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ABSTRACT: During a storm in October 2002, wind induced owegloscillations were observed on several empty silos obseaty
spaced group of 8 by 5 silos in the port of Antwerp (Belgiuntedent day standards describe only basic wind load casalsleun
to explain this ovalling phenomenon. In order to improvedlesign of engineering structures with cylinders placedrougs, a
thorough understanding of the fluid flow around such groupsgaired. 2D unsteady Reynolds averaged Navier-Stoke NS}
equations using Menter’s shear stress transport turbei@ocel were performed, considering the wind flow aroundéltangular
group for a range of angles of incidencé (@ a < 90°). The 2D highly turbulent post-critical flow (Re 1.24 x 107) around a
single cylinder was computed to elucidate the influence efapplied turbulence model and to validate the spatial amgdeal
discretization. Since, the flow regime around and withingih@ group is similar to the flow around rectangular cyliraland the
flow within tube arrays (e.g. heat exchangers), similagitied differences are used to assess the influence of thecdmybédence
on the flow pattern around the cylinder group. The large vééscin the interstitial flow between cylinders as well as trmation
of large scale vortex shedding in the wake of the group ardied for various angles of incidence. Static and dynavaitihgs
on separate silos of the group are studied to explain théegxis and the location of ovalling oscillations in closghased silo
groups.
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1 INTRODUCTION AND MOTIVATION longitudinal axis of symmetry [3]. Prior to the study of wind

Circular cvlinders are encountered in civil endineerin Costructure interaction, both structure and fluid behavidwousd
red Yl u in civi gl NPLOLe studied. On the one hand, Dooms et al. [4] studied

strucuo_ns_ as .S'IOS’ (solar) chimneys, water tower§, POWRl ovalling mode shapes of the empty silo structures. Each
transmission lines, offshore structures and suspensioigéor

cables. Although wind loading is an important design lo gvalling mode shape is referred to by a coupten) wherem

for th fruct v basic wind load desbri enotes the half wave number in the axial direction aiglthe
'or tnese structures, only basic wing load cases are | "MRumber of circumferential waves (figure 1). On the other hand
in standards, e.g. in Eurocode 1 [1]. Since the conflgura'uﬂ

and orientation of the aroun drastically chanae the fluid flo limerical simulations of the turbulent wind flow, modelled a
' ot group stically chang - Yxcompressible (low Mach number) flow, are performed in the
a“’”f.“i' the cylinders, a more regllsnc estimation of th“*.“‘*’ resent paper to explain the occurrence of the observelingyal
deglrci:rlsgrt'lsta?ggnfs:r?eersicz ;?nqlzllii(:).ns-rgﬁhgavr\]/ir?; ﬂ;()):zwded ¥cillations in the 8 by 5 group. The influence of the angle of
P ) ) ) ) incidencea of the wind flow on these ovalling oscillations is
During a storm in October 2002, ovalling was observed

) ' Wamined. Other parameters such as spacing ratio, Reynolds
several empty silos on the corners of a group of forty sil

: . oup ot ¢ Humber, etc. are left unchanged.
in the port of Antwerp. The group is organized in five rows

of eight very closely spaced silos (pitch to cylinder diagnet
ratio = P/D = 1.05). The silo group is situated in proximity Details on the applied computational model are discussed
of the river Scheldt in vast and flat surroundings and is floeee in the next section. The less complex and better documented
classified in terrain category Il of Eurocode 1 [1]. The cidted case of 2D flow around a single cylinder in the post-critical
mean wind velocityvy = 31.8m/s at half the height of the regime is considered to validate the numerical procedure. |
silo (30m above ground level) consequently leads to a highlye third section, the complex flow around the 8 by 5 silo
turbulent, post-critical flow regime at Reynolds number=Re group is analyzed. Similarities of the present flow with the
viD/v = 1.24x 10" [2]. Because of the small spacing raticlow within tube arrays (e.g. heat exchangers) and the flow
between silos and the high Reynolds number, no experimertedund rectangular cylinders are discussed. Time averaggd
or numerical data applicable to this case are available. fluctuating pressure coefficients as well as drag and litder
Wwind induced ovalling oscillations are an aeroelastic phare calculated to examine the influence of the angle of imcee
nomenon where the cross section of the structure defor(ds < a < 90°). Finally, the existence of ovalling vibrations in
as a shell without bending deformation with respect to tteylinder groups is explained.



