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ABSTRACT: During a storm in October 2002, wind induced ovalling oscillations were observed on several empty silos of a closely
spaced group of 8 by 5 silos in the port of Antwerp (Belgium). Present day standards describe only basic wind load cases, unable
to explain this ovalling phenomenon. In order to improve thedesign of engineering structures with cylinders placed in groups, a
thorough understanding of the fluid flow around such groups isrequired. 2D unsteady Reynolds averaged Navier-Stokes (URANS)
equations using Menter’s shear stress transport turbulence model were performed, considering the wind flow around the rectangular
group for a range of angles of incidence (0◦ ≤ α ≤ 90◦). The 2D highly turbulent post-critical flow (Re= 1.24×107) around a
single cylinder was computed to elucidate the influence of the applied turbulence model and to validate the spatial and temporal
discretization. Since, the flow regime around and within thesilo group is similar to the flow around rectangular cylinders and the
flow within tube arrays (e.g. heat exchangers), similarities and differences are used to assess the influence of the angleof incidence
on the flow pattern around the cylinder group. The large velocities in the interstitial flow between cylinders as well as the formation
of large scale vortex shedding in the wake of the group are discussed for various angles of incidence. Static and dynamic loadings
on separate silos of the group are studied to explain the existence and the location of ovalling oscillations in closely spaced silo
groups.
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1 INTRODUCTION AND MOTIVATION

Circular cylinders are encountered in civil engineering con-
structions as silos, (solar) chimneys, water towers, power
transmission lines, offshore structures and suspension bridge
cables. Although wind loading is an important design load
for these structures, only basic wind load cases are described
in standards, e.g. in Eurocode 1 [1]. Since the configuration
and orientation of the group drastically change the fluid flow
around the cylinders, a more realistic estimation of the pressure
coefficients and forces is required. This can be provided by
experimental or numerical simulations of the wind flow.

During a storm in October 2002, ovalling was observed on
several empty silos on the corners of a group of forty silos
in the port of Antwerp. The group is organized in five rows
of eight very closely spaced silos (pitch to cylinder diameter
ratio = P/D = 1.05). The silo group is situated in proximity
of the river Scheldt in vast and flat surroundings and is therefore
classified in terrain category II of Eurocode 1 [1]. The calculated
mean wind velocityvf = 31.8m/s at half the height of the
silo (30m above ground level) consequently leads to a highly
turbulent, post-critical flow regime at Reynolds number Re=
vfD/ν = 1.24× 107 [2]. Because of the small spacing ratio
between silos and the high Reynolds number, no experimental
or numerical data applicable to this case are available.

Wind induced ovalling oscillations are an aeroelastic phe-
nomenon where the cross section of the structure deforms
as a shell without bending deformation with respect to the

longitudinal axis of symmetry [3]. Prior to the study of wind-
structure interaction, both structure and fluid behaviour should
be studied. On the one hand, Dooms et al. [4] studied
the ovalling mode shapes of the empty silo structures. Each
ovalling mode shape is referred to by a couple(m,n) wherem
denotes the half wave number in the axial direction andn is the
number of circumferential waves (figure 1). On the other hand,
numerical simulations of the turbulent wind flow, modelled as
incompressible (low Mach number) flow, are performed in the
present paper to explain the occurrence of the observed ovalling
oscillations in the 8 by 5 group. The influence of the angle of
incidenceα of the wind flow on these ovalling oscillations is
examined. Other parameters such as spacing ratio, Reynolds
number, etc. are left unchanged.

Details on the applied computational model are discussed
in the next section. The less complex and better documented
case of 2D flow around a single cylinder in the post-critical
regime is considered to validate the numerical procedure. In
the third section, the complex flow around the 8 by 5 silo
group is analyzed. Similarities of the present flow with the
flow within tube arrays (e.g. heat exchangers) and the flow
around rectangular cylinders are discussed. Time averagedand
fluctuating pressure coefficients as well as drag and lift forces
are calculated to examine the influence of the angle of incidence
(0◦ ≤ α ≤ 90◦). Finally, the existence of ovalling vibrations in
cylinder groups is explained.
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Figure 1. Selected ovalling eigenmodes of a single silo, (a)
mode (1,3) at 3.93 Hz, (b) mode (1,4) at 3.93 Hz and (c)
mode (1,2) at 7.75 Hz [4].

