., Xt = Xt� ∪̇{v} . We say that v is introduced in t.
–	 Forget: t has a single child node t′ . Xt ⊂ Xt′ and Xt′ contains exactly one vertex 

v ∈ V(G) that is not in Xt , i.e., Xt = Xt� ⧵ {v} . We say that v is forgotten in t.
–	 Join: t has exactly two children l, r. Moreover, Xl = Xr = Xt.

If the tree decomposition is given in nice form, we can specify an algorithm simply 
by specifying how it processes each of these four cases. Moreover, we can assume 
that the size of a (nice) tree decomposition (i.e. the number of bags) is linear in n 
(Kloks 1994).

2.2 � Shapley value and game‑theoretic centrality

A coalitional game consists of a set of players N (the grand coalition) together with 
a characteristic function w ∶ 2N → ℝ such that w(�) = 0 . Given a characteristic 
function, the Shapley value �i(w) of a player i is defined as (Shapley 1953):

(1)𝛷i(w) =
∑

S⊆N⧵{i}

|S|!(|N| − |S| − 1)!

|N|!
(w(S ∪ {i}) − w(S))
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In this paper, we consider coalitional games where the players correspond to vertices 
in a graph. The connectivity game vconn , introduced by Amer and Giménez (2004), is 
given by the weight function:

Note that a coalition consisting of a single player, while connected, has a value of 0.
Lindelauf et al. (2013) consider vertex-weighted connectivity games as a generali-

zation (apart from the special case |S| = 1 ) of connectivity games. They assume each 
vertex i has a weight w(i) and the corresponding vertex-weighted connectivity game 
vwconn2 is defined as follows:

In this paper, we give an algorithm for computing the Shapley value associated with 
vwconn2 , that, as a byproduct, also computes the Shapley value associated with vconn.

3 � The algorithm

In this section, we present our algorithm for computing the Shapley values of vconn and 
vwconn2 . We begin by presenting an algorithm that computes the Shapley value for a 
specific vertex v if a nice tree decomposition which contains v as sole vertex in its root 
bag is given. We then show how an arbitrary (nice) tree decomposition can be modi-
fied to contain any vertex in its root bag, allowing us to evaluate the Shapley value for 
any vertex. Finally, we show how to avoid the extra factor n that would appear in the 
running time if we computed the Shapley value for each vertex individually, by reusing 
parts of the computation.

Theorem 1  Given a graph G = (V ,E) and a nice tree decomposition T of width tw 
such that the root bag Xr contains only a single vertex v, �v(v

conn) and �v(v
wconn2) 

can be computed in time 2O(tw log tw)n4 log n.

Pseudocode for our algorithm is given in Listing 1, which uses procedures given in 
Listings 2, 3, 4 and 5. Note that where we say we update a value, if it has not been set 
previously, we initialize it to 0.

We give the algorithm for computing �v(v
wconn2) ; the results obtained from this 

algorithm can also be used to compute �v(v
conn) . We first show that for a given v ∈ V , 

the (single) value �v(v
wconn2) can be computed in time 2O(tw log tw)n4 log n.

vconn(S) =

{
1 if G[S] is connected and |S| > 1,

0 otherwise.

vwconn2(S) =

�∑
i∈S w(i) if G[S] is connected,

0 otherwise.
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Using Eq.  (1) we obtain the following more suitable expression for computing 
�v(v

wconn2) , by splitting the summation into different terms, depending on the cardi-
nality k of S:

𝜙v(v
wconn2) =

|V|−1∑

k=0

(
k!(|V| − k − 1)!

|V|!

∑

S⊆V⧵{v},|S|=k

(vwconn2(S ∪ {v}) − vwconn2(S))

)

=

|V|−1∑

k=0

(
k!(|V| − k − 1)!

|V|!

( ∑

S⊆V⧵{v},|S|=k

vwconn2(S ∪ {v})

−
∑

S⊆V⧵{v},|S|=k

vwconn2(S)
))
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Let S ⊆ V  . Since vwconn2(S) = 0 whenever S induces a subgraph with more than one 
connected component, the problem of computing �v(v

wconn2) reduces to computing, 
for each k, the total weight of connected subsets S ⊆ V(G) with |S| = k and v ∈ S 
(resp. v ∉ S ). For vconn , we simply need to count the number of such subsets rather 
than compute their total weight.