/\ )r\;j =N To deal with the_pres_sure-velocity coup_ling, a cqupledwee&
{ J‘; [ ( < > based calculation is performed which, unlike segregated
NP = " algorithms such as PISO or SIMPLE [5], is known for its
significantly improved rate of convergence [6].

/ \ 2.2 Computational domain and boundary conditions

The boundaries of the fluid domain should be sufficiently
far from the near-wall region where accuracy is important:
distances of B to the inlet and the lateral boundaries and30
to the outlet of the domain are used, widtthe diameter of the

: | L ‘ cylinder. Equivalently, By and 3@y are used for the group

, | \ ‘ | configuration, withDg the projected width of the silo group

" 4 7 7 (figure 2).
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Figure 1. Selected ovalling eigenmodes of a single silo, (a) 0 @
mode (1,3) at 33 Hz, (b) mode (1,4) at.93 Hz and (c) @

mode (1,2) at 75 Hz [4].

2 COMPUTATIONAL PROCEDURE AND VALIDATION

The simulation of highly turbulent flows around complex
geometries is a computationally challenging task. Thesstbe
case of a single cylinder in cross flow is calculated first itheor

to validate the computational model. This approach, knosvn a
the Building Block Approach and introduced by the AIAA [5],
allows the validation of a proposed computational modehwit
a simpler sub-system for which experimental data are aMaila

The lack of experimental data for the 8 by 5 silo group makesqure 2. Plan view of the silo group with numbering of the

this approach particularly interesting. invididual silos. Normative dimensions are given as well
_ as definitions for the angle of incidenaeand the anglé
2.1 Numerical procedure on the circumference of an individual cylinder.

The choice of a particular numerical technique is mainly ) ) oo 3 _
influenced by the complex geometry of the problem and the!N th? cqmquatllons, the air derjgltyps_ 1.25kg/m qnq its
computational effort. The finite volume method (FVM) is useflyn@mic viscosity it = 1.76 x 107>Pas. At the velocity inlet
for the discretization of the governing incompressible gy With imposed free stream velocity = 31.8m/s, the turbulent
Stokes equations, while for the numerical treatment Omurbenergyk and specific dissipation raie havg to be defmeq.
lence, the Reynolds averaged Navier-Stokes (RANS) proeed§'nce values fok and w cannot be determined frc_>m on site
with the hybrid shear-stress transport (SST) turbulencdaho Measurements, they are based on the turbulence intéresity
is chosen. The SST model, suggested by Menter, combiff§ turbulence length scales]. A reasonaglly low turbulence
the robust and accurate formulation of the w model in the Ntensityl = 1% is assumed ankl = 3(v1)”/2 = 0.152 Jkg
near-wall region with the free stream independence okthe at the inlet. Several researcher; showeq that .turbulence_z at
model in the far field and should therefore be more accurate gi€ uPStream boundary results in very litle difference in
reliable for a wider class of flows [6]. The computationaldeimturbl“ence intensity in y|C|n|ty of the bluff body [8] [9]. ffe
required for RANS simulations is modest when compared fgrbulence length scaleis typically chosen as a percentage of
other techniques, e.g. large eddy simulations (LES) ortiet a characteristic dimension of the problem, elg= 0.06Dg =
eddy simulations (DES). For similar reasons, a 2D crossmect1.8m fora = 0°, and hence a dissipation rate= Cﬂl/A\/R/l =
of the silo group is considered. Although 3D flow simulation8.395s ™ is imposed at the inlet witlC,;, = 0.09 a model
over complex bodies have become possible in recent yeass, thonstant. The entire flow field is initialized with these inle
remain very expensive and are therefore limited to moderanditions. The outlet boundary is modelled as a pressutetou
Reynolds numbers. 2D simulations are quite feasible, ewen fvhere the static pressure is set equal to the referenceupeess
complex geometries and relatively high Reynolds numbdrs [7At the lateral boundaries symmetry is imposed. The cylinder
To solve the 2D unsteady Reynolds averaged Navievalls are considered smooth and no-slip boundary condition
Stokes (URANS) discretized set of equations, a secoate applied.
order interpolation of the pressure, a second order upwind i i i
interpolation of momentum, turbulent kinetic enerfgyand 2.3 Spatial and temporal grid refinement
specific dissipation ratev are applied, while a second ordefFor transient simulations, the governing equations must be
implicit, unconditionally stable, time stepping methodused. discretized in both space and time. The verification of



convergence and grid independency is performed for thdesing Zdravkovich [2] gives an elaborate overview of experiménta
cylinder case. pressure coefficients at Reynolds numbers froi8& 107 to