2 COMPUTATIONAL PROCEDURE AND VALIDATION

The simulation of highly turbulent flows around complex
geometries is a computationally challenging task. Therefore, the
case of a single cylinder in cross flow is calculated first in order
to validate the computational model. This approach, known as
the Building Block Approach and introduced by the AIAA [5],
allows the validation of a proposed computational model with
a simpler sub-system for which experimental data are available.
The lack of experimental data for the 8 by 5 silo group makes
this approach particularly interesting.

2.1 Numerical procedure

The choice of a particular numerical technique is mainly
influenced by the complex geometry of the problem and the
computational effort. The finite volume method (FVM) is used
for the discretization of the governing incompressible Navier-
Stokes equations, while for the numerical treatment of turbu-
lence, the Reynolds averaged Navier-Stokes (RANS) procedure
with the hybrid shear-stress transport (SST) turbulence model
is chosen. The SST model, suggested by Menter, combines
the robust and accurate formulation of thek−ω model in the
near-wall region with the free stream independence of thek− ε
model in the far field and should therefore be more accurate and
reliable for a wider class of flows [6]. The computational time
required for RANS simulations is modest when compared to
other techniques, e.g. large eddy simulations (LES) or detached
eddy simulations (DES). For similar reasons, a 2D cross section
of the silo group is considered. Although 3D flow simulations
over complex bodies have become possible in recent years, they
remain very expensive and are therefore limited to moderate
Reynolds numbers. 2D simulations are quite feasible, even for
complex geometries and relatively high Reynolds numbers [7].

To solve the 2D unsteady Reynolds averaged Navier-
Stokes (URANS) discretized set of equations, a second
order interpolation of the pressure, a second order upwind
interpolation of momentum, turbulent kinetic energyk and
specific dissipation rateω are applied, while a second order
implicit, unconditionally stable, time stepping method isused.

To deal with the pressure-velocity coupling, a coupled pressure-
based calculation is performed which, unlike segregated
algorithms such as PISO or SIMPLE [5], is known for its
significantly improved rate of convergence [6].

2.2 Computational domain and boundary conditions

The boundaries of the fluid domain should be sufficiently
far from the near-wall region where accuracy is important:
distances of 9D to the inlet and the lateral boundaries and 30D
to the outlet of the domain are used, withD the diameter of the
cylinder. Equivalently, 9Dg and 30Dg are used for the group
configuration, withDg the projected width of the silo group
(figure 2).
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Figure 2. Plan view of the silo group with numbering of the
invididual silos. Normative dimensions are given as well
as definitions for the angle of incidenceα and the angleθ
on the circumference of an individual cylinder.

In the computations, the air density isρ = 1.25kg/m3 and its
dynamic viscosity isµ = 1.76×10−5Pas. At the velocity inlet
with imposed free stream velocityvf = 31.8m/s, the turbulent
energyk and specific dissipation rateω have to be defined.
Since values fork and ω cannot be determined from on site
measurements, they are based on the turbulence intensityI and
the turbulence length scalel [5]. A reasonably low turbulence
intensity I = 1% is assumed andk = 3(vf I)2/2 = 0.152J/kg
at the inlet. Several researchers showed that turbulence at
the upstream boundary results in very little difference in
turbulence intensity in vicinity of the bluff body [8] [9]. The
turbulence length scalel is typically chosen as a percentage of
a characteristic dimension of the problem, e.g.l = 0.06Dg =

1.8m forα = 0◦, and hence a dissipation rateω =C−1/4
µ

√
k/l =

0.395s−1 is imposed at the inlet withCµ = 0.09 a model
constant. The entire flow field is initialized with these inlet
conditions. The outlet boundary is modelled as a pressure outlet
where the static pressure is set equal to the reference pressure.
At the lateral boundaries symmetry is imposed. The cylinder
walls are considered smooth and no-slip boundary conditions
are applied.

2.3 Spatial and temporal grid refinement

For transient simulations, the governing equations must be
discretized in both space and time. The verification of



convergence and grid independency is performed for the single
cylinder case.

