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Abstract

Fluidic devices exhibiting ion current rectification (ICR), or ionic diodes, are of broad in-

terest for applications including desalination, energy harvesting, and sensing, amongst others.

For such applications a large conductance is desirable which can be achieved by simultane-

ously using thin membranes and wide pores. In this paper we demonstrate ICR in micron sized

conical channels in a thin silicon membrane with pore diameters comparable to the membrane

thickness but both much larger than the electrolyte screening length. We show that for these

pores the entrance resistance is not only key to Ohmic conductance around 0 V, but also for

understanding ICR, both of which we measure experimentally and capture within a single an-

alytic theoretical framework. The only fit parameter in this theory is the membrane surface

potential, for which we find that it is voltage dependent and its value is excessively large com-

pared to literature. From this we infer that surface charge outside the pore strongly contributes
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to the observed Ohmic conductance and rectification by a different extent. We experimentally

verify this hypothesis in a small array of pores and find that ICR vanishes due to pore-pore

interactions mediated through the membrane surface, while Ohmic conductance around 0 V

remains unaffected. We find that the pore-pore interaction for ICR is set by a long-ranged de-

cay of the concentration which explains the surprising finding that the ICR vanishes for even a

sparsely populated array with a pore-pore spacing as large as 7 µm.

Introduction

Ionic transport near solid-liquid interfaces can differ drastically from that in bulk due to Coulom-

bic interactions with the surface.1 Such interface effects can be used to tailor nanofluidic devices,2

finding applications in desalination,3,4 ionic circuitry,5,6 bio-chemical sensing,7–11 energy harvest-

ing12,13 and neuromorphic signalling.14–16 A particularly useful element for directional control of

ionic currents is a current rectifier,9,17–19 also known as a diode. In fact, the phenomenon of ion

current rectification (ICR) has been observed and extensively studied in nanochannels.20–23

The ICR originates from an asymmetry in the ionic current along the length of the channel, due

to a varying relative contribution to the ionic current of the charge-selective electric double layer

(EDL) that screens the charge on the channel walls. Typically, ICR is demonstrated in nanoscale

conical channels, where EDL overlap occurs on the narrow end of the channel.21,22 In general,

the ICR mechanism for a geometrically asymmetric, or tapered, channel can be understood by

considering that the relative contribution of the salt current through the EDL to the total current

is smaller at the wide opening than at the narrow opening.24,25 This results in an asymmetry of
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the transference (i.e. the partial current due to either ionic species). Considering a channel with

a negative surface charge on its wall, resulting in an EDL with excess positive ionic charge, an

electric field directed towards the narrow end leads to more ions leaving the small opening than

entering the large opening (before steady state is reached), resulting in depletion of ions inside the

channel, and a suppressed conductance.26 The opposite is true for an oppositely directed electric

field, resulting in accumulation of charge carriers and enhanced conductance. More broadly, the

required asymmetry in transference can be introduced not only by geometry, but also by a variation

of e.g. charge or concentration.24,26,27

For application purposes regarding larger scale porous membranes, a low electric resistance of the

channel is desirable to mitigate Ohmic losses. Two intuitive ways to construct a channel with low

resistance are by making (i) larger openings26 or (ii) shorter channels.28,29 Considering the accu-

mulation/depletion mechanism described above, recent theoretical work predicts that ICR can also

occur in wide channels without overlapping electric double layers, as long as a substantial part of

the ionic current is due to surface conductance.26,30–34 In fact, ICR in mesoscopic channels35 and

chemically modified micronsized systems have recently been observed.32,36,37 For thin membranes

with short channels on the other hand, it has become clear that the applied potential partially drops

outside the channel, rather than fully over the channel itself.29,38–41 These extended entrance ef-

fects give rise to an edge, or access, resistance and become relevant for the behavior of a fluidic

pore with a channel length of the order of the diameter, which can either positively contribute to

ICR or interfere destructively in arrays of pores.41–43 As of now, however, such pore-pore interac-

tions are still poorly understood.

In this work we fabricate conical, i.e. geometrically asymmetric, fluidic micropores in thin (2 µm)

crystalline silicon membranes, with base and tip radii of Rb ≈ 1.5 µm and Rt ≈ 0.5 µm, respec-

tively, such that even the smallest of these channel dimensions is larger than the typical electrolyte

screening length by more than an order of magnitude. We demonstrate that these pores exhibit ion

current rectification, and we develop an analytical theory for the channel conductance in which

the surface potential is the only fit parameter. We stress that the (Ohmic) channel conductance at
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low applied potentials and ICR are distinct phenomena and we find that we need a different sur-

face potential to fit the experimental data to these two effects, with both surface potentials being

very large, implying a very large surface charge. We interpret the value of these fitted surface

potentials as non-physical, and rather attribute this excessively large charge to a contribution of

conduction along the planar membrane surface outside the channel at the inlet and outlet of the

pore unaccounted for in our model. By correcting this required surface charge to an effective area,

we estimate that this membrane surface conduction is relevant up to distances around the pore

opening as large as 7.4 µm for Ohmic channel conductance, and 15.0 µm for ICR, implying that

a larger area around the pore is required for ICR. We test this hypothesis by fabricating a small

array of pores with a 10 µm spacing (≈ 106 pores/cm2). Indeed, we find that despite this low

pore density the Ohmic conductance remains unaffected, but that the ICR vanishes for the array.

Extended entrance effects at the micron scale therefore appear to play a significant role in the

required asymmetry in ion transport through pores in thin membranes, which we attribute to the

long-ranged decay of the electric field outside the pore. This electric field creates a concentration

profile with a similar long-ranged, inverse-square with distance, decay into the bulk. This scale-

free decay introduces long-ranged pore-pore interactions for thin pores, which become particularly

relevant in array configurations typical for membranes.

Experimental

For our conductance measurements we fabricate single micron-sized pores, which are either straight

or tapered, in 2 ± 0.5 µm thick crystalline silicon membranes using a focused ion beam (FIB). Si

is a reliable and cross-compatible platform that allows for precise pore manufacturing. The taper

is created by writing concentric circles with decreasing radius, resulting in an asymmetric pore, as

verified by atomic force microscopy in SI-1. Conductance measurements are carried out by placing

the membrane between two aqueous reservoirs containing KCl of equal bulk concentration (ρb),

and applying a potential between the reservoirs using Ag/AgCl wire electrodes (Figure 1 (f), and
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SI-2). Of note is the polarity of the applied potential, where positive potentials indicate the anode

being in the reservoir facing the large opening of the pore.

We record quasi-static current-voltage (I-V) curves between -0.5 V and 0.5 V (see methods) at

different reservoir KCl bulk concentrations ρb ranging from 10−1 M to 10−4 M, for 4 membranes

containing a single pore. The insets of Figure 1(a)-(d) show scanning electron microscopy (SEM)

images directly after fabrication of the tapered pores T1 (base and tip radii Rb ' 1.5µm, Rt ' 0.5

µm) and T2 (Rb ' 1.5µm, Rt ' 0.4 µm) and two straight reference pores S1 (Rb = Rt ' 0.6 µm)

and S2 (Rb = Rt ' 1.5 µm).

The corresponding I-V curves are shown as circles in Figure 1(a)-(d), where the colors label the

salt concentration ρb. As the magnitude of the current response varies by several orders of magni-

tude over the salt concentration range, the current is normalized to the value at an applied potential

of -0.5 V for visibility. The shaded regions indicate the possible contribution from leakage current

through the membrane, averaged from measurements on an as-received membrane without a pore

(SI-3). Due to the range in magnitude of the measured currents, this is most relevant for the lowest

concentrations and the smallest pore (S1). The conductance at 0 V as a function of concentration

is shown in Figure 1(e). A linear decrease of the conductance with decreasing concentration is

observed with the conductance saturating at ρb < 1 mM.

