
Vol.:(0123456789)

Operational Research (2023) 23:6
https://doi.org/10.1007/s12351-023-00742-4

1 3

ORIGINAL PAPER

Efficiently computing the Shapley value of connectivity
games in low‑treewidth graphs

Tom C. van der Zanden1  · Hans L. Bodlaender2 · Herbert J. M. Hamers3

Received: 13 December 2021 / Revised: 23 December 2022 / Accepted: 11 January 2023
© The Author(s) 2023

Abstract
The Shapley value is the solution concept in cooperative game theory that is most
used in both theoretical and practical settings. Unfortunately, in general, computing
the Shapley value is computationally intractable. This paper focuses on computing
the Shapley value of (weighted) connectivity games. For these connectivity games,
which are defined on an underlying (weighted) graph, computing the Shapley value
is #�-hard, and thus (likely) intractable even for graphs with a moderate number of
vertices. We present an algorithm that can efficiently compute the Shapley value if
the underlying graph has bounded treewidth. Next, we apply our algorithm to sev-
eral real-world (covert) networks. We show that our algorithm can quickly compute
exact Shapley values for these networks, whereas in prior work these values could
only be approximated using a heuristic method. Finally, it is demonstrated that our
algorithm can also efficiently compute the Shapley value time for several larger
(artificial) benchmark graphs from the PACE 2018 challenge.

Keywords  Centrality · Social network analysis · Treewidth · Graph theory · Game
theory

This article shares material with parts of the first author’s thesis (van der Zanden 2019).

 *	 Tom C. van der Zanden
	 T.vanderZanden@maastrichtuniversity.nl

	 Hans L. Bodlaender
	 H.L.Bodlaender@uu.nl

	 Herbert J. M. Hamers
	 H.J.M.Hamers@tilburguniversity.edu

1	 Department of Data Analytics and Digitalisation, Maastricht University, Maastricht,
The Netherlands

2	 Department of Information and Computing Science, Utrecht University, Utrecht,
The Netherlands

3	 Department EOR (TiSEM) and TIAS, Tilburg University, Tilburg, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s12351-023-00742-4&domain=pdf
http://orcid.org/0000-0003-3080-3210

	 T. C. van der Zanden et al.

1 3

 6   Page 2 of 23

Mathematics Subject Classification  05C85 · 91-04 · 91-05 · 91-08 · 91A80

1  Introduction

Motivated by the need to identify important vertices in networks (graphs), many
measures for ranking vertices have been suggested. Among these are the classical
centrality measures, such as betweenness, closeness and degree (see e.g., Wasser-
man and Faust 1994). However, the drawback is that all of these measures only take
the structure of the network into account. In light of this, game-theoretic central-
ity measures have received considerable interest. These measures not only take the
structure of the network into account, but enable one to include special information
with respect to individuals and links in the network. Further, such a measure also
takes into account the coalitional strength of members in the network.

The Shapley value (Shapley 1953) is most used as centrality measure in these
situations. This is not surprising since the Shapley value satisfies intuitive properties
(cf. Shapley 1953; Young 1985) that are also considered as fair in many practical
situations (e.g., airport landing fees (Littlechild and Owen 1973), water transporta-
tion (Deidda et al. 2009), genetics (Moretti et al. 2007) and terrorism (Lindelauf
et al. 2013)). More applications of the Shapley value in different fields can be found
in the survey of Moretti and Patrone (2008).

The biggest challenge in using the Shapley value in real-world applications is the
time required to compute it, which generally increases exponentially with the num-
ber of players. More precisely, for many games it can be shown that computing the
Shapley value is a #�-hard problem (Faigle and Kern 1992; Michalak et al. 2013a,
b).

In this paper we focus on the Shapley value for network games in which the
vertices are associated with players. In particular we consider connectivity games,
introduced by Amer and Giménez (2004). These are {0, 1}-valued games in which a
coalition has the value 1 if the subgraph induced by this coalition is connected, and
has value 0 otherwise. In a vertex-weighted connectivity game, introduced by Lin-
delauf et al. (2013), the value equals the sum of the vertex weights of a coalition that
induces a connected subgraph, and 0 if the subgraph is not connected.

Lindelauf et al. studied these centrality measures in the context of identifying the
most important vertices in terrorist networks (Lindelauf et al. 2013; van Campen
et al. 2017). They considered two networks: one (due to Koschade 2006) consist-
ing of 17 terrorists involved in a 2002 bombing in Bali, the second (due to Krebs
2002) consisting of 69 terrorists involved in planning and executing the 9/11 attacks.
Whereas for the first network they were able to compute the exact Shapley values,
for the second networks this was infeasible and they considered only the part of the
network made up by the 19 hijackers who actually carried out the attack (shown in
Fig. 1).

Our contribution. We present a fixed-parameter tractable algorithm, parameter-
ized by the treewidth of the graph, that can compute the Shapley values associated
with the weighted and unweighted connectivity games. Using our approach, we are
able to compute the exact Shapley value for the full 69-vertex network of the 9/11

1 3

Efficiently computing the Shapley value of connectivity games… Page 3 of 23  6

attacks. We are also able to compute the exact Shapley values for some much larger
networks, having up to a thousand vertices. In the remainder of this introduction,
we review prior work on algorithms for computing Shapley values of connectivity
games, and briefly introduce the techniques (such as treewidth and parameterized
algorithms) used in this paper.

Prior work on algorithms. Michalak et al. (2013b) showed that computing the
Shapley value for the unweighted game is unfortunately #�-hard. As such, it is
unlikely that an efficient algorithm for computing these values exists. On the other
hand, Michalak et al. also proposed an algorithm that is slightly more efficient than
the brute-force approach1 used by Lindelauf et al., called FasterSVCG. Using this
algorithm, the authors computed Shapley values for a larger version of the 9/11 net-
work, with 36 vertices (corresponding to the hijackers and some key accomplices).
Their approach, rather than considering all 2|V| coalitions, considers only the con-
nected coalitions, of which there may be considerably fewer than 2|V| . However, in
the worst case, the number of connected coalitions may still be exponential. As such,
for the full 69-vertex network, running this algorithm is still infeasible.

Michalak et al. (2013b) also considered an approximation method based on
random sampling and studied its performance on the 36-vertex 9/11 network. van
Campen et al. (2017) proposed a different sampling method, structured random
sampling, that aims to be more efficient than random sampling. Using this method,
they computed approximate Shapley values for the 69-vertex 9/11 network. Unfor-
tunately, neither method comes with any formal guarantees on the quality of the
approximation.