The near-wall treatment at the solid cylinder walls is
the principal issue for spatial grid refinement: two distinct
approaches can be applied. When a very fine mesh is used
near the cylinder wall and the first grid point is located in the
viscous sublayer, velocity gradients are computed explicitly.
Alternatively, logarithmic wall functions can be used to model
the near-wall behaviour, significantly reducing the numberof
elements and computation time. However, the first grid point
should be sufficiently distant from the surface for viscous
stresses to be negligible, yet sufficiently close so that inertial
terms can be neglected. Several mesh configurations were
processed to find an optimal refinement in the near-wall region,
allowing to use the log-law functions.

Multiple time step refinements have also been performed
and show that convergence is reached for a time step of
approximately 0.00125s. The computational efforts can be dras-
tically reduced without changing the outcome fundamentally
when a slightly larger time step∆t = 0.005s is applied in the
simulations.

2.4 Validation of single cylinder simulations

Although the flow around a circular cylinder has been widely
studied, very few experiments or computations have been
performed for a flow in the post-critical regime. For validation,
the present numerical results are compared with experimental
data and results of other (2D and 3D) numerical simulations.
Typical parameters for this comparison include the Strouhal
number St= fvsL/vf, the separation angleθs (figure 3) and the
pressure coefficient, withfvs the vortex shedding frequency,vf

the free stream velocity of the fluid andL the characteristic
length, equal to the diameterD of the cylinder in the present
case. The pressure coefficient along the circumference of a
cylinder at a certain point in time is defined as

Cp(θ , t) =
p(θ , t)− pf

ρv2
f /2

(1)

with pf the free stream pressure. The time averaged pressure
coefficientCp is calculated as follows:

Cp(θ ) =
1
N

N

∑
i=1

Cp(θ , t) (2)

with N the number of time steps. For the present simulation,
the time averaged pressure coefficient is shown in figure 3 with
θs = 116◦ and St= 0.32.

vf
θs

Cp

Figure 3. Time averaged pressure coefficientCp(θ ) on the
circumference of the cylinder with indication of the free
stream velocityvf and the separation angleθs.

Zdravkovich [2] gives an elaborate overview of experimental
pressure coefficients at Reynolds numbers from 0.73× 107 to
3.65× 107 (figure 4). In the reported experiments, separation
occurs betweenθs = 100◦ and 110◦. For Reynolds numbers
larger than 0.5× 107, experimental smooth flow data of Zan
[10] indicate that the Strouhal number remains at 0.2, whereas
Schewe [11] found that it rises to about 0.3 as the Reynolds
number approaches 107; consistent with the tendency of the
Strouhal number to rise from 0.2 to 0.3 in the range of Reynolds
numbers between 106 and 107 [2].

Several numerical simulations have been reported in the
literature for highly turbulent cross flows around circular
cylinders. Younis et al. [12] performed 2D URANS simulations
at Re= 0.35×107 with different turbulence models and report
a Strouhal number of 0.28 and separation atθs = 120◦. Travin
et al. [13] applied 3D DES for Reynolds numbers up to 3×106

and found Strouhal numbers 0.35 with separation atθs = 111◦.
All experimental and numerical data from literature show

considerable scatter due to differences in Reynolds number,
applied turbulence model, etc. However, it can be concluded
that a generally good agreement is found between the present
simulations (St= 0.32,θs = 116◦) and the data from literature.
Figure 4 also shows that the pressure coefficient on the
circumference of the cylinder is in generally good agreement
with the experimental data gathered by Zdravkovich [2].

Figure 4. Measured pressure coefficients at Reynolds numbers
from 0.73× 107 to 3.65× 107 [2] (dark grey zone) vs.
present calculated maximal (dashed line), minimal (dash-
dotted line) and time averaged pressure coefficientsCp(θ )
(solid line) at Re= 1.24×107.

3 TURBULENT AIR FLOW AROUND THE 8 BY 5
CYLINDER GROUP

The numerical procedure described in the previous section was
applied for the turbulent air-flow around the 8 by 5 silo group
for 7 angles of incidence (0◦ ≤ α ≤ 90◦), in order to clarify
the observed ovalling vibrations on the corners of the group. A
distinction is made between vibrations related to the periodicity
of the interstitial flow between the cylinders and vibrations
caused by the large vortex structures behind the entire cylinder
bundle.