At the highest concentrations (yellow, ρb = 0.1 M), and therefore the smallest Debye length (λD

' 1 nm), all pores show a linear I-V response, consistent with bulk dominated transport. At lower

concentrations, however, conductance through the tapered channels starts to show ion current rec-

tification. It should be noted that even at the lowest concentration, ρb = 0.1 mM, the electrolyte

screening length λD ' 30 nm is much shorter than the smallest tip radius, so that the micropores

are well outside the regime of EDL overlap. While some curves for the straight pores S1 and S2

show an erratic deviation from ideal symmetrical conductance, the tapered pores T1 and T2 show

systematic modulation of rectification, where the conductance at positive potentials is smaller than

that at negative potentials.
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Figure 1: (a-d) Experimental current-voltage (I-V) curves, normalized at a potential drop of −0.5
V at various KCl concentrations ρb ∈ [10−4−10−1] M indicated by the colour scale. The shaded
region indicate uncertainty in the measurement due to the leakage current obtained from an as-
received membrane (SI-3). Systematic current rectification is observed for tapered pores T1 and
T2 with the conductivity at +0.5 V being lower than at −0.5 V. The inset shows scanning electron
microscopy images of the tapered pores T1 (a) and T2 (b) and straight pores S1 (c) and S2 (d) after
fabrication. The scalebars are 1 µm. (e) Conductance of the pores at 0 V as a function of KCl
concentration ρb(M). (f) Schematic of the experimental setup where 2 aqueous reservoirs of equal
KCl concentration are separated by the membrane with a single pore. The polarity of the potential
is such that positive potentials indicate the anode being in the reservoir facing the large opening of
the pore.
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Theoretical framework

In the following, we present a model for the potential-dependent conductance of a tapered pore

and obtain a closed-form expression that simultaneously describes Ohmic conductance and ion

current rectification. Currently in the literature there are two, complementary, theories for current

rectification without EDL overlap for pores with large aspect ratio. The theory by Cengio30 and

Poggioli26 describes ICR through the variation of the surface conductance over the pore length

but neglects electro-osmotic flow, while the theory of Ref.25 (developed by some of the present

authors) does account for this flow but fails at extremely low salt concentrations. Hence both the-

ories are complementary rather than mutually exclusive: Refs.26,30 are valid at all concentrations

while theory Ref.25 is valid at all flow rates. We will find that our experiments show characteristic

flow-sensitive behavior, and therefore we build on the theory of Ref.25 However, to describe our

(b)(a)

Depletion

Gtip

E

b

Gbase
b

Gtip
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J

s ᴕ Δψ Du
|Pe|
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Figure 2: (a) Schematic equivalent circuit of a pore featuring bulk and surface conductance Gi
b

and Gi
s respectively, at the base-, tip- and within the pore-regrion. The elements considered in

our analytical model are highlighted, where part of the applied potential ∆ψ drops over the edge
resistance (red dash-dotted region), as captured by Eq.(1). The conductance of the pore with the
remaining potential ∆ψp (green dashed region) is described by Eq.(9). (b) Representation of the
conical system under consideration with base and tip radii Rb and Rt, respectively, and an electric
field −∂xψ = E pointed towards the tip. As outlined in the main text, the depletion of ions in the
channel is proportional to the potential drop ∆ψ times the ratio of the Dukhin (Du) and Péclet (Pe)
numbers as shown in Eq.(8a) and illustrated here for a channel wall with a negative surface charge
resulting in depletion for a positive potential drop due to a salt flux J (black arrow) through the
electric double layer (EDL) that increases towards the tip.
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experiments either theory would need to be extended as the membranes thickness here is similar

to the radius of the pores, and the theory therefore has to account for the electric edge resistance

which is comparable to the pore resistance. There is a variety of theories available in the literature

accounting for Ohmic edge resistance,2,29,38–40,44the most commonly used one by Hall39 which

we reproduce here. In this work we will find that not only do edge resistances alter Ohmic con-

ductance, they also significantly alter rectification. In the following section we extend the theory

of Ref.25 to account for edge effects.

The introduction of non-negligible edge resistances implies an equivalent electric circuit as il-

lustrated in Figure 2(a), which not only considers bulk and surface contributions to the conductance

inside the pore (Gpore
b and Gpore

s ) in parallel45,46 but also two base- (Gbase
b and Gbase

s ) and tip- (Gtip
b

and Gtip
s ) conductances. Only recently it has been shown that the charged surface outside of the

membrane contributes to edge resistance,2,38 but unfortunately our model is not able to explicitly

account for the base- and tip surface conductances (Gbase
s and Gtip

s , respectively) even though we

will see these charged regions do contribute significantly to both experimental Ohmic conductance

and ICR. Instead we implicitly account for the charge on the outside membrane through an "appar-

ent" (large) surface charge within the pore, inflating the pore surface conductance Gpore
s and total

conductance G. Hence our large "apparent" surface charge will account for outer-membrane con-

ductance increasing the well-known bulk edge conductances as described by Hall.39 These parallel

edge surface and bulk conductances are in series with the pore resistances as depicted in Fig.2(a),

which for the present system parameters ensures that the potential drop over the pore ∆ψp is sig-

nificantly smaller than the total bias ∆ψ . This decreased potential drop does not only reduce the

current through the pore but also lowers the electro-osmotic flow and concentration polarization

within the pore. To obtain ∆ψp we consider, in cylindrical (x,r,θ) coordinates, two bulk reservoirs

in the half spaces x < 0 and x > L connected by an azimuthally-symmetric conical channel of

length L as depicted in Figure 2(b) with base radius Rb at the inlet (x = 0) and tip radius Rt at the

outlet (x = L), such that the radius of the channel reads R(x) = Rb− (x/L)(Rb−Rt) for x ∈ [0,L].

The potential drop over the inside of the pore can be calculated using two assumptions: (i) that the
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electric field at the tip (and base) decays as a monopole −∇ψ ∝ 1/(r2 + x2) into the bulk far from

the pore (as noted by Ref.41) and (ii) that the electric field within the pore is divergence-free, such

that electro-neutrality is obeyed. From these assumptions it follows that the pore-potential drop

∆ψp =−
∫ L

0 ∂xψdx is given by

∆ψp =
∆ψ

1+
π

4L
(Rb +Rt)

, (1)

which we derive and verify in SI-4. We note that the edge resistance is negligible in the long-

channel limit L/Rb � 1, as Eq.(1) reduces to ∆ψp ' ∆ψ in this limit. In the geometry of our

experiments the reduced potential ∆ψp given by Eq.(1) does not only effectively halve the electric

current (as L ≈ Rb +Rt for our experimental geometries), but as noted it will also significantly

influence current rectification. As Eq.(1) accounts for the influence of bulk-edge resistance (red

regions in Fig.2(a)) for both the electric current and (electro-osmotic) flow and we use an effective

surface charge σ as proxy for the surface-edge resistance, from now on our mathematical analysis

will pertain only to the inner-pore region (green-shaded region in Fig.2(a)) therewith following

Ref.25

The electric potential difference over the pore ∆ψp does not only drive ion fluxes j±(x,r)

of the cations (+) and anions (−) but also a fluid flow with a velocity field u(x,r). The salt

flux js = j+ + j− and electro-osmotic flow u will be key to understanding the electric current

je = j+ − j−. The resulting salt concentration ρs(x,r) = ρ+(x,r) + ρ−(x,r) due to the inho-

mogeneous salt current is of key importance for current rectification, while the space-charge

eρe(x,r) = e(ρ+(x,r)− ρ−(x,r)) outside the electric double layer is of secondary importance

as was shown in Ref.25 The ionic fluxes and concentrations satisfy the Nernst-Planck equations