Exploiting treewidth to get more efficient algorithms. While, in general, one
should not expect to find an efficient algorithm for computing the exact Shapley

Fig. 1   Graph showing the connections between the 19 hijackers that carried out the 9/11 attacks. Vertices
are coloured according to the flights they were on. Note that the full network consists of 69 vertices

1  Lindelauf et al. do not state explicitly how they computed the Shapley value, but straightforwardly
evaluating the formula would take �(2|V|) time.

	 T. C. van der Zanden et al.

1 3

 6   Page 4 of 23

values of these games (due to the #�-hardness), we can attempt to exploit the struc-
ture that the networks may have in order to obtain more efficient algorithms.

In this paper, we show that the Shapley value (for both the weighted and the
unweighted game) can be computed efficiently on graphs of bounded treewidth.
Exploiting the fact that a graph has bounded treewidth is a celebrated and widely-
used technique from theoretical computer science, and many problems are known to
be solvable in polynomial time on graphs of bounded treewidth (Bodlaender 1997).
We use this idea to derive a fixed-parameter tractable algorithm for computing
Shapley values. Our result is not merely theoretical: we also provide an implementa-
tion and show that it can be used to compute Shapley values for graphs of practical
interest.

Treewidth is often said to be a measure of how “tree-like” a graph is. If a graph,
on a macroscopic scale, resembles a tree, then treewidth in some sense measures
how much it deviates from being a tree. The treewidth of a graph is defined in terms
of tree decompositions. Such a decomposition is based around a tree, to each vertex
of which is associated a set of vertices of the original graph in a way that respects
the structure of the graph. The largest number of vertices associated in this way to
any given vertex of the tree, determines the treewidth of the graph. We will make
this definition more precise in the following section.

Thanks to the simple structure of trees, many ��-hard problems can be solved
in polynomial time on trees. Very often, such problems can also be solved in poly-
nomial time on graphs of bounded treewidth: while the best known algorithms for
such problems in general require exponential time, we can often construct an algo-
rithm that is only exponential in the treewidth (by doing some exponential computa-
tion within each vertex of the tree, which contains a bounded number of vertices of
the original graph), and then using the properties of the problem that allow it to be
solved in polynomial time on trees to combine the results computed within each tree
vertex to provide a solution for the original problem.

Of course, our method crucially depends on the network having bounded tree-
width. Fortuitously, the network of the 9/11 attacks has a rather low treewidth of
only 8. In general, one cannot expect social networks to have small treewidth: social
networks often have large cliques, and the size of the largest clique forms a lower
bound on the treewidth of a graph (see e.g., Adcock et al. 2016, for a study of tree
decompositions of social networks). However, terrorist and criminal organizations
are often well-served by keeping their networks sparsely connected, as this helps
to avoid detection and as such one would not expect large cliques (Lindelauf et al.
2009). As another example of networks that may have low treewidth, the interaction
networks in a hierarchical organization would naturally be tree-like.

Our goal is to develop an algorithm that, given a graph G with n = |V| and tree
decomposition of G of width tw, computes the Shapley value in time f (tw)nO(1) ,
where f is some exponential function and nO(1) a (low-degree) polynomial. As such,
we hope to “hide” the exponential behaviour of computing the Shapley value in a
function that depends only on the treewidth of the graph, and obtain an algorithm
whose running time is (for graphs of bounded treewidth) polynomial in n.

Specifically, we show that for a graph G of treewidth tw and a vertex v ∈ V  ,
the Shapley value of the vertex-weighted connectivity game of vertex (player) v

1 3

Efficiently computing the Shapley value of connectivity games… Page 5 of 23  6

can be computed in time 2O(tw log tw)n4 log n . Note that our algorithm for computing
the Shapley value requires multiplying large (O(n)-bit) integers; this running time
is achieved if using the O(n log n)-time algorithm of Harvey and van der Hoeven
(2019). Moreover, we usually want to know the Shapley value for all vertices rather
than for a specific vertex. Rather than running the previous algorithm n times, we
also show that computing the Shapley value for all vertices can be done in the same
time, by reusing the intermediate results of previous computations.

For instance, the graph considered by Lindelauf et al. that represents the com-
munications between the perpetrators of the 9/11 attacks, consists of 69 vertices but
only has treewidth 8. While evaluating all 269 subsets of vertices is clearly infeasible,
our algorithm can compute the Shapley value in a couple of seconds thanks to the
low treewidth of the graph.

Of course, our method crucially depends on being given a tree decomposition of
low width. Note that while in general, computing a minimum width tree decomposi-
tion is an ��-hard problem, for many graphs of practical interest this can be done
efficiently (see e.g., Dell et al. 2018, for an overview of recent—and very competi-
tive—implementations for computing treewidth).

Comparison of running times. Given a graph G = (V ,E) , the algorithm of Micha-
lak et al. (2013b) runs in time O((|V| + |E|)|C|)2, where |C| denotes the number
of connected induced subgraphs of G. This algorithm, while offering a moderate
improvement over the brute-force approach still requires exponential time on almost
all interesting classes of graphs.

So, how does our 2O(tw log tw)n4 log n running time compare to this? Observe
that there exist graphs of low treewidth that have a very large number of con-
nected induced subgraphs (for example, the star on n vertices has treewidth 1 and
more than 2n−1 induced connected subgraphs), while graphs with a small number
of induced connected subgraphs also have low treewidth: a graph with at most |C|
induced connected subgraphs has treewidth at most 2 log |C|3. While this bound is
tight up to a constant factor (for instance on an n-vertex clique), in many instances
the treewidth is much smaller than log |C| . Thus, the set of graphs on which the
algorithm of Michalak et al. would perform well (graphs with a small number of
induced connected subgraphs) is a strict subset of the set of graphs on which our
algorithm would perform well (graphs with low treewidth).

Other uses of treewidth in computing solution concepts. Treewidth was first con-
sidered in the context of connectivity games by Aziz et al. (2009). They considered
a game wherein the players are the edges and a winning coalition is one that spans
the vertex set. They proved that computing the Banzhaf index can be done in poly-
nomial time for a graph with bounded treewidth, but gave no experimental results

2  Michalak et al. (2013b) ignore in the analysis of their running time the fact that the numbers involved
in the computation of the Shapley value can get exponentially large, and thus we can no longer presume
that arithmetic operations can be done in O(1) time. Our running times do account for this, and are thus a
factor n log n higher.
3  In fact, pathwidth at most 2 log |C| : if we fix some arbitrary vertex v, then there are at most log |C| ver-
tices at distance exactly r from v.

	 T. C. van der Zanden et al.

1 3

 6   Page 6 of 23

and stated as an open problem whether Shapley values could be computed in a simi-
lar manner.