3.1 Discussion of the flow around the cylinder group

Figure 5c shows the instantaneous flow pattern for an angle
of incidenceα = 30◦. At the transverse corner cylinders of
the group (cylinders 33 and 8), shear layers in the outer flow



are separated while approximately 10% of the flow is forced
through the interstitial spaces in the group. These interstitial
flows emerge at the lee side, join up and form several local
recirculation zones in the wake that coalesce as they are carried
downstream. Eventually one large scale vortex street is formed
in the wake of the entire group. The periodicity of this vortex
street is depicted by the Strouhal number St, summarized in
table 1 with characteristic lengthL = Dg. The decrease of the
Strouhal number for the intermediate angles of incidence (α =
30◦ to 60◦, table 1 or figure 6) is due to the decrease in vortex
shedding frequency for these angles. When the projected width
of the cylinder group (Dg) is increased, the distance between the
free shear layers increases, resulting in larger shedded vortices
and lower shedding frequencies.

For the smallest angles of incidence (α = 0◦ and 15◦, figures
5a and 5b), it is clear that the emerging interstitial flows on
the upper downstream side of the group (cylinders 33 to 40)
are joined up and dragged downstream without forming local
recirculation zones, due to the proximity of the separated shear
layer. The same applies for the highest angles of incidence
(α = 75◦ and 90◦), where no such recirculation zones can be
formed on the lower side of the group (cylinders 8, 16, 24, 32
and 40).

(a)

(b)

(c)

Figure 5. Velocity streamlines of the flow around the 8 by 5
cylinder group for an angle of incidence (a)α = 0◦ at t =
80.0s, (b)α = 15◦ att = 82.5s and (c)α = 30◦ att =77.0s
with flow coming from the left.

It is interesting that the flow around the group as a whole
resembles the behaviour of a single bluff body in cross flow.
Kareem et al. [14] found a similar behaviour for two closely
spaced cylinders in tandem arrangement where separated shear
layers interact and roll up to form one large scale vortex as
well. In figure 6, the present results are therefore comparedwith
experimental results of Knisely [15] for a rectangular cylinder
(L/B = 1.67) in cross flow (1.2× 104 ≤ Re ≤ 2.4× 104).

Table 1. Strouhal frequencies (fvs) and Strouhal numbers (St)
for all different angles of incidence (α) with respective
projected width of the silo group (Dg).

α [◦] 0 15 30 45 60 75 90
Dg [m] 28.7 38.4 45.9 50.6 52.3 50.7 46.1
Tvs [s] 3.23 4.18 5.85 6.32 6.93 5.70 5.14
fvs [Hz] 0.31 0.24 0.17 0.16 0.14 0.18 0.20
St 0.28 0.29 0.25 0.25 0.23 0.29 0.29

Significant dependence of the shedding frequency on the angle
of incidence is observed in the experimental results: the sudden
rise and fall in Strouhal number for very small or high angles
of incidence is interpreted as an indicator of the reattachment of
the separated shear layer [15].

The present Strouhal numbers are significantly higher than
the experimental results. Apart from a slightly different side
ratio for the present simulations (L/B = 1.6), this discrepancy
may be due to differences in four other parameters. Firstly,
turbulence intensity levels are known to affect the angle of
reattachment on a cylinder wall [16] but the effect on the
Strouhal number is believed to be limited and related to the
angle of incidence of the fluid flow. Only for low turbulence
intensities, the Strouhal number might be slightly increased for
small angles of incidence (α < 20◦) [15] [17]. Secondly, the
present simulations were performed at a much higher Reynolds
number, possibly leading to an increase in the Strouhal number
[15]. Thirdly, data on the effects of rounded corners of the
rectangular cylinders are somewhat limited and scattered,but
the general tendency for the Strouhal number is to increase with
increasing rounding radius [15]. Finally, the most important
difference between a bluff rectangular cylinder and the present
cylinder group is the porosity of the latter. The emerging
interstitial flows at the downstream side of the cylinder group
prevent the shear layer from reattaching for very small and
very high angles of incidence. This explains the absence of
the sudden rise and fall in Strouhal number for the present
simulations.
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Figure 6. Comparison of Strouhal numbers for the present 8 by
5 silo group at Re= 1.24×107 and a rectangular cylinder
with side ratioL/B= 1.67 at Re between 1.2 and 2.4×104

[16] for angles of incidenceα between 0◦ and 90◦.