(2)-(3) that describe diffusion, conduction, and advection, while the electric potential satisfies

the Poisson equation (4) in terms of the electric space charge density eρe. The fluid flow in the

low-Reynolds number regime of interest here is given by the Stokes equation (5) that includes an

electric body force −eρe∇ψ , and the steady-state condition of interest leads to the condition of
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divergence-free fluxes (6), which all accumulates into

je =−D
(
∇ρe +ρs

e∇ψ

kBT
)+uρe; (2)

js =−D
(
∇ρs +ρe

e∇ψ

kBT
)+uρs; (3)

∇
2
ψ =− e

ε
ρe; (4)

η∇
2u−∇P− eρe∇ψ = 0; (5)

∇ · j± = 0, ∇ ·u = 0. (6)

Here Eq.(2) shows explicitly that the salt concentration ρs = ρ++ρ− determines the electric con-

ductivity of the charge current je. To obtain the pore conductance we consider both reservoirs with

a dilute (monovalent) KCl solution of concentration ρb, viscosity η = 1 mPa s, a dielectric per-

mittivity ε = 80ε0, with ε0 the permittivity of vacuum, and a fixed temperature T = 298 K, which

is constant throughout the system. Deep into the bulk of the base-connected reservoir, x�−L,

we impose that the K+ and Cl− concentrations ρ± = ρb, P = P0, ψ = ∆ψ , and deep into the tip-

connected reservoir, x� 2L, we impose ρ± = ρb, P = P0, and ψ = 0. Here the reference pressure

P0 = 1 atm. For K+ and Cl− we use equal diffusion coefficients D = 1 nm2 ns−1, which is some-

what smaller than the bulk diffusion constant at 20 °C and 0.1 M.47,48 Such a discrepancy between

channel and bulk diffusion constants has been noted in Ref.40

In thermodynamic equilibrium with vanishing potential drop between the reservoirs (∆ψ = 0)

and vanishing fluxes, the PNPS equations (2)-(6) reduce to Poisson-Boltzmann theory that de-

scribes a diffuse layer of net ionic charge near the surface, known as the electric double layer

(EDL) with typical thickness λD = (8πλBρb)
−1/2, and Bjerrum length λB = e2/(4πεkBT ) ' 0.7

nm. Outside this layer all concentrations ρ±(x,r) are equal to ρb and there is no electric field,

−∇ψ(x,r)' 0. In equilibrium the surface charge density eσ obeys the Gouy-Chapman equation,

2πλBλDσ = sinh−1(eψ0/2kBT ).49 Here ψ0 is the surface potential of the channel wall, which we

will use as a fit parameter below, taken to be constant between all geometries and at all concen-

trations thereby implicitly accounting for a concentration-dependent surface charge σ(ρb) due to
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a salt-concentration dependent surface-reaction.50,51

For non-vanishing applied potential drops (∆ψ 6= 0) not only an electric current I = 2πex̂ ·∫ R
0 jerdr (with x̂ the unit vector along the x-direction) and electro-osmotic flow Q= 2π x̂ ·

∫ R
0 u(r)rdr

are driven through the pore, but also a salt current J = 2π x̂ ·
∫ R

0 js(r)rdr where the bulk-excess salt

current is primarily a conductive current through the EDL. In steady-state this salt current must be

laterally constant to prevent the build up of salt through the pore, πR2(x)∂t ρ̄s = −∂xJ = 0, where

¯· · · = (πR2(x))−1 ∫ R(x)
0 · · ·rdr denotes the cross-sectional average of the salt concentration. The

condition of a divergence-free flux (Eq.(6)), which is necessary for a steady-state solution, leads to

a differential equation for cross-sectionally averaged salt concentration for x ∈ [0,L],

D∂x

(
πR2

∂xρ̄s +2πRσ
e∂xψ

kBT

)
−Q∂xρ̄s = 0, (7)

with the electric field −∂xψ = (∆ψp/L)RbRt/R2(x)25 and the electro-osmotic flow in a conical

channel Q = −∆ψp(πRtRb/L)(εψ0/η), (as derived beneath Eq.(2) in Ref.25). In Eq.(7) the first

term represents diffusion of salt through the bulk of the pore, the second term conduction of salt

through the EDL, and the third term advection of salt through the bulk of the pore. In a cylinder

with constant radius R this differential equation reduces to D∂ 2
x ρ̄s−Q∂xρ̄s = 0, which with bound-

ary conditions ρ̄s(0) = ρ̄s(L) = 2ρb has the trivial solution of ρ̄s = 2ρb. Thus for straight pores no

current rectification is expected. For a conical geometry, the laterally changing radius R(x) causes

lateral variation of conductive currents D∂x(2πR(x)σe∂xψ(x)/kBT ) 6= 0 which frustrates the for-

mation of a constant J and acts as a non-zero source term. For a negative surface charge, as is

typically the case for silica, this source term is negative for ∆ψ > 0 and thus the salt concentration

in the pore decreases. For ∆ψ < 0 this source term is positive, and thus the salt concentration

increases. Solving for the cross-sectional average concentration profile ρ̄s(x) leads to a non-trivial
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solution25

ρ̄s(x)−2ρb =
∆ρ

Pe

[
x
L

Rt

R(x)
−

exp
(

x
L

R2
t

RbR(x)
Pe
)
−1

exp
(

Rt

Rb
Pe
)
−1

]
(8a)

=
∆ρ

2|Pe|

(
Rb

R(x)

(
1− x

L
(1+

Rt

Rb
)
)
∓1
)

if ±Pe�
(

Rb

Rt

)2

, (8b)

where the tip Péclet number Pe ≡ −∆ψp(Rb/Rt)(εψ0/Dη) and ∆ρ ≡ 4(e∆ψp/kBT )Du(Rb/Rt−

1)ρb is a measure for the concentration polarization, with tip Dukhin number Du = σ/(2ρbRt).

Note that both Pe and Du carry a sign and the diode polarity stems from the sign of the Dukhin

number.

Having obtained the salt-concentration ρ̄s(x) in Eq.(8) the resulting pore conductance G(∆ψ)=

I(∆ψ)/∆ψ is calculated by cross-sectionally integrating Eq.(2) which results in

G(∆ψ) = Gb(∆ψ)

(
1+

4〈λD〉
Rb +Rt

(
cosh

( eψ0

2kBT

)
−1
))

, (9)

here 〈· · · 〉 = L−1 ∫ L
0 · · ·dx denotes the lateral average, and the bulk channel conductance is given

by Gb(∆ψ) = 4〈ρ̄s〉RtRb(e2D/kBT )/(4L/π +Rb +Rt). This bulk conductance also accounts for

the in- and outlet resistance by incorporation of Eq.(1) and depends on ∆ψ through the potential

dependence of 〈ρ̄s〉, which is obtained by numerical integration of Eq.(8). We note that Eq.(9)

obtained from the PNPS equations (2)-(6) has precisely the form expected from the circuit de-

picted in Fig.2(a): it consists of the sum of a bulk and surface (pore) conductance, G = Gb +Gs

(Fig.2(a, green)), whereas the tip and base conductances (Fig.(2(a, red)) stand in series with the

pore and lower the total conductance per Eq.(1). The surface conductance Gs = 4Gb〈λD〉/(Rb +

Rt)
(

cosh(eψ0)/(2kBT )−1
)

will vary with concentration through the dependence of the "channel-

weighted" Debye length 〈λD〉 ' (4πλB〈ρ̄s〉)−1/2. In principle we could include the advective