As is standard for algorithms using dynamic programming on tree decomposi-
tions, for each node t of the tree decomposition we consider the subgraph G[t]. 
For each such subgraph, we consider the subsets (coalitions) S ⊆ G[t].

Recall that if S ⊆ V(G) is not connected, by definition it does not contribute to 
the Shapley value. Call a subset S ⊆ V(G[t]) good if the subgraph G[S] induced 
by S is connected or every connected component of G[S] has non-empty intersec-
tion with Xt . By definition, the empty set is good.

Our algorithm works by considering all good subsets S ⊆ V(G[t]) for each 
t ∈ T  . The following Lemma shows that subsets that are not good do not count 
towards the Shapley value of the game, and thus we can safely disregard them.

Lemma 2  Let S ⊆ V(G) induce a connected subgraph of G and let t ∈ T  . Then 
S ∩ V(G[t]) is a good subset of G[t].

Proof  By contradiction. Suppose S ∩ V(G[t]) is not connected. Then some compo-
nent of S ∩ V(G[t]) has an empty intersection with Xt . Then S can not be connected, 
since by Lemma 1Xt separates G[t] from the rest of the graph. 	� ◻

Of course, there can still be exponentially many good subsets. The key to our 
algorithm is that for each such subset S, we do not need to know exactly how the 
subset is made up: if we know how the subset S behaves within Xt , we know how 
it interacts with the rest of the graph (outside of G[t]), since Xt is a separator. 
Subsets which behave similarly within Xt can be grouped together, thus speeding 
up the computation. We classify the subsets into groups depending on their inter-
action with the rest of the graph. Specifically, each subset S ⊆ G[t] has a charac-
teristic (w.r.t. G[t]) that consists of

–	 the intersection R = S ∩ Xt,
–	 an equivalence relation ∼ on S ∩ Xt such that a ∼ b if and only if a and b are in 

the same connected component of the subgraph induced by S,
–	 the cardinality of S, k = |S|.

For the equivalence relation ∼ , note that each element can be in one of at most 
tw + 1 equivalence classes; a trivial upper bound on the number of such relations 
is (tw + 1)tw+1 . The number of subsets R is at most 2tw+1 ; this is dominated by the 
number of equivalence relations. k can take values in the range 0,… , n . Thus, the 
total number of distinct characteristics is 2O(tw log tw)n . For every node t ∈ T  and 
each characteristic (R,∼, k) , we will compute

–	 nt(R,∼, k) : the number of good subsets S ⊆ G[t] with characteristic (R,∼, k),



1 3

Efficiently computing the Shapley value of connectivity games… Page 11 of 23      6 

–	 wt(R,∼, k) : the total weight of all good subsets S ⊆ G[t] with characteristic 
(R,∼, k).

Note that the weight of a subset S ⊆ G[t] is simply the sum of the vertex weights, 
i.e. 

∑
v∈S w(v).

Note that if r is the root of T, and Xr = {v} , then wr({v}, {v}, k) is exactly 
the total weight of connected subsets S ⊆ V(G) with |S| = k and v ∈ S , whereas 
wr(�, �, k) is the total weight of connected subsets of size k not including v. This 
gives us exactly the information we need to compute �v(v

wconn2).
The following example illustrates the characteristics (R,∼, k).

Example 1  Consider the graph shown in Fig. 2a and the tree decomposition shown 
in Fig. 2b. The induced subgraph G[r] associated with node r consists of vertices 
D, E, F, G, H, I. The subset {G,D} is not good because the connected component 
{G} has an empty intersection with Xr = {D,E,F} . The subset {D,E,G,H} is good, 
and has characteristic ({D,E}, {{D}, {E}}, 4) and is the only subset having this 
characteristic, thus nl({D,E}, {{D}, {E}}, 4) = 1 . The subset {D,E,G, I} is also 
good, and has characteristic ({D,E}, {{D,E}}, 4) . Since the subset {D,E,H, I} has 
the same characteristic, we have that nr({D,E}, {{D,E}}, 4) = 2 . 	�  ◻