3.2 Discussion of the interstial flow in the cylinder group

Despite important differences (e.g. close spacing betweencylin-
ders and limitation to 40 cylinders in the present simulation),
the interstitial flow pattern in the present simulations canbe



related to the flow through tube bundles that has been widely
studied for the design of heat exchangers. These tube arrays
are typically divided in two categories [18]: the in-line category
where cylinders are arranged in square or rectangle arrays and
the interstitial flow is mostly straight through the arrays and
the staggered category where cylinders are arranged in rotated
square or triangle arrays and the flow is forced along wavy
paths. Depending on the angle of incidence, the present silo
group could be classified in either category: the in-line, square
configuration applies to the cases withα = 0◦ andα = 90◦ while
for all other angles of incidence the staggered, rotated square
arrangement would be applicable. As shown in figure 7, this is
not always the case.

No straight flow pattern forα = 0◦ (figure 7a) andα = 90◦ is
found. For in-line tube bundles, the presence of the subsequent
row prevents the transitional eddies to form and roll-up and
the eddies are carried away between the tubes by the jet-like
interstitial flow [19]. The present cylinders, however, aretoo
closely packed and the eddies partially or completely disappear
in the distorted flow. Instead, the interstitial flow is not separated
from the cylinder wall and follows a wavy path through the
array, deflecting the flow up- and downward to the sides of the
group, following the shortest path from the high pressures at
the leading side of the group to the lower pressures at the lee
side of the group. For other angles of incidence, interstitial
flows resemble the wavy interstitial flow pattern of staggered
tube bundles [18], e.g. forα = 30◦ (figure 7b). However,
for α = 60◦ (figure 7c) andα = 15◦ (not shown), the regular
wavy pattern is interupted at arbitrary points in the array,where
the interstitial flow separates from the cylinder surface and
forms small recirculation zones or even results in local vortex
shedding. As suggested by Mittal et al. [7], the presence of
these irregularities may be directly related to the 2D character of
the simulations, which would be canceled out in 3D simulations
where spanwise velocities are allowed.

Other flow phenomena are similar for tube bundles and the
present case. Several experiments on tube arrays [18] [20]
show that turbulence intensity is built up as the interstitial
flow proceeds through the array until the rate of turbulence
generation is balanced by the turbulence dissipation. For the 8
by 5 cylinder group, turbulence is also generated in the cylinder
array itself and attains maximal values at the upper and lower
edges of the rectangular array, where turbulence generation and
dissipation is high because of the high flow velocities.

Another similarity concerns the observation of several inter-
related flow periodicities in staggered tube arrays in experiments
[8] [21]. For the present cylinder group, multiple peaks in the
frequency spectrum of the pressure were also observed through
the array for all angles of incidenceα, as shown in figure 8 for an
arbitrary point A in the middle of the cylinder group (figure 2).
These frequency peaks are located at multiples of the Strouhal
frequency, which is identified at the dominant, lowest frequency
peak. Forα = 60◦ (figure 8b), smaller peaks are detected at
6Hz (similarly for α = 15◦ at 2Hz), which are related to the
deviating wavy pattern for these angles of incidence (figure7c).
No specific pattern of the locations in the array where these
irregular peaks occur, was found.

(a)

(b)

(c)

Figure 7. Detail of velocity streamlines for the interstitial space
in the 8 by 5 cylinder group for an angle of incidence (a)
α = 0◦ at t = 78.5s, (b)α = 30◦ at t = 79.0s and (c)α =
60◦ at t = 85.0s.
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Figure 8. Frequency spectra for the pressure in point A (figure
2) for angles of incidence (a)α = 30◦ and (b)α = 60◦.