(streaming current) contribution to Eq.(9), but its contribution to the surface conductance is pro-

portional to kBT/(4πηλBD(cosh(eψ0/2kBT )− 1))� 10−2 for all our parameter sets and hence
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can be neglected.52

It is important to note that while the advective contribution to the electric current I can be

neglected the advective contribution to the salt current J (Eq.(7)) is key to current rectification as

for ICR the flow rate determines the characteristic voltage ∆ψc, known as the knee voltage for

diodes. When ∆ψc� ∆ψ conductance is Ohmic (G0), while for ±∆ψ � ∆ψc the limiting diode

conductance (G±) has been reached. From Eq.(8) it can be seen that for large flow |Pe|� (Rb/Rt)
2

the concentration profile ρ̄s(x)−2ρb ∝ ∆ρ/|Pe| is potential independent and hence per Eq.(9) this

limiting conductance G± has been reached. Hence the characteristic potential ∆ψc is set by the

potential for which Pe=(Rb/Rt)
2 yielding

∆ψc = (Rb/Rt)(Dη/ε|ψ0|)[1+(π/4L)(Rb +Rt)], (10)

where the term in the square brackets of Eq.(10) accounts for edge resistance and can be set to

unity in the long-channel limit. While Eq.(9) can be used to describe the conductance for arbitrary

∆ψ by straightforward numerical integration of Eq.(8a), a more convenient closed form for the

limiting conductances G± can be found when neglecting the second (surface) term for the electric

conductance G(∆ψ) Eq.(9). This approximation therefore neglects surface conductance entirely

and subsequently integrating Eq.(8b) yields

G±,b
G0,b

= 1+2wDu
[

log
(
Rb/Rt

)
Rb/Rt−1

−
(

Rt

Rb

) 1±1
2
]
. (11)

As such, current rectification is defined by the ratio G−/G+= ICR where, as before, Du=σ/(2ρbRt)

represents the ratio of salt transport in the EDL with respect to salt transport in the bulk, and

w = eDη/(kBT ε|ψ0|) is the ratio of the ionic to electro-osmotic mobility that quantifies the com-

petition between the rate by which conduction adds ions to the concentration profile ρ̄s(x) and

electro-osmotic flow removes them. Note that this ratio depends only on electrolyte properties and

surface potential and it is not influenced by the geometry whatsoever, being constant (w ' 0.4)

over all our geometries and concentrations. The bracketed term of Eq.(11) fully captures the effect
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of geometry on the concentration profile ρ̄s(x). This last term is zero for Rt = Rb, positive for

G+ and negative for G− and reflects the influence of geometry on diode polarity. Eq.(11) also

straightforwardly gives a simple and convenient analytic expression for the ICR = G−/G+.

In the following sections we consider the small and large potential limits of Eq.(9) to interpret

our experimental data by first considering the measured (Ohmic) conductance G0 at small potential

drops ∆ψ� kBT/e and then to describe ICR, which is given by the ratio of conductances G−/G+

in the limit of large positive (+) or negative (-) potential drops for ±∆ψ � ∆ψc.

Ohmic conductance

First we consider the Ohmic conductance, G0, which is found at small potential drops |∆ψ| �

kBT/e. In this case the laterally averaged concentration equals the bulk concentration 〈ρ̄s〉= 2ρb.

Hence G0 is given by Eq.(9) where the bulk Ohmic conductance G0,b = 8RtRb(e2D/kBT )/(4L/π+

Rb+Rt)ρb and the surface Ohmic conductance G0,s is determined by the equilibrium Debye length

λD = (8πλBρb)
−1/2. In this regime we find that Eq.(9) reduces to several well-known results de-

pending on the geometry. The conductance of a long conical channel with negligible surface

conductance is retrieved when L� Rb > Rt � λD,25 the Hall conductance of a thin cylindrical

pore with negligible surface conductance is retrieved when L' Rb = Rt� λD,39 and the conduc-

tance of a long cylindrical channel52 is obtained when L� Rb = Rt > λD. Hence Eq.(9) extends

these classical results to short pores with unequal tip and base radii. Figure 3 shows the experi-

mental Ohmic conductance obtained as G0 = (I(0.05 V)− I(−0.05 V))/0.1 V together with our

theoretical model Eq.(9) for all four channels T1, T2, S1 and S2, where we use ψ0 = −0.21 V as

it provides the closest match to the data for all concentrations and geometries. Note that the clas-

sical long-channel theory that neglects entrance resistance through Eq.(1) would overestimate the

conductance by a factor of about two for our parameters, as the effective potential drop is nearly

halved (0.46 < ∆ψp/∆ψ < 0.68) in our experimental geometries. This reduction of the effective

potential drop highlights the importance of edge resistances. It should be emphasized that the

experimental conductance in Fig. 3 is normalized by the theoretical bulk conductance G0,b from
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Figure 3: Ohmic conductance G0 in units of the bulk conductance G0,b as a function of the bulk
concentration ρb (lower axis) and Dukhin number Du= σ/(2ρbRt) (upper axis) with tip radius
Rt = 0.5 µm representative for the tapered pores T1 and T2 and straight pores S1, but not for the
straight pore S2 with radius Rt = 1.5µm. The symbols denote the experimental measurements
and the lines with corresponding colors are plotted using Eq.(9) with a large surface potential
ψ0 =−0.21 V (see text). As expected the conductance converges to the bulk conductance at high-
concentration while it increases to triple the bulk conductance at low concentrations due to the
contribution of surface conductance.

Eq.(9), which is determined by both pore geometry and electrolyte properties. At high concentra-

tions this representation highlights that the surface conductance is negligible, as the conductance

in units of G0,b approaches unity and the experimental data for different geometries collapse into

a single curve. Note that Eq.(9) properly accounts for the in- and outlet resistance at the high-

est concentration. Some of the deviation between experimental data and theory are attributed to

morphological changes due to clogging over the course of the experiments (see for instance SEM

image of T1 after the experiments in SI-5).

At low concentrations, ρb < 1 mM, both the theoretical and experimental conductance rapidly

increase as the concentration decreases, which is due to the surface conductance G0,s contribu-
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tion increasing with the increasing Debye screening length. We observe that the concentration at

which surface conductance becomes comparable to bulk conductance occurs when the tip Dukhin

number approaches unity, G0,s/G0,b ∝ Du= σ/(2ρbRt) ' 1, which for both T1 and T2 occurs

near ρb ' 2 mM for ψ0 = −0.21 V. The experimental variation of conductance with concentra-

tion roughly scales as the inverse square of the concentration, increasing by a factor of three when

the concentration is decreased by a factor ten. This scaling can only be understood by using a

concentration-independent ψ0 as opposed to a concentration-independent surface charge density

σ . With constant σ the Dukhin number scales as Du ∝ ρ
−1
b and introduces a surface conduc-

tance which varies by orders of magnitude in our concentration range, which is not observed.

Instead, when using a constant ψ0 the surface charge scales as σ ∝ 1/λD according to the Gouy-

Chapman equation, in which case the proper scaling Du ∝ ρ
−1/2
b is immediately obtained. The

existence of a constant surface potential implies that a chemical reaction is responsible for the

surface charge varying with salt concentration. However, while Fig. 3 indeed shows that the

experimental conductance qualitatively follows the inverse square-root scaling, there is a minor

quantitative deviation. We attribute this chiefly to charge-regulation beyond the constant-potential

model of the silica-water interface,53 which could introduce variations in ψ0 by a factor ∼ 3 in the

range [10−1−10−4] M for silica.50,51,54 We have not included this concentration effect as there is

no unanimous quantitative measurement of charge-regulation for silica50,51,53–55 and as to prevent

overfitting.