For every node t ∈ T  we compute nt(R,∼, k) and wt(R,∼, k) for each character-
istic (R,∼, k) in a bottom-up fashion. We start at the leaf vertices, and then work 
our way up the root of the tree. We handle each of the cases as follows:

Leaf. If t ∈ T  is a leaf node, then Xt = {v} for some v ∈ V  . Since G[t] is a single-
ton vertex, t has exactly two characteristics c1 = (�, �, 0) and c2 = ({v}, {(v, v)}, 1) 
(corresponding to the only two subsets S ⊂ G[t] , the empty set and the single-
ton {v} ). It is easy to see that nt(c1) = 1,wt(c1) = 0 and nt(c2) = 1,wt(c1) = w(v) . 
Pseudocode for the Leaf procedure is given in Listing 2.

Fig. 2   a Example of a 9-vertex graph. b Tree decomposition for the graph in (a); note that the decompo-
sition given is neither of optimal width nor nice
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Introduce. If t ∈ T  is an introduce node, it has a single child t� ∈ T  and 
Xt = Xt� ∪̇{v} for some v ∈ V(G) . Every characteristic (R,∼, k) (w.r.t. G[t�] ) cor-
responds to nt� (R,∼, k) distinct subsets of G[t�] , and we may extend these subsets 
S ⊆ G[t�] to subsets of G[t] by either adding the introduced vertex v or not. Thus, 
the nt� (R,∼, k) subsets of G[t�] give rise 

1.	 when not adding v, to nt� (R,∼, k) good subsets of G[t] with characteristic (R,∼, k) 
and total weight wt(R,∼, k) , and

2.	 when adding v, if k = 0 or R ≠ ∅ , to nt� (R,∼, k) good subsets of G[t] with charac-
teristic (R ∪ {v},∼�, k + 1) and total weight wt� (R,∼, k) + nt� (R,∼, k) ⋅ w(v),

3.	 when adding v, if k ≠ 0 and R = � , then S ∪ {v} has at least two connected com-
ponents, (at least) one of which does not intersect Xt , so it is not a good subset,

where ∼� is the relation obtained as the transitive closure of 
∼ ∪{(v, v)} ∪ {(v, x) ∣ x ∈ R, (v, x) ∈ E(G)}.

Note that two distinct characteristics (R,∼, k) and (R�,∼�, k�) with R = R� 
and k = k� (but ∼≠∼� ) may give rise (upon addition of the vertex v) to 
nt� (R,∼, k) + nt� (R

�,∼�, k�) subsets with the same characteristic (R ∪ {v},∼��, k + 1) 
with total weight wt� (R,∼, k) + wt� (R

�,∼�, k�) + (nt� (R,∼, k) + nt� (R
�,∼�, k�)) ⋅ w(v) . 

Therefore, we can compute nt(R ∪ {v},∼�, k + 1) (and similarly, 
wt(R ∪ {v},∼�, k + 1) ), by taking the sum of nt� (R,∼, k) over all ∼ such that ∼� is 
the transitive closure of ∼ ∪{(v, v)} ∪ {(v, x) ∣ x ∈ R, (v, x) ∈ E(G)} . Pseudocode 
for the Introduce procedure that illustrates this summation is given in Listing 3.
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The following lemma (c.f. Lemma 2) ensures the correctness of the introduce 
step:

Lemma 3  Let t ∈ T  and suppose that t is an introduce node with child t� ∈ T  . Sup-
pose S ⊆ G[t] is a good subset. Then S ∩ G[t�] is a good subset of G[t�].

Proof  Suppose that S ∩ G[t�] is not connected, and some connected component C 
of S ∩ G[t�] has an empty intersection with Xt′ . Suppose the introduced vertex is v. 
Then v must be adjacent to some vertex of C, but this is impossible since C ∩ Xt� = � 
and v is not incident to G[t�] ⧵ Xt�.