Recently, Greco et al. (2017, 2020) proposed using treewidth to compute Shapley
values for matching and allocation games in graphs. In a matching game, the value
of a coalition is the size of the maximum matching in the graph induced by that
coalition; allocation games are similar but the nodes in the coalition are picked from
one half of a bipartite graph. However, their algorithm is based on a formulation
in Monadic Second Order Logic and the application of theoretical frameworks that
allow counting of satisfying assignments of MSO formulas. For graphs of bounded
treewidth, this yields a polynomial-time algorithm, where the degree of the polyno-
mial may depend on the treewidth. In contrast, the degree of the polynomial in our
algorithm is fixed, and only the constant factor in the running time is affected by the
treewidth (i.e., we obtain a fixed-parameter tractable algorithm). Moreover, due to
the application of these algorithmic metatheorems, their algorithm is not very effi-
cient in practice: Greco et al. (2017) report that, even for the graph coauth-5 of tree-
width only 3 with 30 vertices, their implementation (using the MSO solver Sequoia
(Langer 2013)) took nearly 8 minutes to determine the Shapley values. Greco et al.
(2020) report taking over 8 minutes for a graph with treewidth 2 and 50 vertices. We
are able to process much more complex (i.e., higher treewidth) graphs with signifi-
cantly more vertices in a much shorter time.

Structure of the paper. We will first present some preliminaries on both graph
theory and game theoretic centrality, then present the algorithm for computing the
Shapley value: we first show how we can compute the Shapley value for one spe-
cific vertex (that appears in the root bag of our decomposition), then we show how a
(nice) tree decomposition can be modified to quickly compute the Shapley value for
all vertices (more quickly than computing it for each vertex individually). We then
present an experimental evaluation of our algorithm, evaluating the performance
of our network on several benchmark graphs and real-world examples of covert
networks.

2 � Preliminaries

2.1 � Graphs and treewidth

Let G = (V ,E) be an undirected graph, where V is its vertex set and E its edge set.
To avoid confusion when dealing with multiple graphs (with different vertex sets),
we may use the notation V(G) to refer to the vertex set V of G (and similarly, E(G) to
refer to its edge set E). Given a subset V ′

⊆ V  , we denote by G[V �] the subgraph of G
induced by V ′ . We say that a vertex set S separates vertex sets A, B if any path from a
vertex in A to a vertex in B must necessarily include a vertex in S. Where confusion
is unlikely, we may write v ∈ G instead of v ∈ V(G) and V ′ instead of G[V �] . In the
following, we let n = |V(G)|.

Given a graph G = (V ,E) , a tree decomposition of G is a tree T together with for
each vertex t ∈ V(T) a subset Xt ⊆ V(G) (called bag) such that

1 3

Efficiently computing the Shapley value of connectivity games… Page 7 of 23  6

1.	 for all v ∈ V(G) , there is a t ∈ V(T) such that v ∈ Xt,
2.	 for all (u, v) ∈ E(G) , there is a t ∈ V(T) such that {u, v} ⊆ Xt,
3.	 for any v ∈ V(G) , the subset {t ∈ V(T) ∣ v ∈ Xt} induces a connected subtree of

T.

The width of a tree decomposition is maxt∈T |Xt| − 1 , and the treewidth of a graph G
is the minimum width taken over all tree decompositions of G. To avoid confusion,
from now on we shall refer to the vertices of T as “nodes”, and “vertex” shall refer
exclusively to vertices of G.

We may designate an arbitrary node of T as root of the tree decomposition. Given
a node t ∈ T  , we denote by G[t] the subgraph of G induced by Xt and the vertices
in bags of nodes which are descendants of t in T (i.e. bags corresponding to vertices
which can be reached from t without going closer to the root). The following well-
known lemma is an important fact, stating that the bags of a tree decomposition are
separators:

Lemma 1  (equivalent to Cygan et al. (2015), Lemma 7.3) The vertices in Xt separate
G[t] from the rest of the graph, i.e., for every edge (u, v) ∈ E(G) for which u ∈ G[t]
and v ∉ G[t] , it holds that u ∈ Xt.

Any tree decomposition can be converted (in linear time) into a decomposition in
nice form, that is, each of the nodes t ∈ T is one of four types (Kloks 1994):

–	 Leaf: t is a leaf of T, and |Xt| = 1.
–	 Introduce: t has a single child node t′ . Xt ⊃ Xt′ and Xt contains exactly one ver-

tex v ∈ V(G) that is not in Xt′ , i.e., Xt = Xt� ∪̇{v} . We say that v is introduced in t.
–	 Forget: t has a single child node t′ . Xt ⊂ Xt′ and Xt′ contains exactly one vertex

v ∈ V(G) that is not in Xt , i.e., Xt = Xt� ⧵ {v} . We say that v is forgotten in t.
–	 Join: t has exactly two children l, r. Moreover, Xl = Xr = Xt.

If the tree decomposition is given in nice form, we can specify an algorithm simply
by specifying how it processes each of these four cases. Moreover, we can assume
that the size of a (nice) tree decomposition (i.e. the number of bags) is linear in n
(Kloks 1994).

2.2 � Shapley value and game‑theoretic centrality

A coalitional game consists of a set of players N (the grand coalition) together with
a characteristic function w ∶ 2N → ℝ such that w(�) = 0 . Given a characteristic
function, the Shapley value �i(w) of a player i is defined as (Shapley 1953):

(1)𝛷i(w) =
∑

S⊆N⧵{i}

|S|!(|N| − |S| − 1)!

|N|!
(w(S ∪ {i}) − w(S))

	 T. C. van der Zanden et al.

1 3

 6   Page 8 of 23

In this paper, we consider coalitional games where the players correspond to vertices
in a graph. The connectivity game vconn , introduced by Amer and Giménez (2004), is
given by the weight function:

Note that a coalition consisting of a single player, while connected, has a value of 0.
Lindelauf et al. (2013) consider vertex-weighted connectivity games as a generali-

zation (apart from the special case |S| = 1 ) of connectivity games. They assume each
vertex i has a weight w(i) and the corresponding vertex-weighted connectivity game
vwconn2 is defined as follows:

In this paper, we give an algorithm for computing the Shapley value associated with
vwconn2 , that, as a byproduct, also computes the Shapley value associated with vconn.

3 � The algorithm

In this section, we present our algorithm for computing the Shapley values of vconn and
vwconn2 . We begin by presenting an algorithm that computes the Shapley value for a
specific vertex v if a nice tree decomposition which contains v as sole vertex in its root
bag is given. We then show how an arbitrary (nice) tree decomposition can be modi-
fied to contain any vertex in its root bag, allowing us to evaluate the Shapley value for
any vertex. Finally, we show how to avoid the extra factor n that would appear in the
running time if we computed the Shapley value for each vertex individually, by reusing
parts of the computation.

Theorem 1  Given a graph G = (V ,E) and a nice tree decomposition T of width tw
such that the root bag Xr contains only a single vertex v, �v(v

conn) and �v(v
wconn2)

can be computed in time 2O(tw log tw)n4 log n.