Ion current rectification

We now turn to large potential drops where ∆ψ � ∆ψc (Eq.(10)) where we observe significant

current rectification for tapered pores T1 and T2 and the conductance has converged to its limiting

value G± (Eq.(11). Current rectification in conical pores is well established to be due to the salt

concentration in the pore changing with the applied potential25,56–58 as described in the theoretical

section. The dependence of the laterally averaged salt concentration 〈ρ̄s〉 on ∆ψ as in Eq.(8) in con-

junction with our expression for the conductance Eq.(9) immediately result in a voltage-dependent
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conductance. In Fig.4(a) we use Eq.(8) to plot the salt concentration profiles ρs(x)/(2ρb) in the

conical pore T1 for ∆ψ between −0.5 V and 0.5 V and a concentration ρb = 6 mM. It can be

seen that for negative voltages there is a build-up of ions, while for positive voltage drops the pore

becomes depleted. This increase and decrease, characteristic of the conical geometry, is highly

dependent on the applied voltage, but converges to a limiting concentration profile for which inho-

mogeneous conduction is balanced by advection. These limiting concentration profiles can deviate

up to 50% from the bulk concentration and in turn significantly modulate the voltage-dependent

conductance as can be seen in Fig.4(b). Here we compare G(∆ψ) from Eq.(9) with the experi-

mental conductance normalized by the experimental Ohmic conductance G(∆ψ = 0). We observe

two plateaus of high and low conductance for the theoretical curves at large negative and positive

voltages for the tapered pores. The transition between the two regimes occurs at the borders of

the shaded region |∆ψ| ≤ ∆ψc ' 0.05 V beyond which the conductance quickly converges to the

limiting conductance G±. In SI-7 we show more plots at different concentrations for comparison,

which all show the same typical S-shaped curve with the exception for curves at ρb < 1 mM for

which the experimental variation is larger due to leakage currents as discussed in the experimental

section.

In Fig. 4(c) we plot the experimental ICR against concentration and tip Dukhin number, together

with results based on both Eq.(11) (solid) and the combination of Eq.(9) with Eq.(8a) (dashed) us-

ing a fitted surface potential ψ0 =−0.28 V in both cases. Theoretical and experimental ICR obey

the same inverse square root scaling G−/G+ ∝ ρ
−1/2
b as was also observed for Ohmic conductance,

which is again due to the concentration dependence of Du at fixed surface potential ψ0. Interest-

ingly, we find that Eq.(11) is a good approximation for the combination of Eq.(9) with Eq.(8a).

The unexpected quality of our approximation Eq.(11) is a result of a cancellation of errors: an

increase of Ohmic conduction due to surface conductance decreases ICR while the variation of

surface conductance with concentration increases ICR.

At low concentrations the inverse square root dependence of ICR breaks down around ρb ' 2

mM, where the experimental ICR peaks while our theory predicts that ICR should keep increasing
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Figure 4: (a) Concentration profiles ρ̄s(x)/2ρb for geometry T1 (see text) at a bulk concentration
ρb = 6 mM as calculated by Eq.(8) for ∆ψ between−0.5 and 0.5 V with step-size of 0.03 V. Deple-
tion occurs for positive potentials (red) while concentration increases at negative potentials (blue).
(b) Conductance normalized by the conductance at ∆ψ = 0 at varying potentials and the same con-
centration as in (a) where the different symbols represent the tapered (T1,T2) and straight (S1,S2)
channels, and lines are plotted using the combination of Eq.(9) and Eq.(8a) both with a surface
potential of ψ0 = −0.28 V. Vertical lines demarcating shaded area are placed at the characteristic
voltage ∆ψc '±0.08 V with color corresponding to the respective geometry. Most variation of the
experimental conductance occurs within the shaded region, after which the conductance converges
to the limiting conductances G±. (c) Current rectification given by the ratio G−/G+ which for
experiments is taken as G(±0.5 V) with varying concentration (lower axis) and Dukhin number
for Rt = 0.5 µm (upper axis). Solid lines are plotted with our approximation Eq.(11) that neglects
surface conductance and dotted lines are from the full solution using the combination of Eq.(9) and
Eq.(8a) both using ψ0 =−0.28 V. Peak experimental current rectification is reached near Du ' 3
while solid lines grow monotonically with Du.

with decreasing concentration. Such a peak in ICR has been previously observed in long micro-

channels29,33,56 and assigned to the emergence of EDL overlapping at low-concentrations. Here

the concentration depletion in the pore only allows for minor EDL overlap at the tip, as the screen-

ing length is at least an order of magnitude smaller than the tip size in our experiments. Other

theoretical works predict a peak in ICR at 1<Du<10,26,30 which is attributed to salt transport in the

EDL dominating the total salt transport, an effect that is not captured in our model. In SI-9 we plot

the pore selectivity as defined in Ref.30 for our tapered geometries with ψ0 =−0.21 V and find a

maximum near ρb = 2 mM, in line with our experiments.
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Discussion of the large surface potential

Both conductance G0 and current rectification G−/G+ are visually fitted using ψ0 as the only fit

parameter which we keep constant for all geometries and concentrations, yielding ψ0 = −0.21 V

for G0 and ψ0 = −0.28 V for G−/G+. However, the surface chemistry of the silica interface is

well studied, and a much lower surface potential between -0.03 V and -0.1 V is expected in our

experimental conditions.55 While surface potentials may vary quite significantly between different

measurement methods, protocols and even subsequent measurements,55 a discrepancy that exceeds

0.1 V is excessive. From the Gouy-Chapman equation we find that a pore with a surface potential

between -0.21 and -0.28 V would contain approximately 15-60 times more charge than for a typi-

cal literature surface potential of −0.07 V. Such a large discrepancy cannot be explained by subtle

experimental factors, and it has to be assumed that this deviation stems from the theoretical model

not including all of the key physics.

In our analysis we exclude the charge on the planar membrane outside the pore, effectively neglect-

ing an edge EDL conductance Gbase
s and Gtip

s as depicted in Fig. 2(a). Other authors have noted that

this region on the outside of the pore can contribute to both the Ohmic conductance38,40 and the

current rectification41,42 for thin pores with Rb/L≤ 1. The charge on the outside of the membrane

not only increases the edge conductance as noted by2,38 but surprisingly can also induce excess

ICR.41 This excess ICR is due to a radial electric field driving an inhomogeneous salt current

through the EDL ouside of the pore, leading to accumulation/depletion of salt in the reservoir as

we demonstrate in SI-6. While excess ICR and excess conductance both occur in the EDL outside

of the pore, they are distinct phenomena whose scaling and characteristic length scales may differ

qualitatively, explaining why our experimental G0 and G+/G− are better accounted for with two

different surface potentials, ψ0 =−0.21 V and ψ0 =−0.28 V, respectively.