The near-wall treatment at the solid cylinder walls i8.65x 10 (figure 4). In the reported experiments, separation
the principal issue for spatial grid refinement: two distinoccurs betweer®s = 100° and 110. For Reynolds numbers
approaches can be applied. When a very fine mesh is usamger than & x 10°, experimental smooth flow data of Zan
near the cylinder wall and the first grid point is located ie th[10] indicate that the Strouhal number remains & @hereas
viscous sublayer, velocity gradients are computed explici Schewe [11] found that it rises to abouBBGas the Reynolds
Alternatively, logarithmic wall functions can be used toded number approaches %0consistent with the tendency of the
the near-wall behaviour, significantly reducing the numbier Strouhal number to rise from®to 0.3 in the range of Reynolds
elements and computation time. However, the first grid pointimbers between £&Gind 10 [2].
should be sufficiently distant from the surface for viscous Several numerical simulations have been reported in the
stresses to be negligible, yet sufficiently close so thattisle literature for highly turbulent cross flows around circular
terms can be neglected. Several mesh configurations weyéinders. Younis et al. [12] performed 2D URANS simulaton
processed to find an optimal refinement in the near-wall regiat Re= 0.35x 10’ with different turbulence models and report
allowing to use the log-law functions. a Strouhal number of.28 and separation & = 120°. Travin

Multiple time step refinements have also been performedial. [13] applied 3D DES for Reynolds numbers up to B0°
and show that convergence is reached for a time step afd found Strouhal numbers3% with separation s = 111°.
approximately 00125s. The computational efforts can be dras- All experimental and numerical data from literature show
tically reduced without changing the outcome fundameyntaltonsiderable scatter due to differences in Reynolds number
when a slightly larger time stefit = 0.005s is applied in the applied turbulence model, etc. However, it can be concluded

simulations. that a generally good agreement is found between the present
o _ ) ) . simulations (St= 0.32, 6 = 116°) and the data from literature.
2.4 Validation of single cylinder simulations Figure 4 also shows that the pressure coefficient on the

Although the flow around a circular cylinder has been widekircumference of the cylinder is in generally good agreemen
studied, very few experiments or computations have bewiih the experimental data gathered by Zdravkovich [2].
performed for a flow in the post-critical regime. For validat
the present numerical results are compared with experahent
data and results of other (2D and 3D) numerical simulations.
Typical parameters for this comparison include the Strbuha
number St=fysL /v, the separation angl (figure 3) and the
pressure coefficient, wit,s the vortex shedding frequenoy,
the free stream velocity of the fluid ard the characteristic
length, equal to the diamet& of the cylinder in the present
case. The pressure coefficient along the circumference of a
cylinder at a certain point in time is defined as

Co(0,1) = w (1) Figure 4. Measured pressure coefficients at Reynolds nismber

pVi/2 from 0.73x 10’ to 3.65x 10’ [2] (dark grey zone) vs.

present calculated maximal (dashed line), minimal (dash-
dotted line) and time averaged pressure coeffici€pt)
(solid line) at Re= 1.24 x 10’

with pr the free stream pressure. The time averaged pressure
coefficientCp, is calculated as follows:

Co(8) = 2. Gp(8:) )
3 TURBULENT AIR FLOW AROUND THE 8 BY 5
with N the number of time steps. For the present simulation, CYLINDER GROUP

the time averaged pressure coefficient is shown in figure B W‘the numerical procedure described in the previous sectam w
6s =116 and St=0.32. applied for the turbulent air-flow around the 8 by 5 silo group
for 7 angles of incidence {0< a < 90°), in order to clarify
the observed ovalling vibrations on the corners of the gréup
distinction is made between vibrations related to the pieity

of the interstitial flow between the cylinders and vibraton
caused by the large vortex structures behind the entiradsti
bundle.