This ensures that we count each good subset S ⊆ G[t] at least once. The at most 
once statement follows from the fact that S ∩ G[t�] corresponds to a unique charac-
teristic w.r.t G[t]. 	� ◻
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Forget. If t ∈ T  is a forget node, it has a child t� ∈ T  such that Xt� ∪̇{v} = Xt for 
some v ∈ V(G) . If for characteristic (R,∼, k) (w.r.t. G[t�] ), v ∉ R , then (R,∼, k) is 
also a characteristic w.r.t. G[t]. If v ∈ R , then there are three cases: 

1.	 R = {v} . Then we obtain nt� (R,∼, k) good subsets of G[t] with characteristic 
{�, �, k} and total weight wt(R,∼, k),

2.	 R ≠ {v} and {(v, v)} ∈∼ . Then none of the nt� (R,∼, k) good subsets of G[t�] are 
good for G[t], since the connected component containing v does not intersect Xt , 
and there is some other connected component that intersects Xt.

3.	 Otherwise, we obtain nt� (R,∼, k) good subsets of G[t] with characteristic 
(R ∩ Xt,∼

�, k),

where ∼� is the relation obtained by projecting the relation ∼ on R to R ∩ Xt (i.e., 
∼�=∼ ∩{(u, v) ∣ u, v ∈ Xt}).

As with the introduce procedure, subsets with a given characteristic wrt. G[t] 
may correspond to subsets with different characteristics for G[t�] , so to compute 
the table entries wrt. G[t] we must once again take the sum of relevant table 
entries with respect to G[t�] . Pseudocode for the Forget procedure is given in List-
ing 4. The correctness follows from the following Lemma:

Lemma 4  Let t ∈ T  and suppose that t is a forget vertex with child t� ∈ T  . Suppose 
S ⊆ G[t] is a good subset. Then S is a good subset of G[t�].

Proof  If S is not connected, then S has non-empty intersection with Xt . Since 
Xt ⊂ Xt′ , S also has a non-empty intersection with Xt′ . 	�  ◻



1 3

Efficiently computing the Shapley value of connectivity games… Page 15 of 23      6 

Join. If t ∈ T  is a join node, then it has two children l, r such that Xl = Xr = Xt . 
Suppose that (Rl,∼l, kl) is a characteristic of l and (Rr,∼r, kr) is a character-
istic of r and suppose that Rl = Rr . Then there are nl(Rl,∼l, kl) ⋅ nr(Rr,∼r, kr) 
subsets with characteristic (Rl,∼

�, kl + kr − |Rl|) and total weight 
nl(Rl,∼l, kl) ⋅ wr(Rr ,∼r , kr) + nr(Rr ,∼r , kr) ⋅ wl(Rl,∼l, kl) − nl(Rl,∼l, kl) ⋅ nr(Rr ,∼r , kr) ⋅ (�v∈Rlw(v))   , 
where ∼ is the transitive closure of ∼l ∪ ∼r . Pseudocode for the Join procedure is 
given in Listing 5.

Similarly to the Introduce and Forget cases, multiple distinct characteristics for 
l, r may, when combined, correspond to the same characteristic for t; we should 
again take the sum over these characteristics. The correctness follows from the 
following Lemma:

Lemma 5  Let t ∈ T  and suppose that t is a join node with children l, r ∈ T  . Suppose 
S ⊆ G[t] is a good subset. Then S ∩ V(G[l]) (resp. S ∩ V(G[r]) ) is a good subset of 
G[l] (resp. G[r]).

Proof  By contradiction. We show the case for the left child, the case for the right 
child is symmetric.

If S ⊆ V(G[l]) then the lemma follows automatically. Therefore, assume there 
exists v ∈ S such that v ∉ V(G[l]) . In particular, this means that v ∈ G[r] ⧵ Xr.