Considering that the charge on the outside of the membrane can contribute to both ICR and in-

creased conductance we suggest to assign the excess charge from the large, fitted, surface potential

ψ0 to the charge located on the planar membrane outside of the pore. We estimate the charged-
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Figure 5: (a) Current rectification G−/G+ as function of concentration (lower axis) for an array
of 25 pores. The symbols denote the experimental measurements and the lines are plotted using
Eq.(11) using a surface potential of ψ0 = −0.28 V (black, continuous) and ψ0 = −0.07 V (gray,
dashed). No current rectification is found in the experiment, in line with a pore with a surface
potential of ψ0 =−0.07 V. (b) Dimensionless Ohmic conductance G0 in units of the bulk conduc-
tance G0,b in the same representation as in Fig.3 with lines plotted using Eq.(9). The measured
conductance corresponds essentially to 25 times the conductance of a single pore with ψ0 =−0.21
V. The inset of (b) shows an SEM image of the array directly after fabrication, the scale bar is 10
µm.

surface area Aout outside the pore contributing to current-rectification as Aout = Apore
(
(σapp/σlit)−

1
)
, where Aout is the (circular) area outside of the pore contributing to entrance-surface con-

ductance, Apore is the surface area of the conical pore, σapp = sinh(ψ0e/2kBT )/(2πλBλD) is

the apparent (Gouy-Chapman) surface charge density resulting from the fitted surface potential

(with ψ0 = −0.21 V for Ohmic conductance and ψ0 = −0.28 V for ICR) and σlit = sinh(−0.07

V(e/2kBT ))/(2πλBλD) is the surface charge density as calculated from a literature surface poten-

tial of 0.07 V. With these values we find that the outer-membrane EDL within a radius of about 15.0

µm from the pore center contributes to ICR, while a shorter radius of only 7.4 µm contributes to
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Ohmic conductance. This latter value closely corresponds to the Dukhin length σ/(2ρb)' 7 µm

at 10−4 M which was predicted by Refs.2,38 to set the length-scale for (Ohmic) outer-membrane

surface conductance.

To verify this larger surface contribution of 15 µm for ICR we derive a solution for the con-

centration polarization far from the pore in SI-6, and find that the concentration profile in the

bulk obeys a long-ranged inverse square law decay ρs(x,r) ∝ (r2 + x2)−1 like the electric field

with a prefactor proportional to the inverse aspect ratio Rb/L. This prefactor indicates that outer-

membrane concentration polarization only occurs for short pores, while the inverse square decay

indicates that the concentration profile decays over lengths much larger than the radius. Both these

observations support the hypothesis that surface charge far from the pore can contribute to current

rectification for low-aspect ratio pores. Unfortunately we were unable to construct a theory si-

multaneously accounting for concentration polarization in- and outside the pore, while numerical

(COMSOL) calculations of the full PNPS Eqs.(2)-(6) proved unstable. To experimentally test our

hypothesis we construct a 5×5 array of conical pores with dimensions Rt ' 0.35 µm, Rb '1.4 µm

and L' 2 µm with a spacing of 10 µm between the pore centers (≈ 106 pores/cm2). In Fig.5(a) we

show the ICR calculated with Eq.(11) using the literature surface potential ψ0 =−0.07 V (dashed

line) and the large surface potential obtained from the single pore fitted with ψ0 =−0.28 V (solid

line) together with the experimental data for the array (symbols). We observe that ICR is greatly

reduced for the array, virtually disappearing over the whole concentration range. In contrast the

Ohmic conductance of the array is essentially 25 times the single pore conductance given by Eq.(9)

as shown in Fig.5(b). Considering that the single pore results are based on the fitted value of ψ0 =

-0.21 V, the surface conductance therefore remains excessively large compared to the expectation

at a literature surface potential of ψ0 =−0.07 V (solid line). In line with our hypothesis, these ob-

servations therefore surprisingly imply that the charge on the outside of the membrane contributes

over a smaller range to conductance than to ICR, so that interference only occurs for the latter at

this spacing.
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Conclusion

To summarize, we have presented experimental and theoretical results on ion current rectification

(ICR) in tapered micropores connecting aqueous KCl solutions, leading to three main results.

(i) We demonstrate the existence of ICR in conical micropores fabricated in crystalline silicon

membranes without further chemical modification at KCl concentrations where the (bulk) elec-

trolyte screening length is much smaller than the pore size, and which is absent in straight cylin-

drical pores. (ii) We derive an expression for the conductance of short conical pores accounting

for both the EDL within the channel as well as the edge resistance at the tip and base of the

pore. These edge resistances approximately halve the Ohmic conductance in our experimental ge-

ometries. Our expression (Eq.(9)) reverts to the Hall conductance in case of thin cylindric pores,39

conical conductance in case of long cones,25 and the well-known conductance of straight cylinders

with EDL’s for large aspect ratio channels.52 We find an expression for the characteristic voltage

at which current rectification occurs, ∆ψc ' 0.05 V in our geometries, and find a new closed-form

expression (Eq. (11)) for the limiting ICR at large potential drops. While, like other authors, we

find that rectification scales with the Dukhin number, our expression contains two new dimension-

less terms: the ratio w of the ionic and electro-osmotic (fluid) mobility and a term describing the

influence on geometry which solely depends on the tip-to-base ratio. Using two different surface

potentials (ψ0 = -0.21 V for Ohmic conductance and ψ0 = −0.28 V) our theory closely matches

our experimental results for all but the lowest concentrations and largest potential drops. In this

regime of extreme depletion minor EDL overlap occurs at the tip, invalidating the starting assump-

tion of non-overlapping EDL’s in our theory.

(iii) Finally we discuss the physical interpretation of the surface potential ψ0 which is our sole

fit parameter. Our fitted surface potential is excessively large compared to literature values and

should not be interpreted as the actual potential but rather as an apparent surface potential. This

apparent potential is inflated by the contribution of charge on the outside of the membrane, a region

explicitly excluded from our theoretical description. We estimate from the fitted ψ0 that charge on

the membrane surface within about 7.4 µm of the pore contributes to (Ohmic) conductance at low
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potentials and within 15.0 µm to ICR at larger potentials. We test this hypothesis by fabricating an

array of 25 pores with a 10 µm separation of the pore centers (≈ 106 pores/cm2) with no overlap

of the low potential (Ohmic) interaction length and large overlap of the high potential (ICR) inter-

action length. While we observe no pore-pore interference for Ohmic conduction at low potentials,

we indeed find that ICR vanishes in the array, in agreement with our hypothesis. The interaction

length for Ohmic conduction is known to be set by the Dukhin length2,38 while for ICR we show

that a long-ranged, inverse-square-distance decay determines the pore-pore interaction, in line with

our experimental observations. For thin membranes this apparent contribution of the charge on the

outside of the membrane to both surface conductance and ICR may be beneficial for single pores,

however these contributions could be detrimental in densely packed arrays that would be desirable

for applications. Further investigation of the interaction length for outer-membrane conductance

and ICR with different pore densities is therefore particularly relevant. Here, the presented crys-

talline silicon membranes provide an attractive platform compatible with conventional fabrication

methods for e.g. creating homogeneous pore walls through wet etching or engineering of the pore

behavior by modification of the outer-membrane surface.

Methods

Pore fabrication

Crystalline silicon membranes were purchased from Norcada (SM5200N, thickness 2 µm ±0.5

µm). Pores were milled in the membrane with a focused ion beam (FEI Helios Nanolab 600, Ga

ions), with tapered pores created by milling concentric circles. Scanning electron miscroscopy

images were made in the same system.

Current measurements

I-V measurements were conducted in a homemade cell consisting of 2 reservoirs, with the mem-

brane fixed in between (as shown in SI-2). The reservoirs are filled with aqueous solutions with

23



equal concentration of KCl (99.99% from Sigma-Aldrich, in MilliQ® ultrapure water). Mea-

surements are done using a Ag/AgCl wire electrode in each reservoir, connected to a potentiostat

(CH760E) in a 2-electrode configuration with the working electrode facing the large opening (base)

for the tapered channels. Quasi-static I-V curves were recorded using staircase voltammetry from

-1 V to 1 V and back, with potential steps of 0.05 V and with the system set to rest for 150 s at

-1 V before starting the measurement. Each potential is maintained for a period of 10 s, with the

current recorded for the last 0.5 s. Data shown in Figure 1 is obtained from averaging 1-4 cycles.