Vi

Cpr 7 3.1 Discussion of the flow around the cylinder group

Figure 3. Time averaged pressure coeffici€ptd) on the Figure 5¢ shows the instantaneous flow pattern for an angle
circumference of the cylinder with indication of the fregf incidencea = 30°. At the transverse corner cylinders of
stream velocitys and the separation angfe. the group (cylinders 33 and 8), shear layers in the outer flow



are separated while approximately 10% of the flow is forcd@ble 1. Strouhal frequencie$,§) and Strouhal numbers (St)
through the interstitial spaces in the group. These intiist for all different angles of incidenceaj with respective
flows emerge at the lee side, join up and form several local Projected width of the silo grouf).

recirculation zones in the wake that coalesce as they qne«tar a ] © 15 30 45 60 75 90
downstream. Eventually one large scale vortex street raddr Dy [m] 287 384 459 506 523 507 461

in the wake of the entire group. The periodicity of this varte Ts |9 323 418 585 6.32 693 5.70 5.14
street is depicted by the Strouhal number St, summarized in f,s [Hz 031 0.24 0.17 0.16 0.14 0.18 0.20
table 1 with characteristic length= Dg. The decrease of the St 028 029 025 025 0.23 029 029
Strouhal number for the intermediate angles of incidemce-(

30° to 60, table 1 or figure 6) is due to the decrease in vort s .
shedding frequency for these angles. When the projecteﬁw%c'gn'f'cam dependence of the shedding frequency on theeangl
' of incidence is observed in the experimental results: tloelen

of the cylinder grouplR) is increased, the distance between thr?se and fall in Strouhal number for very small or high angles
free shear layers increases, resulting in larger sheddeide® o L for very 9 9

' . of incidence is interpreted as an indicator of the reattamttrof
and lower shedding frequencies.

For the smallest angles of incidenae £ 0° and 15, figures th?rﬁgparr;i?nsgfg Iﬁ;lea[lri]b.ers are sianificantlv hiaher than
5a and 5b), it is clear that the emerging interstitial flows on P u u 'gniti y g

. . e experimental results. Apart from a slightly differeides
the upper downstream side of the group (cylinders 33 to 4%tio for the present simulationt (B = 1.6), this discrepancy

are joined up and dragged downstream without forming loc . . .
, X L may be due to differences in four other parameters. Firstly,
recirculation zones, due to the proximity of the separateths

layer. The same applies for the highest angles of incident erbulence intensity levels are known to affect the angle of

R . . reattachment on a cylinder wall [16] but the effect on the
(o =75 and 90), where no such recirculation zones can b rouhal number is believed to be limited and related to the

Z)nr?zg)on the lower side of the group (cylinders 8, 16, 24, angle of incidence of the fluid flow. Only for low turbulence

intensities, the Strouhal number might be slightly incesbfor
small angles of incidencen(< 20°) [15] [17]. Secondly, the
present simulations were performed at a much higher Regnold

Y37)-
/33 (343 36)(37)(38)(39)(40)

> @@@@Q N\, number, possibly leading to an increase in the Strouhal rumb
21\ 29\ 93 Yok 7
(231

[15]. Thirdly, data on the effects of rounded corners of the
rectangular cylinders are somewhat limited and scatteret],
the general tendency for the Strouhal number is to increétbe w
increasing rounding radius [15]. Finally, the most impotta
difference between a bluff rectangular cylinder and thes@né
cylinder group is the porosity of the latter. The emerging
interstitial flows at the downstream side of the cylinderugpo
prevent the shear layer from reattaching for very small and
very high angles of incidence. This explains the absence of
the sudden rise and fall in Strouhal number for the present
simulations.

0.251

0.21

¢ 0.15¢ A
0.15 1

0.05F _ .
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Figure 5. Velocity streamlines of the flow around the 8 by 5

2

cylinder group for an angle of incidence @)= 0° att = a[]
80.0s, (b)a =15 att =825sand (cp =3¢ att =77.0s )
with flow coming from the left. Figure 6. Comparison of Strouhal numbers for the present 8 by