Pseudocode for our algorithm is given in Listing 1, which uses procedures given in
Listings 2, 3, 4 and 5. Note that where we say we update a value, if it has not been set
previously, we initialize it to 0.

We give the algorithm for computing �v(v
wconn2) ; the results obtained from this

algorithm can also be used to compute �v(v
conn) . We first show that for a given v ∈ V ,

the (single) value �v(v
wconn2) can be computed in time 2O(tw log tw)n4 log n.

vconn(S) =

{
1 if G[S] is connected and |S| > 1,

0 otherwise.

vwconn2(S) =

�∑
i∈S w(i) if G[S] is connected,

0 otherwise.

1 3

Efficiently computing the Shapley value of connectivity games… Page 9 of 23  6

Using Eq. (1) we obtain the following more suitable expression for computing
�v(v

wconn2) , by splitting the summation into different terms, depending on the cardi-
nality k of S:

𝜙v(v
wconn2) =

|V|−1∑

k=0

(
k!(|V| − k − 1)!

|V|!

∑

S⊆V⧵{v},|S|=k

(vwconn2(S ∪ {v}) − vwconn2(S))

)

=

|V|−1∑

k=0

(
k!(|V| − k − 1)!

|V|!

(∑

S⊆V⧵{v},|S|=k

vwconn2(S ∪ {v})

−
∑

S⊆V⧵{v},|S|=k

vwconn2(S)
))

	 T. C. van der Zanden et al.

1 3

 6   Page 10 of 23

Let S ⊆ V  . Since vwconn2(S) = 0 whenever S induces a subgraph with more than one
connected component, the problem of computing �v(v

wconn2) reduces to computing,
for each k, the total weight of connected subsets S ⊆ V(G) with |S| = k and v ∈ S
(resp. v ∉ S ). For vconn , we simply need to count the number of such subsets rather
than compute their total weight.

As is standard for algorithms using dynamic programming on tree decomposi-
tions, for each node t of the tree decomposition we consider the subgraph G[t].
For each such subgraph, we consider the subsets (coalitions) S ⊆ G[t].

Recall that if S ⊆ V(G) is not connected, by definition it does not contribute to
the Shapley value. Call a subset S ⊆ V(G[t]) good if the subgraph G[S] induced
by S is connected or every connected component of G[S] has non-empty intersec-
tion with Xt . By definition, the empty set is good.

Our algorithm works by considering all good subsets S ⊆ V(G[t]) for each
t ∈ T  . The following Lemma shows that subsets that are not good do not count
towards the Shapley value of the game, and thus we can safely disregard them.

Lemma 2  Let S ⊆ V(G) induce a connected subgraph of G and let t ∈ T  . Then
S ∩ V(G[t]) is a good subset of G[t].

Proof  By contradiction. Suppose S ∩ V(G[t]) is not connected. Then some compo-
nent of S ∩ V(G[t]) has an empty intersection with Xt . Then S can not be connected,
since by Lemma 1Xt separates G[t] from the rest of the graph. 	� ◻

Of course, there can still be exponentially many good subsets. The key to our
algorithm is that for each such subset S, we do not need to know exactly how the
subset is made up: if we know how the subset S behaves within Xt , we know how
it interacts with the rest of the graph (outside of G[t]), since Xt is a separator.
Subsets which behave similarly within Xt can be grouped together, thus speeding
up the computation. We classify the subsets into groups depending on their inter-
action with the rest of the graph. Specifically, each subset S ⊆ G[t] has a charac-
teristic (w.r.t. G[t]) that consists of

–	 the intersection R = S ∩ Xt,
–	 an equivalence relation ∼ on S ∩ Xt such that a ∼ b if and only if a and b are in

the same connected component of the subgraph induced by S,
–	 the cardinality of S, k = |S|.

For the equivalence relation ∼ , note that each element can be in one of at most
tw + 1 equivalence classes; a trivial upper bound on the number of such relations
is (tw + 1)tw+1 . The number of subsets R is at most 2tw+1 ; this is dominated by the
number of equivalence relations. k can take values in the range 0,… , n . Thus, the
total number of distinct characteristics is 2O(tw log tw)n . For every node t ∈ T and
each characteristic (R,∼, k) , we will compute

–	 nt(R,∼, k) : the number of good subsets S ⊆ G[t] with characteristic (R,∼, k),

1 3

Efficiently computing the Shapley value of connectivity games… Page 11 of 23  6

–	 wt(R,∼, k) : the total weight of all good subsets S ⊆ G[t] with characteristic
(R,∼, k).

Note that the weight of a subset S ⊆ G[t] is simply the sum of the vertex weights,
i.e.

∑
v∈S w(v).

Note that if r is the root of T, and Xr = {v} , then wr({v}, {v}, k) is exactly
the total weight of connected subsets S ⊆ V(G) with |S| = k and v ∈ S , whereas
wr(�, �, k) is the total weight of connected subsets of size k not including v. This
gives us exactly the information we need to compute �v(v

wconn2).
The following example illustrates the characteristics (R,∼, k).

Example 1  Consider the graph shown in Fig. 2a and the tree decomposition shown
in Fig. 2b. The induced subgraph G[r] associated with node r consists of vertices
D, E, F, G, H, I. The subset {G,D} is not good because the connected component
{G} has an empty intersection with Xr = {D,E,F} . The subset {D,E,G,H} is good,
and has characteristic ({D,E}, {{D}, {E}}, 4) and is the only subset having this
characteristic, thus nl({D,E}, {{D}, {E}}, 4) = 1 . The subset {D,E,G, I} is also
good, and has characteristic ({D,E}, {{D,E}}, 4) . Since the subset {D,E,H, I} has
the same characteristic, we have that nr({D,E}, {{D,E}}, 4) = 2 . 	� ◻

For every node t ∈ T we compute nt(R,∼, k) and wt(R,∼, k) for each character-
istic (R,∼, k) in a bottom-up fashion. We start at the leaf vertices, and then work
our way up the root of the tree. We handle each of the cases as follows:

Leaf. If t ∈ T is a leaf node, then Xt = {v} for some v ∈ V  . Since G[t] is a single-
ton vertex, t has exactly two characteristics c1 = (�, �, 0) and c2 = ({v}, {(v, v)}, 1)
(corresponding to the only two subsets S ⊂ G[t] , the empty set and the single-
ton {v} ). It is easy to see that nt(c1) = 1,wt(c1) = 0 and nt(c2) = 1,wt(c1) = w(v) .
Pseudocode for the Leaf procedure is given in Listing 2.