Electrode preparation

Ag/AgCl wires were fabricated following the protocol in reference59 by immersing Ag wires (0.35

mm diameter, 99.99% ) in 0.1 M nitric acid to remove the native oxide and then rinsed with

ultrapure water. The cleaned wire was using as a working electrode in a 3-electrode setup with a

platinum counter,- and quasi reference electrode in an aqueous solution of 3 M KCl. The Ag wire

was coated with AgCl by applying 2 V vs. the Pt wire QRE for 10 minutes.
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Supplementary

Supplementary Information 1: Atomic Force Microscopy profile of tapered

feature made with Focused Ion Beam

Figure S1: AFM image of a tapered hole with 5 µm radius made with FIB at the edge of the
membrane on top of the supporting frame. The centerline profile (grey dashed line) is depicted in
the image (grey solid line), with the total depth of the hole being 2 µm. The colour scale runs from
light yellow (high) to dark blue (low), the scale bar is 2 µm

Atomic Force Microscopy (AFM) image of a profile resulting from our Focused Ion Beam

milling (FIB) protocol writing concentric circles, shown for a hole with a 5 µm base radius. Milling

is done at the edge of the membrane where it is supported by a silicon frame, allowing AFM

imaging. The image and inset profile illustrate the smooth profile. The depth of the hole is 2 µm.

This depth appears to be set by the underlying frame as the milling rate was found to be much

slower once the frame is reached.
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Supplementary Information 2: Illustration of the experimental setup

Figure S2: (top) Schematic of the experimental setup, with 2 reservoirs of equal concentration ρb
of KCl on either side of the membrane. (middle) 3D drawing of the setup, consisting of 2 elec-
trolyte reservoirs and 2 PDMS gaskets. (bottom) Photo of the experimental setup with the mem-
brane and electrode positions indicated. The working electrode (WE) is connected to a Ag/AgCl
wire placed in reservoir R1 facing the large opening of the pore, and the counter and reference
electrodes (CE and ref) are both connected to the second Ag/AgCl wire in reservoir R2, facing the
small pore opening. All components are clamped together using a laboratory clamp.

Schematics and photo of the experimental setup. The setup consists of 2 electrolyte reservoirs

(3D printed in a transparent commercial polymer VeroClear) and 2 Polydimethylsiloxane (PDMS)

gaskets. The reservoirs have a tapered opening leading towards the membrane, to facilitate filling

of the channel without trapping air. The PDMS gaskets (thickness ≈ 1 mm) were cast in an

aluminium mould to obtain the hole in the center, and a recess to fit the membrane. Measurements
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are done in a 2-electrode configuration with the working electrode (WE) connected to a Ag/AgCl

wire in the reservoir facing the large pore opening (R1) and the counter,- and reference electrode

(CE and Ref) connected to a Ag/AgCl wire in the reservoir facing the small pore opening (R2),

as indicated in the photo. The membrane is placed between the gaskets and the setup is tightly

squeezed and held together by a laboratory clamp.
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Supplementary Information 3: Current-voltage characterization of as-received

membrane

Figure S3: I-V reference curves determining the leakage current of an as-received membrane,
without any pore. The leakage current is the same for different concentrations of KCl, as indicated
by the legend. The grey dashed line at -0.5 V indicates the potential at which data in Fig. (1) in the
main text is normalized.

Current-voltage (I-V) characterization of an as-received membrane for different concentrations

of KCl. However, the leakage current becomes significant at potentials |∆ψ| ≥ 0.5 V, in particular

considering our measurements at low concentrations where the total current through the pore is in

the 1-10 nA range. The leakage current does not show a clear concentration dependence, despite

differing slightly between different measurements. It is worth mentioning that the setup is disas-

sembled for filling with a different concentration, illustrating the robustness of the sealing by the

gaskets for subsequent measurements at the potentials considered in the main text. The average of

these measurements is used as lower bound of the shaded region in Figure 1(a-d) in the main text

to illustrate the potential contribution by the leakage current, capped at I = 0 for 2 of the curves in

Figure 1(c).
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Supplementary Information 4: Calculation of the electric electric field

In this section we will calculate the electric field −∇ψ not only within the pore but also in both

reservoirs. This analysis supposes that the space charge ρe outside the EDL is negligible, ensuring

that the electric field is divergence free ∇2ψ = 0. We assume (i) that the electric field in the bulk

reservoirs far from the pore
√

r2 + x2� Rb is isotropic and decays like an electric monopole by the

inverse square law ∝ 1/(r2 + x2) and, (ii) that no electric field permeates the channel walls. The

far-from-pore assumption (i) solution breaks down in the near-pore region r2 + x2 ' R2
b where the

electric field diverges and therefore a characteristic cut-off length scale for this asymptotic decay

has to be identified. Natural length scales would be the tip and base radii Rt and Rb near which

the far-from-pore solution fails, but to obtain quantitative agreement with numerical calculations

we have to multiply the base and tip radii by π/4. Choosing this factor will also reproduce the

exact resistance for a cylindrical, 2D-pore as derived by Hall.39 Following assumption (ii) the field

inside the conical pore 0 < x < L scales as ∂xψ ∝ 1/(πR2(x)) as the total, radially integrated,

lateral electric field has to be constant. Combining these expression we find the electric field over

the centre axis r = 0 is given by

−∂xψ(x,r = 0) =



απ2

4
∆ψ

(
π

4
Rb− x

)−2

if x < 0;

α∆ψR−2(x) if 0 < x < L;

απ2

4
∆ψ

(
x+

π

4
Rt−L

)−2

if x > L,

(S1)

where the constant length α = RbRt/(4L+π(Rb +Rt)) can be found by requiring that the electric

field is continuous at the pore edges and the total potential drop equals ψ(−∞)−ψ(∞) = ∆ψ and

the maximum electric field (at the tip) is equal to α∆ψ/R2
t . We have chosen to evaluate the electric

field on the center line where the field is purely axial as to give an explicit expression for one of the

vector components of−∇ψ . Furthermore we note that this component is of greatest interest as it is

responsible for the axial currents through the pore. In Fig.S4 we compare the analytic expression

of the electric field (Eq.S1) over the central axes and find good agreement with numerical results.
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Figure S4: (a) Gradient of the electric potential ∂xψ(x) and (b) electric potential ψ(x) along the
central axis r = 0 for the T1 geometry (see the main text) at a vanishing surface potential and
ρb = 1 mM for ∆ψ = 0.01 V with symbols from numerical calculations and lines resulting from
Eq.(S1). This parameter set is representative for our experimental system at high concentrations,
where surface conductance is negligible. The base and tip locations are at x = 0 and x = L denoted
by vertical lines. There is good agreement between numerical and analytic results.
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Supplementary Information 5: Scanning Electron Microscope image of pore

T1, after measurements

Figure S5: SEM image of the tapered pore T1 after the measurements. The scale bar is 1 µm

Fig.S5 shows a scanning electron microscope (SEM) image of the tapered pore T1 in the main

text, after the measurements. Both partial clogging and roughening of the pore are observed

thereby changing the pore geometry. Hence clogging will change the pore conductance, which

likely explains the variation of conductance over a series of experiments. The chronology of ex-

periments is from low to high-concentration.
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Supplementary Information 6: Inlet-outlet concentration polarization

In this section we will construct a far-from-pore solution demonstrating concentration-polarization

in the bulk reservoir with x < 0 connected to the pore base. Instead of the cylindrical (x,r,θ)

coordinates used in the main text it will be convenient to treat the problem in spherical (s,φ ,θ)

coordinates with s2 = x2 + r2 and cosφ = x/
√

x2 + r2. We consider fluxes far from the pore open-

ing s� L where the electric field Eq.(S1) simplifies to ∂sψ ' −απ2∆ψ/(4s2). The aim here is

to calculate ρ̂s(s), with ˆ· · · = (2πs2)−1 ∫ 2π

0
∫

π

π/2 · · ·s2 sin(φ)dφdθ the average over a hemisphere

centered on the origin extending in the bulk with radius s. The hemispherical average ρ̂s(s) is not

representative for the local concentration ρs(s,θ ,φ) which is expected to have a large φ depen-

dence as the electric double layer is localized at φ = π/2 and the far-from-pore Landau-Squire60

solution for the fluid flow u(s,φ) is much larger at φ = π than at φ = π/2. Both these complicating

factors will expectedly yield a concentration profile with larger deviations from bulk concentration

near the membrane surface φ = π/2 compared to φ = π . Nevertheless our expression for ρ̂s(s)

can explain two experimental observations, (i) concentration-polarization in the bulk reservoir is

expected in the small-pore limit L/Rb ' 1 and (ii) the concentration profile extends long distances

into the bulk, exhibiting long-ranged, inverse-square decay.