Suppose S ∩ V(G[l]) is not connected and has a connected component C with 
empty intersection with Xl . Since none of the vertices of S ∩ V(G[r]) are incident to 
C, C is still a maximal connected component of S, but S has at least one other con-
nected component (since S ∩ V(G[l]) is not connected) and so is not connected, and 
C has empty intersection with Xl = Xt . 	�  ◻

As it is the most complicated procedure, we also give an example illustrating 
the Join procedure.
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Example 2  Consider Fig. 2 of Example 1. Consider the join node t and its children 
l,  r. There are 13 subsets4 (of G[t]) with characteristic ({D,E}, {{D,E}}, 5) . This 
can be seen as follows, there are:

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 5) times 1 subset of G[r] 
with characteristic ({D,E}, {{D}, {E}}, 2),

–	 2 subsets of G[l] with characteristic ({D,E}, {{D,E}}, 4) times 3 subsets of G[r] 
with characteristic ({D,E}, {{D}, {E}}, 3),

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 3) times 1 subset of G[r] 
with characteristic ({D,E}, {{D}, {E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 3) times 2 subsets of G[r] 
with characteristic ({D,E}, {{D,E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D}, {E}}, 3) times 2 subsets of 
G[r] with characteristic ({D,E, {{D,E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D}, {E}}, 2) times 1 subset of G[r] 
with characteristic ({D,E, {{D,E}}, 5),

and we have that 1 × 1 + 2 × 3 + 1 × 1 + 1 × 2 + 1 × 2 + 1 × 1 = 13 . 	�  ◻

By processing the vertices of the tree decomposition in a bottom-up fashion, we 
can compute the values nr(R,∼, k) and wr(R,∼, k) for all characteristics (R,∼, k) 
of the root node r. As we have seen before, knowing these values is sufficient to 
compute the Shapley value of vertex v. Now, we are ready to provide the proof of 
Theorem 1.

Proof (Proof of Theorem 1)  We assume we are given a nice tree decomposition of G 
(which we may assume has O(n) nodes). For each node, there are 2O(tw log tw)n char-
acteristics. To compute the values for one characteristic requires considering (in the 
worst case, which is the join node) 2O(tw log tw)n2 pairs of characteristics for the child 
nodes. For each such pair, we perform a constant number of multiplications of n-bit 
integers, taking n log n time. The dynamic programming table for one node of the 
tree decomposition takes up 2�(tw log tw)n2 space, but at any given time we only need 
to keep O(log n) of them in memory. 	�  ◻

Of course, this only allows us to evaluate the Shapley value for a single vertex v, 
under the assumption that for the root bag r, Xr = {v} (i.e., v is the only vertex in the 
root bag). To compute the Shapley value for all vertices, we perform the following 
operations, starting from a nice tree decomposition:

–	 For every join node t, we create a new node t′ with Xt� = Xt . t′ is made the parent 
of t, and the original parent of t becomes the parent of t′ . In case t was the root, 
t′ becomes the root. Note that t′ is neither a join, introduce, forget, or leaf node, 

4  In this example, we refer exclusively to good subsets.
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however, the dynamic programming tables for t′ are simply equal to those for t 
(we shall from now on, refer to nodes such as t′ as no-change nodes).

–	 For every vertex v ∈ V(G) , we pick a node of the tree decomposition t such that 
v ∈ Vt . We create a copy t′ of t, which is made the parent of t, and the original 
parent of t becomes the parent of t′ . In case t was the root, t′ becomes the root. 
Next, we create another copy t′′ of t′ . t′ is made the parent of t′′ (making t′ into a 
join node). We then create a series of introduce nodes, starting from t′′ , such that 
eventually we end up with a leaf node u, whose bag contains only v. If we now 
reroot our tree decomposition so that the root becomes u, thanks to the previous 
transformation, every join node remains a join node—the roles of introduce, for-
get and no-change nodes can become interchanged.

The following example illustrates the two operations described above.

Example 3  Figure  3 shows an example of this process. Starting from a nice 
tree decomposition (Fig.  3a) a no-change node is added before the join bag A,  B 
(Fig. 3b). To create a leaf bag for vertex B, we pick a bag t containing it (in this 
example the right child of the join bag), insert a node t′ which becomes the parent of 
t, create an additional child (of t′ ) t′′ (thus making t′ into a join node), then add a leaf 
bag u (containing only B) as child of t′′ (making t′′ into a forget node).