3.3 Pressure loads on the cylinders

Pressure distributions on the walls of the cylinders may clarify
the excitation of ovalling oscillations in the silo group. Time
averaged pressures provide an indication of the static deflection
of the silos while fluctuating pressures represent the dynamic
excitation of the silos. The fluctuating pressure coefficients
along the circumference of each cylinder are determined in
every time step as follows:

C
′
p(θ , t) =Cp(θ , t)−Cp(θ ) (3)

To investigate the contribution of static and fluctuating pressures
on the eigenmodes of the silos, the pressure coefficients canbe
harmonically decomposed into a series of cosine functions with
circumferential wavenumbern, corresponding to the ovalling



mode shapes of the axisymmetric structure (figure 1):

Cp(θ ) =
∞

∑
n=0

C
n
pcos(nθ +φn) (4)

C
′
p(θ , t) =

∞

∑
n=0

C
′n
p (t)cos(nθ +φn) (5)

For a single cylinder, this yields for everyn a single value for the
time averaged and a value in every time step for the fluctuating
pressure.

The group configuration drastically changes the pressure
distributions around the cylinders in group arrangement when
compared to the single cylinder case (figure 9). On the
transverse upstream corners of the group (e.g. cylinders 1 and
33 for α = 0◦, figure 9a, or cylinders 8 and 33 forα = 60◦,
figure 9b), the highest time averaged suction pressures occur
prior to the separation of the shear layer. At the lee side of
the group (e.g. cylinders 24, 32 and 36 to 40 forα = 60◦,
figure 9b), pressure distributions are nearly uniform and can be
related to the constant negative base pressure at the lee side of
a single cylinder in cross flow. Distinct minima in the pressure
distributions are observed in the narrow gaps between cylinders
where the interstitial flow velocities are largest (e.g. cylinder
22 in figure 9b). At incidence angleα = 0◦ (figure 9a), where
the interstitial flow is deflected upward and downward in the
upstream part of the group, the flow velocities in the gaps in the
middle of the group are much lower and these minima cannot be
observed.
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Figure 9. Time averaged pressure coefficientsCp(θ ) for
all cylinders in the group arrangement for an angle of
incidence (a)α = 0◦ and (b) α = 60◦. Dashed lines
indicate the time averaged pressure coefficientCp(θ ) for
the single cylinder case (figure 3).

By harmonic decomposition of the time averaged pressure
coefficient Cp(θ ), it becomes clear which harmonics will
contribute most to the static deflection of the silo. Figure 10
shows the variation ofC

n
p for 0 ≤ n ≤ 4 as a function of the

angle of incidenceα for five typical locations in the group:
the four corner cylinders (1, 8, 33 and 40), a cylinder in the
middle of the group (21) and the single circular cylinder for

reference. It is observed that the cylinders on the corners
of the group, where the shear layer is separated, are more
strongly loaded than the single cylinder: for cylinder 8 (figure
10d) contributions for higher angles of incidence (α > 60◦) are
larger while for cylinder 33 (figure 10a) this is the case for low
angles of incidence (α < 30◦). Cylinder 1 on the other hand
(figure 10c) is most heavily loaded forα = 0◦ and α = 90◦.
Remarkably, for the cylinders where the shear layer is separated,
the contribution of the third and fourth harmonics (n= 3,n= 4)
are much larger than for other cylinders in the group or the single
cylinder case. For cylinder 40 (figure 10b), the most important

contribution originates from the uniform componentC
0
p which

can again be related to the constant base pressure at the lee side
of a single cylinder, while contributions of other harmonics are
much smaller than the reference values for the single cylinder.
For cylinder 21 in the center of the group (figure 10e), it should
be noted that apart from the uniform component, the fourth
harmonic has the highest contribution for all angles of incidence,
caused by the 4 distinct minima in the time averaged pressure
distributions (figure 9).

(a)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SILO 33 

(b)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SILO 40 

(c)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SILO 1 

(d)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SILO 8 

(e)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SILO 21 

(f)
0 15 30 45 60 75 90

0

0.5

1

1.5

2

2.5

3

α  [°]

|C
pn |

SINGLE CYLINDER 

Figure 10. AmplitudeC
0
p (3), C

1
p (4), C

2
p (5), C

3
p (©) and

C
4
p (2) for (a) cylinder 33, (b) cylinder 40, (c) cylinder 1,

(d) cylinder 8, (e) cylinder 21, and (f) the reference single
cylinder case, as a function of the angle of incidenceα.