5 silo group at Re= 1.24 x 10" and a rectangular cylinder

It is interesting that the flow around the group as a whole ~ With side ratiol. /B = 1.67 at Re between.2 and 24 x 10t
resembles the behaviour of a single bluff body in cross flow. [16]for angles of incidencer between @ and 90.
Kareem et al. [14] found a similar behaviour for two closely
spaced cylinders in tandem arrangement where separatad she ) ) i ) _ )
layers interact and roll up to form one large scale vortex as2 Discussion of the interstial flow in the cylinder group
well. In figure 6, the present results are therefore compaitd Despite important differences (e.g. close spacing betwglém
experimental results of Knisely [15] for a rectangular oger ders and limitation to 40 cylinders in the present simulgtio
(L/B = 1.67) in cross flow (12 x 10* < Re < 2.4 x 10%). the interstitial flow pattern in the present simulations ¢zn



related to the flow through tube bundles that has been widely
studied for the design of heat exchangers. These tube arrays
are typically divided in two categories [18]: the in-linetegory
where cylinders are arranged in square or rectangle arrays a
the interstitial flow is mostly straight through the arraysla
the staggered category where cylinders are arranged itedota
square or triangle arrays and the flow is forced along wavy
paths. Depending on the angle of incidence, the present silo
group could be classified in either category: the in-linejasg
configuration applies to the cases with= 0° anda = 90° while

for all other angles of incidence the staggered, rotatedrsqu
arrangement would be applicable. As shown in figure 7, this is
not always the case.

No straight flow pattern foa = 0° (figure 7a) andr = 90° is
found. For in-line tube bundles, the presence of the sulesgqu
row prevents the transitional eddies to form and roll-up and
the eddies are carried away between the tubes by the jet-like
interstitial flow [19]. The present cylinders, however, toe
closely packed and the eddies partially or completely gisap
in the distorted flow. Instead, the interstitial flow is ngpaeated
from the cylinder wall and follows a wavy path through the
array, deflecting the flow up- and downward to the sides of the
group, following the shortest path from the high pressutes a
the leading side of the group to the lower pressures at the lee
side of the group. For other angles of incidence, inteadtiti | 3 =
flows resemble the wavy interstitial flow pattern of stagdere (CX\\KA

tube bundles [18], e.g. foa = 30" (figure 7b). However, Figure 7. Detail of velocity streamlines for the interstitspace
for a = 60° (figure 7c) andx = 15° (not shown), the regular in the 8 by 5 cylinder group for an angle of incidence (a)

wavy pattern is interupted at arbitrary points in the arvayere a =0° att = 785s, (b)a = 30° att = 79.0s and (cla =
the interstitial flow separates from the cylinder surfacel an  g0° att — 85.0s.

forms small recirculation zones or even results in locatesor

shedding. As suggested by Mittal et al. [7], the presence of 300
these irregularities may be directly related to the 2D cttaraf 2 2
the simulations, which would be canceled out in 3D simutztio S0 S0

o

where spanwise velocities are allowed. i i
[ [
50 50

Other flow phenomena are similar for tube bundles and the )
present case. Several experiments on tube arrays [18] [2%) L “reqeney iz’ © (D) L 2 Erequency [Ha]”
show that turbulence intensity is built up as the intemstiti _ . . '
flow proceeds through the array until the rate of turbulen&d9ure 8. Frequency spectra for the pressure in point A (@gur
generation is balanced by the turbulence dissipation. lr@B8t 2) for angles of incidence (@) = 30" and (b)a = 60°.
by 5 cylinder group, turbulence is also generated in thendgl
array itself and attains maximal values at the upper androwe )
edges of the rectangular array, where turbulence generatio 3-3 Pressure loads on the cylinders
dissipation is high because of the high flow velocities.

Pressure distributions on the walls of the cylinders mayifgla
Another similarity concerns the observation of severatrint the excitation of ovalling oscillations in the silo groupinie
related flow periodicities in staggered tube arrays in expents averaged pressures provide an indication of the staticafiefie
[8] [21]. For the present cylinder group, multiple peakstie t of the silos while fluctuating pressures represent the dymam
frequency spectrum of the pressure were also observe(tjhroaxcitation of the silos. The fluctuating pressure coeffitsien
the array for all angles of incidence as shown in figure 8 for an along the circumference of each cylinder are determined in
arbitrary point A in the middle of the cylinder group (figur 2 every time step as follows:
These frequency peaks are located at multiples of the Satouh , _
frequency, which is identified at the dominant, lowest freey Cp(6,1) =Cp(6,1) —Cp(6) 3)
peak. Fora = 60° (figure 8b), smaller peaks are detected at
6Hz (similarly for a = 15° at 2Hz), which are related to theTo investigate the contribution of static and fluctuatinggsures
deviating wavy pattern for these angles of incidence (figa)e on the eigenmodes of the silos, the pressure coefficientbean
No specific pattern of the locations in the array where thebarmonically decomposed into a series of cosine functiatis w
irregular peaks occur, was found. circumferential wavenumbar, corresponding to the ovalling



mode shapes of the axisymmetric structure (figure 1): reference. It is observed that the cylinders on the corners