Fig. 2   a Example of a 9-vertex graph. b Tree decomposition for the graph in (a); note that the decompo-
sition given is neither of optimal width nor nice

	 T. C. van der Zanden et al.

1 3

 6   Page 12 of 23

Introduce. If t ∈ T is an introduce node, it has a single child t� ∈ T and
Xt = Xt� ∪̇{v} for some v ∈ V(G) . Every characteristic (R,∼, k) (w.r.t. G[t�] ) cor-
responds to nt� (R,∼, k) distinct subsets of G[t�] , and we may extend these subsets
S ⊆ G[t�] to subsets of G[t] by either adding the introduced vertex v or not. Thus,
the nt� (R,∼, k) subsets of G[t�] give rise

1.	 when not adding v, to nt� (R,∼, k) good subsets of G[t] with characteristic (R,∼, k)
and total weight wt(R,∼, k) , and

2.	 when adding v, if k = 0 or R ≠ ∅ , to nt� (R,∼, k) good subsets of G[t] with charac-
teristic (R ∪ {v},∼�, k + 1) and total weight wt� (R,∼, k) + nt� (R,∼, k) ⋅ w(v),

3.	 when adding v, if k ≠ 0 and R = � , then S ∪ {v} has at least two connected com-
ponents, (at least) one of which does not intersect Xt , so it is not a good subset,

where ∼� is the relation obtained as the transitive closure of
∼ ∪{(v, v)} ∪ {(v, x) ∣ x ∈ R, (v, x) ∈ E(G)}.

Note that two distinct characteristics (R,∼, k) and (R�,∼�, k�) with R = R�
and k = k� (but ∼≠∼� ) may give rise (upon addition of the vertex v) to
nt� (R,∼, k) + nt� (R

�,∼�, k�) subsets with the same characteristic (R ∪ {v},∼��, k + 1)
with total weight wt� (R,∼, k) + wt� (R

�,∼�, k�) + (nt� (R,∼, k) + nt� (R
�,∼�, k�)) ⋅ w(v) .

Therefore, we can compute nt(R ∪ {v},∼�, k + 1) (and similarly,
wt(R ∪ {v},∼�, k + 1) ), by taking the sum of nt� (R,∼, k) over all ∼ such that ∼� is
the transitive closure of ∼ ∪{(v, v)} ∪ {(v, x) ∣ x ∈ R, (v, x) ∈ E(G)} . Pseudocode
for the Introduce procedure that illustrates this summation is given in Listing 3.

1 3

Efficiently computing the Shapley value of connectivity games… Page 13 of 23  6

The following lemma (c.f. Lemma 2) ensures the correctness of the introduce
step:

Lemma 3  Let t ∈ T and suppose that t is an introduce node with child t� ∈ T  . Sup-
pose S ⊆ G[t] is a good subset. Then S ∩ G[t�] is a good subset of G[t�].

Proof  Suppose that S ∩ G[t�] is not connected, and some connected component C
of S ∩ G[t�] has an empty intersection with Xt′ . Suppose the introduced vertex is v.
Then v must be adjacent to some vertex of C, but this is impossible since C ∩ Xt� = �
and v is not incident to G[t�] ⧵ Xt�.

This ensures that we count each good subset S ⊆ G[t] at least once. The at most
once statement follows from the fact that S ∩ G[t�] corresponds to a unique charac-
teristic w.r.t G[t]. 	� ◻

	 T. C. van der Zanden et al.

1 3

 6   Page 14 of 23

Forget. If t ∈ T is a forget node, it has a child t� ∈ T such that Xt� ∪̇{v} = Xt for
some v ∈ V(G) . If for characteristic (R,∼, k) (w.r.t. G[t�] ), v ∉ R , then (R,∼, k) is
also a characteristic w.r.t. G[t]. If v ∈ R , then there are three cases:

1.	 R = {v} . Then we obtain nt� (R,∼, k) good subsets of G[t] with characteristic
{�, �, k} and total weight wt(R,∼, k),

2.	 R ≠ {v} and {(v, v)} ∈∼ . Then none of the nt� (R,∼, k) good subsets of G[t�] are
good for G[t], since the connected component containing v does not intersect Xt ,
and there is some other connected component that intersects Xt.

3.	 Otherwise, we obtain nt� (R,∼, k) good subsets of G[t] with characteristic
(R ∩ Xt,∼

�, k),

where ∼� is the relation obtained by projecting the relation ∼ on R to R ∩ Xt (i.e.,
∼�=∼ ∩{(u, v) ∣ u, v ∈ Xt}).

As with the introduce procedure, subsets with a given characteristic wrt. G[t]
may correspond to subsets with different characteristics for G[t�] , so to compute
the table entries wrt. G[t] we must once again take the sum of relevant table
entries with respect to G[t�] . Pseudocode for the Forget procedure is given in List-
ing 4. The correctness follows from the following Lemma:

Lemma 4  Let t ∈ T and suppose that t is a forget vertex with child t� ∈ T  . Suppose
S ⊆ G[t] is a good subset. Then S is a good subset of G[t�].

Proof  If S is not connected, then S has non-empty intersection with Xt . Since
Xt ⊂ Xt′ , S also has a non-empty intersection with Xt′ . 	� ◻

1 3

Efficiently computing the Shapley value of connectivity games… Page 15 of 23  6

Join. If t ∈ T is a join node, then it has two children l, r such that Xl = Xr = Xt .
Suppose that (Rl,∼l, kl) is a characteristic of l and (Rr,∼r, kr) is a character-
istic of r and suppose that Rl = Rr . Then there are nl(Rl,∼l, kl) ⋅ nr(Rr,∼r, kr)
subsets with characteristic (Rl,∼

�, kl + kr − |Rl|) and total weight
nl(Rl,∼l, kl) ⋅ wr(Rr ,∼r , kr) + nr(Rr ,∼r , kr) ⋅ wl(Rl,∼l, kl) − nl(Rl,∼l, kl) ⋅ nr(Rr ,∼r , kr) ⋅ (�v∈Rlw(v))   ,
where ∼ is the transitive closure of ∼l ∪ ∼r . Pseudocode for the Join procedure is
given in Listing 5.

Similarly to the Introduce and Forget cases, multiple distinct characteristics for
l, r may, when combined, correspond to the same characteristic for t; we should
again take the sum over these characteristics. The correctness follows from the
following Lemma:

Lemma 5  Let t ∈ T and suppose that t is a join node with children l, r ∈ T  . Suppose
S ⊆ G[t] is a good subset. Then S ∩ V(G[l]) (resp. S ∩ V(G[r]) ) is a good subset of
G[l] (resp. G[r]).

Proof  By contradiction. We show the case for the left child, the case for the right
child is symmetric.

If S ⊆ V(G[l]) then the lemma follows automatically. Therefore, assume there
exists v ∈ S such that v ∉ V(G[l]) . In particular, this means that v ∈ G[r] ⧵ Xr.