Since static, time averaged pressures are unable to trigger
oscillations, the time history of the amplitudesC

′n
p (t) are

transformed to the frequency domain by means of a FFT
algorithm. Results for angle of incidenceα = 30◦ and for
circumferential wave numbersn = 3 andn = 4 are shown in
figure 11 for cylinders 1, 8, 21, 33 and 40. The frequency
spectra for cylinders 1 and 33 (figures 11c and 11a) show
no periodicities other than the low frequency contributions
related to the large vortex shedding in the wake of the
group. However, moving towards the lee side of the group,
irregularities appear: higher frequencies also prevail inthe
frequency spectra for cylinders 8 and 40 (figures 11d and 11b).



This frequency content at around 3Hz to 4Hz indicates that
the third and fourth circumferential eigenmodes of the silos
(both at eigenfrequencies of 3.93Hz) will probably be excited.
Moving downstream within the group, contributions at even
higher frequencies are also encountered (e.g. cylinder 21,figure
11e). For other angles of incidence, the presence of peaks in
the frequency range between 3Hz and 4Hz confirms that the
eigenmodes with the lowest eigenfrequencies, i.e. modes (1,3)
and (1,4) (figure 1), will probably be excited at the lee side of
the silo group.
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Figure 11. Frequency spectra for the amplitude ofC
′3
p (solid

line) andC
′4
p (dashed line) for (a) cylinder 33, (b) cylinder

40, (c) cylinder 1, (d) cylinder 8 and (e) cylinder 21.

Similarly, time averaged and fluctuating drag and lift forces
on the cylinders in the group can be determined. For all angles
of incidence, time averaged drag and lift are considerably larger
at the corner silos in comparison with cylinders in the middle of
the group. The reasonably high lift coefficients on the transverse
corner silos where the shear layer is separated, indicate that
these cylinders are pulled away from the group. Fluctuations
tend to be larger at the windward side of the group.

4 OVALLING OSCILLATIONS IN THE 8 BY 5 SILO
GROUP

Based on the results of the numerical simulations, the location
and cause of ovalling vibrations in the silo group can be
explained.

The silos near the transverse corners of the group, where the
shear layer is separated, are subject to the largest time averaged
pressures. Remarkably, the third and fourth circumferential
harmonics in the static pressure are specifically pronounced
on these corners. The combined effect of the latter with the
large time averaged and fluctuating drag and lift forces near
these corners, may result in observable rigid body motions of
the statically deformed silos. This effect being fundamentally
different from ovalling vibrations, dynamic pressure fluctuations
have been studied. Harmonic decomposition and transformation

to the frequency domain of the dynamic pressures show that
the third and fourth ovalling eigenmodes of the silos will most
likely be excited on silos at the lee side corners of the group.
For certain angles of incidence, these ovalling oscillations may
not only be present at the lee side corner of the inclined group
but also on transverse corners of the group: e.g. silo 8 for
angle of incidenceα = 30◦ (figure 11d). This corresponds
with the observed ovalling eigenmodes with three and four
circumferential wavelengths during the 2002 storm in Antwerp.

Although the underlying mechanism inducing ovalling
vibrations is not fully understood at present, it is generally
accepted that there are three distinct mechanisms leading to
vibrations in tube arrays [8] [21]. Firstly, forces can arise
due to coincidence of a structural natural frequency with the
vortex shedding frequency in the tube wake. The possibility
of vortex shedding in closely spaced tube arrays has been the
subject of controversy for several decades [21] but is now
reasonably well understood. Secondly, fluid-elastic instability is
based on self-excited forces which are caused by the interaction
between tube motion and fluid flow. Vibrations in a regular tube
array cause the arrangement to become irregular, particularly
in closely spaced arrays [18]. The fluid-elastic forces are
proportional to tube displacement at the onset of instability
and are superimposed by a second type of forces, proportional
to tube vibration velocities. The first is typically dominant
in staggered tube configurations while the second can become
dominant in in-line configurations [22]. Finally, turbulent
buffeting forces arise due to turbulent fluctuations of the flow
pressure. These forces arise as a response to flow turbulence,
either initiated upstream or induced within the array itself [8].