_ © o of the group, where the shear layer is separated, are more
Cp(6) = 5 Cpcognb+9,) (4) strongly loaded than the single cylinder: for cylinder 8 (fig
I:o:O 10d) contributions for higher angles of incidence* 60°) are
' (0,t) = N(t)cognb + o, (5) larger while for cylinder 33 (figure 10a) this is the case faw|
(61 nZon (t)cod g angles of incidenced( < 30°). Cylinder 1 on the other hand

(figure 10c) is most heavily loaded far = 0° anda = 90°.

For a single cylinder, this yields for evema single value for the X .
Remarkably, for the cylinders where the shear layer is sedy

time averaged and a value in every time step for the fluctgati Y _ !
pressure. the contribution of the third and fourth harmonics£ 3,n = 4)

The group configuration drastically changes the pressif# much larger than f(.)rothercyllindersinthe groupor.thglsi
distributions around the cylinders in group arrangemengrwhCylinder case. For cylinder 40 (figure 10b), the most impurta

compared to the single cylinder case (figure 9). On tt@ntribution originates from the uniform compon@ﬁtwhich
transverse upstream corners of the group (e.g. cylindersl1l &an again be related to the constant base pressure at thedee s
33 for a = 0°, figure 9a, or cylinders 8 and 33 for = 60°, Of a single cylinder, while contributions of other harmanare
figure 9b), the highest time averaged suction pressures oc@wch smaller than the reference values for the single ogtind
prior to the separation of the shear layer. At the lee side ber cylinder 21 in the center of the group (figure 10e), it dtiou
the group (e.g. cylinders 24, 32 and 36 to 40 o= 60°, be noted that apart from the uniform component, the fourth
figure 9b), pressure distributions are nearly uniform andtm harmonic has the highest contribution for all angles ofdeaice,
related to the constant negative base pressure at the kefsidcaused by the 4 distinct minima in the time averaged pressure
a single cylinder in cross flow. Distinct minima in the pressu distributions (figure 9).

distributions are observed in the narrow gaps betweendtm

where the interstitial flow velocities are largest (e.g. irayér Bk o]
22 in figure 9b). At incidence angle = 0° (figure 9a), where RIS ’
the interstitial flow is deflected upward and downward in the =, 5;’,;:&\ S W - =, ]
upstream part of the group, the flow velocities in the gaphént 13'/ S - R S L SR S S
middle of the group are much lower and these minima cannotbe = cs=——F——1-1< % |
0 bserved . (a) 0 15 30 045[:°] 60 75 90 (b) 0 15 30 045[:°] 60 90
SILO1 /m
o 2 I
=4 i = bl B
s o; = “~«/§ B °< o AR
(C) 0 15 30 04?01 60 75 90 (d) 0 15 30 04?01 60 75 90
$IL0 21] SINGLE CYLINDER
(@) _ _
2 11 2 lA————A h - A A
0]S — -
045[:°] 60 75 90 (f) 00 15 30 045[:°] 60 75 90
7 . L =0 =1 =2 =3
Flgure410. AmplitudeC, (<), C;, (4), C;, (V). €, (O) and
Cp (O) for (a) cylinder 33, (b) cylinder 40, (c) cylinder 1,
) (d) cylinder 8, (e) cylinder 21, and (f) the reference single