This process can be repeated until for each vertex v ∈ V(G) there exists a leaf bag 
containing it. Note that in the example the tree decomposition is rooted at A, but it 
can also be viewed as being rooted at u (or any other leaf node); this turns t′′ from a 
forget node into a no-change node, t′ remains a join node, while the no-change node 

Fig. 3   a A (nice) tree decomposition. b A no-change node is added before the join bag A,  B. c Extra 
nodes t′ and t′′ are added to enable the creation of a leaf bag containing vertex B, which can be used to 
re-root the decomposition
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A, B (currently a child of the root node A) becomes an introduce node (introducing B 
to the leaf node containing A). 	�  ◻

Thus, we now have a tree decomposition that can be rerooted such that any 
vertex v becomes the sole vertex in the root bag. However, this only gives a 
2�(tw log tw)n5 log n-time algorithm for computing the Shapley values for all the ver-
tices in a given graph, since this would require running the algorithm separately for 
each root vertex. However, there is a lot of overlap in these computations, as the 
dynamic programming tables for each subtree may be computed multiple times. By 
memoizing a table when it is computed (similar to belief propagation in Bayesian 
Networks, see e.g. Pearl 1988), we thus obtain a 2O(tw log tw)n4 log n-time algorithm 
using 2�(tw log tw)n3 space:

Theorem 2  Given a graph G of treewidth at most tw, the Shapley value of all verti-
ces v ∈ V(G) can be computed in time 2�(tw log tw)n4 log n and space 2�(tw log tw)n3.

4 � Computational experiments

In this section, we experimentally evaluate our algorithm. We test it on several real-
world (covert) social networks and also on several (artificial) benchmark graphs. We 
show that our algorithm can compute the Shapley value for these networks in a rea-
sonable amount of time.

We tested our algorithm using the following covert networks found in the 
literature:

–	 A network of 69 of individuals involved in 9/11 attacks (9-11), where edges rep-
resent some kind of tie (such as cooperating in an attack, financial transactions or 
having trained together) (Krebs 2002).

–	 A network of 77 Islamic State members in Europe (ise-extended), where edges 
represent some kind of tie (such as cooperating in an attack, being related or 
being present in the same location) (Gutfraind and Genkin 2017).

–	 A network of 293 drug users (drugnet), where edges represent acquaintanceships 
(Weeks et al. 2002).

–	 A network of 36 Montreal gangs (montreal), where edges represent ties between 
gangs (Descormiers and Morselli 2011).

–	 A network of 67 members of Italian gangs (italian), where an edge represents 
joint membership of a gang (UCINET 2018).

We also tested our algorithm on several benchmark graphs from the 2018 PACE 
challenge (Bonnet and Sikora 2019). These graphs are not social networks but are 
intended to demonstrate the capabilities of our algorithms on graphs with a range of 
treewidth values and vertex counts.
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For each network, we considered the largest connected component. Each of these 
networks has relatively low treewidth. The Islamic State network has the highest 
treewidth (13), while the Italian Gang network is very sparse (treewidth 3). We 
also considered using the Noordins top terrorist network (Everton 2012). However, 
as this 79-vertex network has treewidth at least 19, applying our techniques is not 
feasible.

Our implementation simultaneously computes the value of both vconn and vwconn2 
(we set all weights to 1 for these experiments, resulting in a game where the value of 
a connected coalition is equal to its size).

Table 1 reports computational performance results on these benchmark graphs. 
Our implementation uses the .NET BigInteger library, which performs multiplica-
tions in �(n2) time using a method similar to grid multiplication. While there are 
several asymptotically faster methods for multiplication, and we experimented with 
several such implementations, none of these resulted in a significant speed up for the 
graphs considered. The time reported is that for computing the Shapley values of all 
vertices in the graph, using the method that stores all intermediate tables to achieve 
a 2O(tw log tw)n4 log n computation time. The time reported does not include the time 
for computing a tree decomposition, however there are many algorithms that can 
quickly compute a tree decomposition for many graphs of practical interest (see e.g., 
Tamaki 2019).

We are able to compute the Shapley value for each of the covert networks in less 
than two minutes. For the 9/11 network, our computation took only 5.3 s. The Shap-
ley value for this network has previously been approximated by van Campen et al. 
(2017), using a method based on a random sampling of 10.000 permutations of the 
players in the network. Lindelauf et al. report that this computation of approximate 
Shapley values took 5 minutes. Our method is not only exact, but also much faster.