Integrating the radial component js,s(s,φ) of the salt flux to obtain the total salt flux Ĵ(s) =∫ 2π

0 dθ
∫

π

π/2 dφ sin(φ)s2 js,s(s,φ) and imposing the stationarity condition ∂sĴ = 0 we find a differ-

ential equation for the concentration ρ̂s(s) averaged over a hemisphere,

D(2π∂s(s2
∂sρ̂)−

π3ασ

2s2
e∆ψ

kBT
)+Q∂sρ̂s = 0, (S2)

with s denoting the radius of the hemisphere over which the concentration is averaged, α be-

ing defined below Eq.(S1) and where
∫ 2π

0 dθ
∫

π

π/2 dφ sin(φ)s2ρe(s,φ) =−2πsσ stems from hemi-

spherical charge-neutrality. Furthermore we made the approximation that flow can be considered

to be isotropic which combined with incompressibility yields 2πs2us(s) = −Q, where the minus
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sign was added so that a radially inward flow in the bulk reservoir results in a positive Q fol-

lowing the convention in the main text. Solving Eq.(S2) for ρ̂s with bulk boundary conditions

ρ̂s(∞) = ∂sρ̂s(∞) = 0 we find

ρ̂s(s)−2ρb = ∆ρres

(
exp
( lPe

s

)
− lPe

s
−1
)

s�|lPe|' ∆ρres

2

(
lPe

s

)2

, (S3)

where the measure for the concentration profile extending into the reservoir is

∆ρres =
πσ

4l2
Pe

e∆ψ

kBT

[
RbRt

4L/π +Rb +Rt

]
, (4)

with the Péclet length lPe = Q/2πD signifying the distance from the origin at which advective

and diffusive transport rates are equal. Note that Q and hence the Péclet length has a sign. The

term in square brackets vanishes in the long-channel-limit as the electric-field in the bulk and

correspondingly ∆ρres go to zero in this limit, which shows that no pore-pore interactions are ex-

pected for long, thin pores. While our solution was specifically derived for the base reservoir with

x < 0 and φ ∈ [π/2,π], our solution Eq.(S3) is valid in the tip-connected reservoir with x > L

and φ ∈ [0,π/2] when interchanging −∆ρres for ∆ρres and −lPe for lPe as the flow and electric

field are anti-symmetric between tip- and base-connected reservoirs. Due to the anti-symmetry of

the far-from-pore solutions the depletion in one reservoir leads to a compensating excess in the

other reservoir for s� |lPe| (where the asymptotic decay is independent from lPe) and the only

contribution to ICR is expected from the near-pore region. The unphysical divergence of the con-

centration profile near the pore for positive (inward) flows s� lPe prevents us from connecting the

far-from-pore solution to the near-pore region. In this regime the large inward flow sweeps up the

concentration profile and concentrates it in the near-pore region where the far-from-pore solution

breaks down.

As the flow is always inwards for one of the two reservoirs there is no scenario where the

far-from-pore solution can be used to describe the entire experimental system. We note that this
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focusing of the concentration profile near the base for positive flows also complicates numerical

calculations: a significant effort was made to obtain numerical calculations from COMSOL, how-

ever no finite-element system could be created that was stable beyond a very narrow parameter

regime. Our numerical calculations always showed reservoir concentration polarization in some

form. The near-pore solution is expected to very sensitively depend on all experimental length

scales, including Péclet and Dukhin length. A "holistic" model describing the entire concentra-

tion profile extending over both the reservoirs and pore would be desirable as it would allow for

quantitative predictions without an "apparent" ψ0 as fit parameter. This problem is left for future

study.

40



Supplementary Information 7: Conductances at four different concentra-

tions

△ △ △ △ △ △ △
△
△
△ △ △ △ △ △ △ △ △ △ △

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □◇◇◇◇◇◇◇◇◇◇ ◇◇◇◇◇◇◇◇◇◇

ψ0=-0.28(b)

-0.5 -0.3 -0.1 0 0.30.1 0.5
0.5

1

1.5

Δψ [V]

G
(Δ

ψ
)/
G
(0
) △ △ △ △ △ △ △ △
△
△

△
△
△ △

△
△ △ △ △ △

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
▽
▽ ▽

▽
▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
◇◇◇◇◇◇◇◇◇◇ ◇◇◇◇◇◇◇◇◇◇

△ T1 ▽ T2

□ S1 ◇ S2

-0.5 -0.3 -0.1 0 0.30.1 0.5
0.5

1

1.5

Δψ [V]

G
(Δ

ψ
)/
G
(0
)

△ △ △ △ △ △ △ △ △
△

△ △ △ △ △ △ △ △ △ △

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
▽
▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
◇◇◇◇◇◇◇◇◇◇ ◇◇◇◇◇◇◇◇◇◇

-0.5 -0.3 -0.1 0 0.30.1 0.5
0.5

1

1.5

Δψ [V]

G
(Δ

ψ
)/
G
(0
)

△
△ △ △

△ △
△
△
△
△

△
△
△
△ △

△ △ △ △ △

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
▽

▽
▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

◇◇◇◇◇◇◇◇
◇

◇

◇

◇
◇◇

◇◇◇◇◇◇

-0.5 -0.3 -0.1 0 0.30.1 0.5
0.5

1

1.5

Δψ [V]

G
(Δ

ψ
)/
G
(0
)

Figure S6: Reproduction of Fig.4(a) in the main text at different concentrations with (a) ρb = 1.5
mM, (b) ρb = 10 mM, (c) ρb = 6 mM and (d) ρb = 0.3 mM. Figure (a) represents the best agreement
between theory and experiment we could obtain, (b) and (c) are typical for our experimental results
while (d) shows the large experimental variation typical at low concentrations.
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Supplementary Information 8: More fits of experimental data
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Figure S7: Current rectification G−/G+ with the surface potential ψ0 = −0.21 V obtained from
the fit on Ohmic conductance instead of the ideal fitted surface potential for ICR ψ0 = −0.28 V.
The quality of the fit has decreased significantly compared to Fig.(4) in the main-text, but the same
qualitative trend can be observed.
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Figure S8: Fit of Ohmic conductivity G0 in units of the bulk conductance G0,b with a diffusion
constant D = 1.5 nm−2 ns−1 instead of D = 1nm−2 ns−1 as presented in Fig.3 of the main text.
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Supplementary Information 9: Selectivity from literature
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Figure S9: Selectivity as defined by Ref.30 for our experimental geometry T1 with a surface po-
tential ψ0 = −0.21 V (solid) and ψ0 = −0.07 V (dashed). The selectivity shows a maximum at
ρb ' 2 mM (vertical line) for ψ0 = −0.21 V in line with our own experimental and theoretical
results. Using a literature surface potential of ψ0 = −0.07 V little selectivity is expected. This
shows that other theories also require an excessively high surface potential to explain the observed
ICR.
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