cylinder case, as a function of the angle of incideace
Figure 9.  Time averaged pressure coefficie@g0) for
all cylinders in the group arrangement for an angle of Since static, time averaged pressures are unable to trigger
incidence (a)a = 0> and (b)a = 60°. Dashed lines oscillations, the time history of the amplitude(t) are
indicate the time averaged pressure coefficlegt) for transformed to the frequency domain by means of a FFT
the single cylinder case (figure 3). algorithm. Results for angle of inciden@e = 30° and for
circumferential wave numbers= 3 andn = 4 are shown in
By harmonic decomposition of the time averaged pressudigure 11 for cylinders 1, 8, 21, 33 and 40. The frequency
coefficient Cy(6), it becomes clear which harmonics willspectra for cylinders 1 and 33 (figures 11c and 1la) show
contribute most to the static deflection of the silo. Figu@e Ino periodicities other than the low frequency contribusion
shows the variation ofg for 0 < n < 4 as a function of the related to the large vortex shedding in the wake of the
angle of incidencen for five typical locations in the group: group. However, moving towards the lee side of the group,
the four corner cylinders (1, 8, 33 and 40), a cylinder in theregularities appear: higher frequencies also prevaitha
middle of the group (21) and the single circular cylinder foirequency spectra for cylinders 8 and 40 (figures 11d and.11b)



This frequency content at around 3Hz to 4Hz indicates thtt the frequency domain of the dynamic pressures show that
the third and fourth circumferential eigenmodes of the ssildhe third and fourth ovalling eigenmodes of the silos willsho
(both at eigenfrequencies ofd8Hz) will probably be excited. likely be excited on silos at the lee side corners of the group
Moving downstream within the group, contributions at evelRor certain angles of incidence, these ovalling osciltatimay
higher frequencies are also encountered (e.g. cylinddifte not only be present at the lee side corner of the inclinedgrou
11e). For other angles of incidence, the presence of peakdirt also on transverse corners of the group: e.g. silo 8 for
the frequency range between 3Hz and 4Hz confirms that #wegle of incidencen = 30° (figure 11d). This corresponds
eigenmodes with the lowest eigenfrequencies, i.e. mod8} (with the observed ovalling eigenmodes with three and four
and (1,4) (figure 1), will probably be excited at the lee sifle @ircumferential wavelengths during the 2002 storm in Amwe

the silo group.
Although the underlying mechanism inducing ovalling
oo siom  vibrations is not fully understood at present, it is gerlgral
T accepted that there are three distinct mechanisms leading t
vibrations in tube arrays [8] [21]. Firstly, forces can aris
due to coincidence of a structural natural frequency with th
LT ; AT vortex shedding frequency in the tube wake. The possibility
@ °  ° rewewta © ° (b)  ° ° rewewba | ° of v_ortex shedding in closely spaced tube arrays has peen the
<55 Subject of controversy for several decades [21] but is now
reasonably well understood. Secondly, fluid-elastic inifitg is
based on self-excited forces which are caused by the irtienac
between tube motion and fluid flow. Vibrations in a regulaetub
array cause the arrangement to become irregular, particula
% in closely spaced arrays [18]. The fluid-elastic forces are
oo proportional to tube displacement at the onset of instgbili
o wm e and are superimposed by a second type of forces, propartiona
oo i to tube vibration velocities. The first is typically domirnan
[ j i in staggered tube configurations while the second can become
il dominant in in-line configurations [22]. Finally, turbulen
] A\M’W M“””"’ie buffeting forces arise due to turbulent fluctuations of ttosvfl
Frequency [Hz] pressure. These forces arise as a response to flow turbulence
either initiated upstream or induced within the array ftE&l.
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Figure 11. Frequency spectra for the amplitud&’:ﬁf(solid