Of course, the method of van Campen et al. (2017) can be applied to any graph 
rather than just to graphs of small treewidth. However, it is not yet known how the 

Table 1   Performance of the 
algorithm on several real-world 
networks and several benchmark 
graphs from the PACE 2018 
challenge

For disconnected graphs, we considered only the largest connected 
component in the graph (for which the number of vertices and edges 
is given)

Graph Treewidth Vertices Edges Time (s)

italian 3 65 113 0.6
montreal 6 29 75 0.4
9-11 8 69 163 5.3
drugnet 8 193 273 119.4
ise-extended 13 77 274 38.7
pace_005 5 201 253 31.1
pace_012 5 572 662 1746
pace_022 6 732 1084 22868
pace_023 6 990 1258 30255
pace_028 7 139 202 2262
pace_070 10 106 399 50.0
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performance of their approximation depends on the structure of the graph. Still, 
when the treewidth of the graph is small, our method provides an excellent way to 
compute exact Shapley values.

The IS in Europe network (ise-extended) has treewidth 13. Despite this relatively 
high treewidth, our algorithm was still able to compute the Shapley value in 38.7 s. 
Our algorithm can thus handle graphs even with moderate treewidth quite quickly. 
It can also handle graphs with large numbers of vertices, although it appears from 
the results on the PACE networks that the polynomial factor in the running time ( n4 ) 
starts to dominate rather than the dependence on the treewidth. Another factor that 
affects the running time is the structure of the graph itself. If the subgraph induced 
by the vertices in a bag is (close to) a clique, the number of connectivity partitions 
that needs to be considered is strongly reduced, since vertices connected by an edge 
are always in the same component of such a partition. This does indeed happen with 
the ise-extended network, where the largest bag (containing 14 vertices) induces a 
clique.

5 � Conclusions

Game-theoretic centrality measures are a powerful tool for identifying important 
vertices in networks. We have shown that, using treewidth, two game-theoretic cen-
trality measures can be practically computed on graphs much larger than previously 
feasible, allowing us to analyze larger networks than before.

Our algorithm runs in time 2O(tw log tw)nO(1) . The log-factor in the exponent is 
due to the need to keep track of a connectivity partition. A very interesting open 
question is whether the algorithm can be improved to have single-exponential run-
ning time, that is, is it possible to attain a 2O(tw)nO(1)-time algorithm? For several 
(counting) problems involving connectivity, this is indeed possible: For instance, it 
is possible to count Hamiltonian Cycles or Steiner Trees in single-exponential time 
(Bodlaender et al. 2015) by using approaches involving matrix determinants. Either 
a positive answer to this question or a conditional lower bound ruling out such an 
algorithm would be interesting.

We remark that the log-factor in the exponent represents only the worst case. 
However, since we are dealing with induced subgraphs, if two vertices share an 
edge, they can never be in two distinct connected components. Therefore, the actual 
number of connectivity partitions considered may be lower than suggested by the 
worst case bound. It would be interesting to see if it is possible to take this phenom-
enon into account when generating a tree decomposition: perhaps it would be pos-
sible to optimize a tree decomposition to limit the number of feasible partitions (for 
instance, by giving preference to bags that are cliques). Such an approach has previ-
ously been considered for Steiner Tree (van der Graaff 2015).

With a trivial adaptation, our algorithm can also be used to compute the Banzhaf 
value (Banzhaf 1964) for vconn and vwconn2 ; this requires merely a change in weight-
ing values. Techniques similar to ours can also be used to evaluate other connectiv-
ity games, e.g., the Shapley value for vwconn1 and vwconn3 (Lindelauf et al. 2013) can 
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be computed by extending our notion of characteristic to also include the maximum 
weight of an edge in the subgraph induced by S.

Another interesting question is whether other connectivity measures can be com-
puted using treewidth. For instance, vconn assigns a value of 0 to any disconnected 
coalition, even if there exists a large connected component. It might be more reason-
able to make the value of a coalition equal to the size of the largest connected com-
ponent inside this coalition. It is easy to adapt our techniques to obtain an algorithm 
running in time nO(tw) for this case; it would be interesting to see if a fixed-parameter 
tractable algorithm exists.
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