Suppose S ∩ V(G[l]) is not connected and has a connected component C with
empty intersection with Xl . Since none of the vertices of S ∩ V(G[r]) are incident to
C, C is still a maximal connected component of S, but S has at least one other con-
nected component (since S ∩ V(G[l]) is not connected) and so is not connected, and
C has empty intersection with Xl = Xt . 	� ◻

As it is the most complicated procedure, we also give an example illustrating
the Join procedure.

	 T. C. van der Zanden et al.

1 3

 6   Page 16 of 23

Example 2  Consider Fig. 2 of Example 1. Consider the join node t and its children
l, r. There are 13 subsets4 (of G[t]) with characteristic ({D,E}, {{D,E}}, 5) . This
can be seen as follows, there are:

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 5) times 1 subset of G[r]
with characteristic ({D,E}, {{D}, {E}}, 2),

–	 2 subsets of G[l] with characteristic ({D,E}, {{D,E}}, 4) times 3 subsets of G[r]
with characteristic ({D,E}, {{D}, {E}}, 3),

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 3) times 1 subset of G[r]
with characteristic ({D,E}, {{D}, {E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D,E}}, 3) times 2 subsets of G[r]
with characteristic ({D,E}, {{D,E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D}, {E}}, 3) times 2 subsets of
G[r] with characteristic ({D,E, {{D,E}}, 4),

–	 1 subset of G[l] with characteristic ({D,E}, {{D}, {E}}, 2) times 1 subset of G[r]
with characteristic ({D,E, {{D,E}}, 5),

and we have that 1 × 1 + 2 × 3 + 1 × 1 + 1 × 2 + 1 × 2 + 1 × 1 = 13 . 	� ◻

By processing the vertices of the tree decomposition in a bottom-up fashion, we
can compute the values nr(R,∼, k) and wr(R,∼, k) for all characteristics (R,∼, k)
of the root node r. As we have seen before, knowing these values is sufficient to
compute the Shapley value of vertex v. Now, we are ready to provide the proof of
Theorem 1.

Proof (Proof of Theorem 1)  We assume we are given a nice tree decomposition of G
(which we may assume has O(n) nodes). For each node, there are 2O(tw log tw)n char-
acteristics. To compute the values for one characteristic requires considering (in the
worst case, which is the join node) 2O(tw log tw)n2 pairs of characteristics for the child
nodes. For each such pair, we perform a constant number of multiplications of n-bit
integers, taking n log n time. The dynamic programming table for one node of the
tree decomposition takes up 2�(tw log tw)n2 space, but at any given time we only need
to keep O(log n) of them in memory. 	� ◻

Of course, this only allows us to evaluate the Shapley value for a single vertex v,
under the assumption that for the root bag r, Xr = {v} (i.e., v is the only vertex in the
root bag). To compute the Shapley value for all vertices, we perform the following
operations, starting from a nice tree decomposition:

–	 For every join node t, we create a new node t′ with Xt� = Xt . t′ is made the parent
of t, and the original parent of t becomes the parent of t′ . In case t was the root,
t′ becomes the root. Note that t′ is neither a join, introduce, forget, or leaf node,

4  In this example, we refer exclusively to good subsets.

1 3

Efficiently computing the Shapley value of connectivity games… Page 17 of 23  6

however, the dynamic programming tables for t′ are simply equal to those for t
(we shall from now on, refer to nodes such as t′ as no-change nodes).

–	 For every vertex v ∈ V(G) , we pick a node of the tree decomposition t such that
v ∈ Vt . We create a copy t′ of t, which is made the parent of t, and the original
parent of t becomes the parent of t′ . In case t was the root, t′ becomes the root.
Next, we create another copy t′′ of t′ . t′ is made the parent of t′′ (making t′ into a
join node). We then create a series of introduce nodes, starting from t′′ , such that
eventually we end up with a leaf node u, whose bag contains only v. If we now
reroot our tree decomposition so that the root becomes u, thanks to the previous
transformation, every join node remains a join node—the roles of introduce, for-
get and no-change nodes can become interchanged.

The following example illustrates the two operations described above.

Example 3  Figure 3 shows an example of this process. Starting from a nice
tree decomposition (Fig. 3a) a no-change node is added before the join bag A, B
(Fig. 3b). To create a leaf bag for vertex B, we pick a bag t containing it (in this
example the right child of the join bag), insert a node t′ which becomes the parent of
t, create an additional child (of t′ ) t′′ (thus making t′ into a join node), then add a leaf
bag u (containing only B) as child of t′′ (making t′′ into a forget node).

This process can be repeated until for each vertex v ∈ V(G) there exists a leaf bag
containing it. Note that in the example the tree decomposition is rooted at A, but it
can also be viewed as being rooted at u (or any other leaf node); this turns t′′ from a
forget node into a no-change node, t′ remains a join node, while the no-change node

Fig. 3   a A (nice) tree decomposition. b A no-change node is added before the join bag A, B. c Extra
nodes t′ and t′′ are added to enable the creation of a leaf bag containing vertex B, which can be used to
re-root the decomposition

	 T. C. van der Zanden et al.

1 3

 6   Page 18 of 23

A, B (currently a child of the root node A) becomes an introduce node (introducing B
to the leaf node containing A). 	� ◻

Thus, we now have a tree decomposition that can be rerooted such that any
vertex v becomes the sole vertex in the root bag. However, this only gives a
2�(tw log tw)n5 log n-time algorithm for computing the Shapley values for all the ver-
tices in a given graph, since this would require running the algorithm separately for
each root vertex. However, there is a lot of overlap in these computations, as the
dynamic programming tables for each subtree may be computed multiple times. By
memoizing a table when it is computed (similar to belief propagation in Bayesian
Networks, see e.g. Pearl 1988), we thus obtain a 2O(tw log tw)n4 log n-time algorithm
using 2�(tw log tw)n3 space:

Theorem 2  Given a graph G of treewidth at most tw, the Shapley value of all verti-
ces v ∈ V(G) can be computed in time 2�(tw log tw)n4 log n and space 2�(tw log tw)n3.

4 � Computational experiments

In this section, we experimentally evaluate our algorithm. We test it on several real-
world (covert) social networks and also on several (artificial) benchmark graphs. We
show that our algorithm can compute the Shapley value for these networks in a rea-
sonable amount of time.

We tested our algorithm using the following covert networks found in the
literature:

–	 A network of 69 of individuals involved in 9/11 attacks (9-11), where edges rep-
resent some kind of tie (such as cooperating in an attack, financial transactions or
having trained together) (Krebs 2002).

–	 A network of 77 Islamic State members in Europe (ise-extended), where edges
represent some kind of tie (such as cooperating in an attack, being related or
being present in the same location) (Gutfraind and Genkin 2017).