line) andC,* (dashed line) for (a) cylinder 33, (b) cylinder Considering resonance effects in the present configuration
40, (c) cylinder 1, (d) cylinder 8 and (e) cylinder 21.  djstinction should be made between interstitial flow peidiigs
and classical vortex shedding around the entire group. The
Similarly, time averaged and fluctuating drag and lift f&rcegarge difference between the natural ovalling frequengigare
on the cylinders in the group can be determined. For all anglg) and the vortex shedding frequencies in present simulstio
of incidence, time averaged drag and lift are considerablyer (f, in table 1), confirms that subharmonic excitation by vortex
at the corner silos in comparison with cylinders in the medofl - shedding is a condition neither necessary nor sufficienttfer
the group. The reasonably high lift coefficients on the tvanse  onset of ovalling [23]. Furthermore, Paidoussis et al] [ve
corner silos where the shear layer is separated, indicate tonvincingly shown that conventional vortex shedding @ann
these cylinders are pulled away from the group. Fluctuatiogxcite ovalling oscillations of cylindrical shells in ce$low
tend to be larger at the windward side of the group. since ovalling of a single cylinder also occurs when a long
splitter plate in the wake suppresses periodic vortex shgdd
4 OVALLING OSCILLATIONS IN THE 8 BY 5 SILO Although the periodicities in the interstitial flow may berye
GROUP different from classical vortex shedding, these do not sede
Based on the results of the numerical simulations, the imcat related to ovalling, since they occur throughout the emficeip
and cause of ovalling vibrations in the silo group can behile ovalling is only observed on the corner silos. Henagd#l
explained. elastic instability and/or turbulent buffeting are beéevto be
The silos near the transverse corners of the group, where tiaesing the wind induced ovalling vibrations on the corrmdrs
shear layer is separated, are subject to the largest timmagea the silo group. Although fluid-elastic instability was exded
pressures. Remarkably, the third and fourth circumfeaéntas a cause of vibrations in an infinite rotated square tulas arr
harmonics in the static pressure are specifically pronalinag Re= 1.2 x 10* by Price et al. [8], this should not be
on these corners. The combined effect of the latter with tigeneralized for the current 8 by 5 cylinder group at a much
large time averaged and fluctuating drag and lift forces ndasigher Reynolds number. Turbulent buffetting, finally, nvayy
these corners, may result in observable rigid body motidnswell be triggering ovalling vibrations as well because oé th
the statically deformed silos. This effect being fundarayt large pressure fluctuations at the lee side of the group, evher
different from ovalling vibrations, dynamic pressure flutions dynamic pressure excitation on the silos was shown to excite
have been studied. Harmonic decomposition and transf@matthe lowest structural eigenmodes.



5 CONCLUSIONS REFERENCES

In order to elucidate the occurence of ovalling oscillasion the
empty corner silos of a 8 by 5 silo group in the port of Antwerpé
the post-critical flow around this closely spaced cylindexup (2]
was simulated numerically. 2D URANS simulations for thes)
entire group were performed for 7 angles of incidenxe
between 0 and 90.

The group configuration and orientation of the groul!
drastically change the flow regime, showing similaritieghwi
the fluid flow around bluff rectangular cylinders. Differesc [5]
in flow pattern and Strouhal number are due to the porosity and
rounded corners of the group, the higher Reynolds number ggd
the difference in turbulence intensity. Approximately 168the
incident flow penetrates the group and emerges at the lee dfde
to form local recirculation zones when the group is suffitien
inclined. These emerging interstitial flows prevent theashel8]
layer from reattaching and eventually coalesce to form gelar
vortex street in the wake of the group.

The flow in the interstitial spaces of the group is somewh§li
similar to the flow in tube bundles (e.g. heat exchangers).
Although the flow pattern is clearly different when the grouF
is oriented parallel to the incident flova (= 0° or a = 90°), 10
for an inclined orientation, the interstitial flow is verynsiar,
following wavy paths through the array. Far=15° anda = [11]
60°, at arbitrary locations in the array some irregularitiethi@
otherwise regular wavy flow pattern are observed. This tesut2]
in higher frequency periodicities in the interstitial flonhigh
is attributed to the 2D character of the numerical simutetio ">
where spanwise velocities are suppressed.

Both static deflection (time averaged pressures) and dynar[r%fl]
excitation (fluctuating pressures) are considered. Thes sil
near the transverse corners of the silo group, where the sH&3
layer is separated, are subject to the largest static pesssu
for all angles of incident flow. Remarkably, the third andié]
fourth circumferential harmonics in the static pressure ar
specifically pronounced for these cylinders. To explain ther
existence of ovalling vibrations, however, dynamic flutioms
in the pressure loading on the silos should be considerﬁ%]
For all angles of incidencex, dynamic pressures on the
silos at the lee side of the group are seen to most likdh?]
excite the third and fourth structural eigenmodes, coordmg
with the lowest eigenfrequencies. This corresponds wifbo
the visually detected ovalling eigenmodes with three and
four circumferential wavelengths at the corner silos of the
group during the 2002 storm in Antwerp. Based on thegm]
results, the underlying physical mechanisms producindine
periodicities and eventually inducing the ovalling vilioats are [22]
believed to be turbulent buffeting and/or fluid-elastictatmlity
while resonance with some periodic vortex shedding can Bg]
excluded.
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