Considering resonance effects in the present configuration,
distinction should be made between interstitial flow periodicities
and classical vortex shedding around the entire group. The
large difference between the natural ovalling frequencies(figure
1) and the vortex shedding frequencies in present simulations
( fvs in table 1), confirms that subharmonic excitation by vortex
shedding is a condition neither necessary nor sufficient forthe
onset of ovalling [23]. Furthermore, Paı̈doussis et al. [24] have
convincingly shown that conventional vortex shedding cannot
excite ovalling oscillations of cylindrical shells in cross flow
since ovalling of a single cylinder also occurs when a long
splitter plate in the wake suppresses periodic vortex shedding.
Although the periodicities in the interstitial flow may be very
different from classical vortex shedding, these do not seemto be
related to ovalling, since they occur throughout the entiregroup
while ovalling is only observed on the corner silos. Hence, fluid-
elastic instability and/or turbulent buffeting are believed to be
causing the wind induced ovalling vibrations on the cornersof
the silo group. Although fluid-elastic instability was excluded
as a cause of vibrations in an infinite rotated square tube array
at Re= 1.2× 104 by Price et al. [8], this should not be
generalized for the current 8 by 5 cylinder group at a much
higher Reynolds number. Turbulent buffetting, finally, mayvery
well be triggering ovalling vibrations as well because of the
large pressure fluctuations at the lee side of the group, where
dynamic pressure excitation on the silos was shown to excite
the lowest structural eigenmodes.



5 CONCLUSIONS

In order to elucidate the occurence of ovalling oscillations on the
empty corner silos of a 8 by 5 silo group in the port of Antwerp,
the post-critical flow around this closely spaced cylinder group
was simulated numerically. 2D URANS simulations for the
entire group were performed for 7 angles of incidenceα
between 0◦ and 90◦.

The group configuration and orientation of the group
drastically change the flow regime, showing similarities with
the fluid flow around bluff rectangular cylinders. Differences
in flow pattern and Strouhal number are due to the porosity and
rounded corners of the group, the higher Reynolds number and
the difference in turbulence intensity. Approximately 10%of the
incident flow penetrates the group and emerges at the lee side
to form local recirculation zones when the group is sufficiently
inclined. These emerging interstitial flows prevent the shear
layer from reattaching and eventually coalesce to form a large
vortex street in the wake of the group.

The flow in the interstitial spaces of the group is somewhat
similar to the flow in tube bundles (e.g. heat exchangers).
Although the flow pattern is clearly different when the group
is oriented parallel to the incident flow (α = 0◦ or α = 90◦),
for an inclined orientation, the interstitial flow is very similar,
following wavy paths through the array. Forα = 15◦ andα =
60◦, at arbitrary locations in the array some irregularities inthe
otherwise regular wavy flow pattern are observed. This results
in higher frequency periodicities in the interstitial flow which
is attributed to the 2D character of the numerical simulations
where spanwise velocities are suppressed.

Both static deflection (time averaged pressures) and dynamic
excitation (fluctuating pressures) are considered. The silos
near the transverse corners of the silo group, where the shear
layer is separated, are subject to the largest static pressures
for all angles of incident flow. Remarkably, the third and
fourth circumferential harmonics in the static pressure are
specifically pronounced for these cylinders. To explain the
existence of ovalling vibrations, however, dynamic fluctuations
in the pressure loading on the silos should be considered.
For all angles of incidenceα, dynamic pressures on the
silos at the lee side of the group are seen to most likely
excite the third and fourth structural eigenmodes, corresponding
with the lowest eigenfrequencies. This corresponds with
the visually detected ovalling eigenmodes with three and
four circumferential wavelengths at the corner silos of the
group during the 2002 storm in Antwerp. Based on these
results, the underlying physical mechanisms producing theflow
periodicities and eventually inducing the ovalling vibrations are
believed to be turbulent buffeting and/or fluid-elastic instability
while resonance with some periodic vortex shedding can be
excluded.
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