–	 A network of 293 drug users (drugnet), where edges represent acquaintanceships
(Weeks et al. 2002).

–	 A network of 36 Montreal gangs (montreal), where edges represent ties between
gangs (Descormiers and Morselli 2011).

–	 A network of 67 members of Italian gangs (italian), where an edge represents
joint membership of a gang (UCINET 2018).

We also tested our algorithm on several benchmark graphs from the 2018 PACE
challenge (Bonnet and Sikora 2019). These graphs are not social networks but are
intended to demonstrate the capabilities of our algorithms on graphs with a range of
treewidth values and vertex counts.

1 3

Efficiently computing the Shapley value of connectivity games… Page 19 of 23  6

For each network, we considered the largest connected component. Each of these
networks has relatively low treewidth. The Islamic State network has the highest
treewidth (13), while the Italian Gang network is very sparse (treewidth 3). We
also considered using the Noordins top terrorist network (Everton 2012). However,
as this 79-vertex network has treewidth at least 19, applying our techniques is not
feasible.

Our implementation simultaneously computes the value of both vconn and vwconn2
(we set all weights to 1 for these experiments, resulting in a game where the value of
a connected coalition is equal to its size).

Table 1 reports computational performance results on these benchmark graphs.
Our implementation uses the .NET BigInteger library, which performs multiplica-
tions in �(n2) time using a method similar to grid multiplication. While there are
several asymptotically faster methods for multiplication, and we experimented with
several such implementations, none of these resulted in a significant speed up for the
graphs considered. The time reported is that for computing the Shapley values of all
vertices in the graph, using the method that stores all intermediate tables to achieve
a 2O(tw log tw)n4 log n computation time. The time reported does not include the time
for computing a tree decomposition, however there are many algorithms that can
quickly compute a tree decomposition for many graphs of practical interest (see e.g.,
Tamaki 2019).

We are able to compute the Shapley value for each of the covert networks in less
than two minutes. For the 9/11 network, our computation took only 5.3 s. The Shap-
ley value for this network has previously been approximated by van Campen et al.
(2017), using a method based on a random sampling of 10.000 permutations of the
players in the network. Lindelauf et al. report that this computation of approximate
Shapley values took 5 minutes. Our method is not only exact, but also much faster.

Of course, the method of van Campen et al. (2017) can be applied to any graph
rather than just to graphs of small treewidth. However, it is not yet known how the

Table 1   Performance of the
algorithm on several real-world
networks and several benchmark
graphs from the PACE 2018
challenge

For disconnected graphs, we considered only the largest connected
component in the graph (for which the number of vertices and edges
is given)

Graph Treewidth Vertices Edges Time (s)

italian 3 65 113 0.6
montreal 6 29 75 0.4
9-11 8 69 163 5.3
drugnet 8 193 273 119.4
ise-extended 13 77 274 38.7
pace_005 5 201 253 31.1
pace_012 5 572 662 1746
pace_022 6 732 1084 22868
pace_023 6 990 1258 30255
pace_028 7 139 202 2262
pace_070 10 106 399 50.0

	 T. C. van der Zanden et al.

1 3

 6   Page 20 of 23

performance of their approximation depends on the structure of the graph. Still,
when the treewidth of the graph is small, our method provides an excellent way to
compute exact Shapley values.

The IS in Europe network (ise-extended) has treewidth 13. Despite this relatively
high treewidth, our algorithm was still able to compute the Shapley value in 38.7 s.
Our algorithm can thus handle graphs even with moderate treewidth quite quickly.
It can also handle graphs with large numbers of vertices, although it appears from
the results on the PACE networks that the polynomial factor in the running time ( n4 )
starts to dominate rather than the dependence on the treewidth. Another factor that
affects the running time is the structure of the graph itself. If the subgraph induced
by the vertices in a bag is (close to) a clique, the number of connectivity partitions
that needs to be considered is strongly reduced, since vertices connected by an edge
are always in the same component of such a partition. This does indeed happen with
the ise-extended network, where the largest bag (containing 14 vertices) induces a
clique.

5 � Conclusions

Game-theoretic centrality measures are a powerful tool for identifying important
vertices in networks. We have shown that, using treewidth, two game-theoretic cen-
trality measures can be practically computed on graphs much larger than previously
feasible, allowing us to analyze larger networks than before.

Our algorithm runs in time 2O(tw log tw)nO(1) . The log-factor in the exponent is
due to the need to keep track of a connectivity partition. A very interesting open
question is whether the algorithm can be improved to have single-exponential run-
ning time, that is, is it possible to attain a 2O(tw)nO(1)-time algorithm? For several
(counting) problems involving connectivity, this is indeed possible: For instance, it
is possible to count Hamiltonian Cycles or Steiner Trees in single-exponential time
(Bodlaender et al. 2015) by using approaches involving matrix determinants. Either
a positive answer to this question or a conditional lower bound ruling out such an
algorithm would be interesting.

We remark that the log-factor in the exponent represents only the worst case.
However, since we are dealing with induced subgraphs, if two vertices share an
edge, they can never be in two distinct connected components. Therefore, the actual
number of connectivity partitions considered may be lower than suggested by the
worst case bound. It would be interesting to see if it is possible to take this phenom-
enon into account when generating a tree decomposition: perhaps it would be pos-
sible to optimize a tree decomposition to limit the number of feasible partitions (for
instance, by giving preference to bags that are cliques). Such an approach has previ-
ously been considered for Steiner Tree (van der Graaff 2015).

With a trivial adaptation, our algorithm can also be used to compute the Banzhaf
value (Banzhaf 1964) for vconn and vwconn2 ; this requires merely a change in weight-
ing values. Techniques similar to ours can also be used to evaluate other connectiv-
ity games, e.g., the Shapley value for vwconn1 and vwconn3 (Lindelauf et al. 2013) can

1 3

Efficiently computing the Shapley value of connectivity games… Page 21 of 23  6

be computed by extending our notion of characteristic to also include the maximum
weight of an edge in the subgraph induced by S.

Another interesting question is whether other connectivity measures can be com-
puted using treewidth. For instance, vconn assigns a value of 0 to any disconnected
coalition, even if there exists a large connected component. It might be more reason-
able to make the value of a coalition equal to the size of the largest connected com-
ponent inside this coalition. It is easy to adapt our techniques to obtain an algorithm
running in time nO(tw) for this case; it would be interesting to see if a fixed-parameter
tractable algorithm exists.

Funding  No funds, grants, or other support have been received. A large part of this research was done
while the first author was associated with Utrecht University.

Availability of data and material  We have made our source code, as well as the graphs/data used for the
experiments, available on GitHub (van der Zanden 2021).

Delaractions 

Conflict of interest  The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Code availability.  We have made our source code, as well as the graphs/data used for the experiments,
available on GitHub (van der Zanden 2021).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Adcock AB, Sullivan BD, Mahoney MW (2016) Tree decompositions and social graphs. Internet Math
12(5):315–361

Amer R, Giménez JM (2004) A connectivity game for graphs. Math Methods Oper Res 60(3):453–470
Aziz H, Lachish O, Paterson M, Savani R (2009) Power indices in spanning connectivity games. In: Interna-

tional conference on algorithmic applications in management. Springer, pp 55–67
Banzhaf JF III (1964) Weighted voting doesn’t work: a mathematical analysis. Rutgers L Rev 19:317
Bodlaender HL (1997) Treewidth: algorithmic techniques and results. In: International symposium on math-

ematical foundations of computer science. Springer, pp 19–36
Bodlaender HL, Cygan M, Kratsch S, Nederlof J (2015) Deterministic single exponential time algorithms for

connectivity problems parameterized by treewidth. Inf Comput 243:86–111
Bonnet É, Sikora F (2019) The PACE 2018 parameterized algorithms and computational experiments chal-

lenge: the third iteration. In: Paul C, Pilipczuk M (eds) 13th International symposium on parameterized
and exact computation (IPEC 2018), volume 115 of Leibniz international proceedings in informatics
(LIPIcs), Dagstuhl. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany, pp 26:1–26:15

Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)
Parameterized algorithms. Springer, Berlin

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 T. C. van der Zanden et al.

1 3

 6   Page 22 of 23

Deidda D, Andreu J, Perez MA, Sechi GM, Zucca R, Zuddas P (2009) A cooperative game theory approach
to water pricing in a complex water resource system. In: 18th World IMACS congress and MODSIM09
international congress on modelling and simulation. In Proceedings of the 18th World IMACS/MOD-
SIM congress, Cairnes, Australia

Dell H, Komusiewicz C, Talmon N, Weller M (2018) The PACE 2017 parameterized algorithms and com-
putational experiments challenge: the second iteration. In: Lokshtanov D, Nishimura N (eds) 12th
International symposium on parameterized and exact computation (IPEC 2017), Leibniz international
proceedings in informatics (LIPIcs), Dagstuhl. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Germany, pp 30:1–30:12

Descormiers K, Morselli C (2011) Alliances, conflicts, and contradictions in Montreal’s street gang land-
scape. Int Crim Justice Rev 21(3):297–314

Everton SF (2012) Disrupting dark networks, vol 34. Cambridge University Press, Cambridge
Faigle U, Kern W (1992) The shapley value for cooperative games under precedence constraints. Internat J

Game Theory 21(3):249–266
Greco G, Lupia F, Scarcello F (2017) The tractability of the Shapley value over bounded treewidth match-

ing games. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence,
IJCAI-17, pp 1046–1052

Greco G, Lupia F, Scarcello F (2020) Coalitional games induced by matching problems: complexity and
islands of tractability for the Shapley value. Artif Intell 278:103180

Gutfraind A, Genkin M (2017) A graph database framework for covert network analysis: an application to
the Islamic State network in Europe. Soc Netw 51:178–188

Harvey D, van der Hoeven J (2019) Integer multiplication in time O(n log n). hal-02070778
Kloks T (1994) Treewidth: computations and approximations, vol 842. Springer, Berlin
Koschade S (2006) A social network analysis of Jemaah Islamiyah: the applications to counterterrorism and

intelligence. Stud Conflict Terror 29(6):559–575
Krebs VE (2002) Mapping networks of terrorist cells. Connections 24(3):43–52
Langer A (2013) Fast algorithms for decomposable graphs. PhD thesis, RWTH Aachen
Lindelauf R, Borm P, Hamers H (2009) The influence of secrecy on the communication structure of covert

networks. Soc Netw 31(2):126–137
Lindelauf RHA, Hamers HJM, Husslage BGM (2013) Cooperative game theoretic centrality analysis of ter-

rorist networks: the cases of Jemaah Islamiyah and Al Qaeda. Eur J Oper Res 229(1):230–238
Littlechild SC, Owen G (1973) A simple expression for the shapley value in a special case. Manag Sci

20(3):370–372
Michalak TP, Aadithya KV, Szczepanski PL, Ravindran B, Jennings NR (2013) Efficient computation of the

Shapley value for game-theoretic network centrality. J Artif Intell Res 46:607–650
Michalak TP, Rahwan T, Jennings NR, Szczepański PL, Skibski O, Narayanam R, Wooldridge MJ (2013b)

Computational analysis of connectivity games with applications to the investigation of terrorist net-
works. In: Proceedings of the twenty-third international joint conference on artificial intelligence.
AAAI Press, pp 293–301

Moretti S, Patrone F (2008) Transversality of the shapley value. TOP 16(1):1–41
Moretti S, Patrone F, Bonassi S (2007) The class of microarray games and the relevance index for genes.

TOP 15(2):256–280
Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kauf-

mann Publishers Inc., San Francisco
Shapley LS (1953) A value for n-person games. Contrib Theory Games 2(28):307–317
Tamaki H (2019) Positive-instance driven dynamic programming for treewidth. J Comb Optim

37(4):1283–1311
UCINET (2018) Italian Gangs network. UCINET website, https://​sites.​google.​com/​site/​ucine​tsoft​ware/​datas​

ets/​covert-​netwo​rks/​itali​an-​gangs. Accessed 27 Sep, 2021
van Campen T, Hamers HJM, Husslage BGM, Lindelauf RHA (2017) A new approximation method for the

Shapley value applied to the WTC 9/11 terrorist attack. Soc Netw Anal Min 8(1):3
van der Graaff LW (2015) Dynamic programming on nice tree decompositions. Master’s thesis, Utrecht

University
van der Zanden TC (2019) Theory and practical applications of treewidth. Ph.D thesis, Universiteit Utrecht,

Department of Information and Computing Sciences
van der Zanden TC (2021) ShapleyTreewidth. Accessed 12 Dec, 2021
Wasserman S, Faust K (1994) Social network analysis: methods and applications, vol 8. Cambridge Univer-

sity Press, Cambridge

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/italian-gangs
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/italian-gangs

1 3

Efficiently computing the Shapley value of connectivity games… Page 23 of 23  6

Weeks MR, Clair S, Borgatti SP, Radda K, Schensul JJ (2002) Social networks of drug users in high-risk
sites: finding the connections. AIDS Behav 6(2):193–206

Young H (1985) Monotonic solutions of cooperative games. Int J Game Theory 14(2):65–72

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Efficiently computing the Shapley value of connectivity games in low-treewidth graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs and treewidth
	2.2 Shapley value and game-theoretic centrality

	3 The algorithm
	4 Computational experiments
	5 Conclusions
	References

