A retrofitted activated-sludge plant with sequential nitritation and anammox obtains dischargeable effluent

Joop Colsen¹, Joachim Desloover², Haydée De Clippeleir², Pascal Boeckx³, Gijs Du Laing⁴, Willy Verstraete², Siegfried E. Vlaeminck²

¹ Environment and energy Colsen International b.v., Kreekzoom 5, 4561 GX Hulst, the Netherlands (Email: *j.colsen@colsen.nl*)

² Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium (E-mail: *Siegfried.Vlaeminck@UGent.be*)

³ Laboratory of Applied Physical Chemistry (ISOFYS), Ghent University, Coupure Links 653, 9000 Gent, Belgium

⁴ Laboratory of Analytical Chemistry and Applied Ecochemistry (EcoChem), Ghent University, Coupure Links 653, 9000 Gent, Belgium

Abstract New Activated Sludge (NAS[®]) represents a hybrid, floc-based nitrogen removal process, based on the control of solids retention times (SRT) and dissolved oxygen (DO) levels. The aim of this study was to examine the performance of a full-scale NAS[®] plant, which treated anaerobically digested industrial wastewater. The batch-fed partial nitritation step oxidized nitrogen to nitrite (45-47%) and some nitrate (13-15%). Serial anammox, denitrification and nitrification compartments were followed by a final settler. In the anammox step, 77% of the nitrogen was removed, with an estimated contribution of 71% by the genus *Kuenenia*, which constituted 3.1% of the biomass. Overall, a nitrogen removal efficiency of 95% was obtained, yielding a dischargeable effluent. The performance of this novel and cost-effective technology demonstrates the feasibility of retrofitting existing systems based on conventional activated sludge.

INTRODUCTION

For wastewaters with an ammonium level below 5 g N L^{-1} and a relatively low ratio of biochemical oxygen demand to nitrogen (typically ≤ 2.5), nitrogen removal by partial nitritation and anoxic ammonium oxidation (anammox) is economically the preferred treatment (Mulder, 2003). Equilibrating the stoichiometries of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), yields the overall reaction for this process (eq. 1).

 $N{H_4}^{+} + 0.792 \ O_2 + 0.080 \ HCO_3^{-}$

 $\rightarrow 0.435 \ N_{2} + 0.111 \ NO_{3}^{-} + 1.029 \ H^{+} + 0.052 \ CH_{1.4}O_{0.4}N_{0.2} + 0.028 \ CH_{2}O_{0.5}N_{0.15} + 1.460 \ H_{2}O \ (eq. \ 1)$

The well characterized full-scale nitrogen removal process discharges effluent to surface water and is preceded by anaerobic digestion and struvite precipitation (Anphos[®]), jointly representing the WWTP of a potato-processing factory. Previously, the nitrogen removal plant was operated as a conventional activated-sludge nitrification/denitrification system. However, by choosing appropriate DO setpoints and SRT, the system was retrofitted to a hybrid nitrogen removal process, consisting of partial nitritation (2370 m³), anammox (1650 m³), denitrification (1600 m³) and nitrification (2300 m³) (Fig. 1). This novel process was designated New Activated Sludge (NAS[®]), removing nitrogen without external carbon addition nor pH or temperature control.

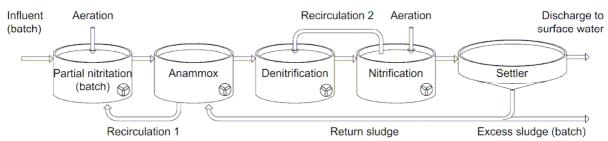


Figure 1. Schematic overview of the examined nitrogen removal process.

RESULTS AND DISCUSSION

The partial nitritation reactor received $1815 \pm 300 \text{ m}^3 \text{ d}^{-1}$ with $201 \pm 36 \text{ mg NH}_4^+\text{-N L}^{-1}$, yielding a hydraulic residence time (HRT) of 32 h and a loading rate of 0.15 kg N m⁻³ d⁻¹, over weeks 10-17 (2010). Over the same period, a SRT of 37 h was applied, and a floccular sludge was obtained (sludge volume index, SVI = $100 \pm 23 \text{ mL g}^{-1}$ TSS). The partial nitritation reactor was not heated and was at a constant temperature of $36 \pm 0^{\circ}$ C. The snapshot reactor loading rates were 0.18-0.23 kg N m⁻³ d⁻¹, and the incoming nitrogen was mainly oxidized to nitrite (45-47%) and nitrate (13-15%), also taking into account the organic nitrogen loads of 36, 72 and 25 kg N d⁻¹ for the batches 1, 2 and 3, respectively (Table 1). Effluent nitrite to ammonium ratios were 1.37-1.53, which is in the vicinity of the required ratio of 1.32 for the subsequent anammox step.

Table 1. Water and nitrogen streams of three sampled batches for the partial nitritation reactor (averages \pm standard deviations). (IN: influent; REC1: recirculation from the anammox reactor; PN: partial nitritation effluent, see also Fig. 1)

		D-4-1-1			D-4-1- 2		Detal 2			
		Batch 1			Batch 2		Batch 3			
Stream	IN	+ REC1	$\rightarrow PN$	IN	+ REC1	$\rightarrow PN$	IN	+ REC1	$\rightarrow PN$	
$Q (m^3 d^{-1})$	1740	36	1776	1756	36	1792	2087	36	2123	
NH_4^+ (kg N d ⁻¹)	388	0.3±0.0	133±7	420	0.3±0.0	136±7	507	0.2 ± 0.0	174±13	
NO_2^{-} (kg N d ⁻¹)	1.5	0.3±0.0	202±7	0.8	0.3±0.0	209±15	0.0	0.4 ± 0.0	238±6	
NO_3^{-} (kg N d ⁻¹)	1.0	0.1 ± 0.0	65±7	0.1	0.8 ± 0.0	65±2	0.8	0.1±0.0	71±6	

In the anammox reactor, a HRT of 6.7 h was applied. Over the combined anammox, denitrification and nitrification stage, a SRT of 46 d was applied and a floccular sludge was obtained with a fair settleability (SVI = 167 mL g⁻¹ TSS). During the snapshot sampling, the anammox stage was loaded with 0.33 kg N m⁻³ d⁻¹ and removed 77% of the nitrogen load (Table 2). The biomass from the anammox stage consisted for $3.1 \pm 2.0\%$ out of the AnAOB genus *Kuenenia*, as determined with fluorescent *in-situ* hybridization (FISH). Using the expected anammox stoichiometry, concurrent denitrification occurred at 0.076 kg (NO₂⁻⁺ NO₃⁻)-N m⁻³ d⁻¹, or 29% of the nitrogen removal in the anammox stage.

Table 2. Water and nitrogen streams for the anammox, denitrification and nitrification reactors (averages \pm standard deviations). (PN: partial nitritation effluent; RET: return sludge from the settler; REC1: recirculation from anammox to partial nitritation; AN; anammox effluent; REC2: recirculation from nitrification to denitrification; DN: denitrification effluent; OUT: effluent see also Fig. 1)

	Anammox				Denitrification			Nitrification		
Stream	PN	+ RET	\rightarrow REC1	+ AN	AN	+ REC2	\rightarrow DN	DN	\rightarrow REC2	+ OUT
$Q (m^3 d^{-1})$	2366	4080	36	6410	5601	4800	10401	10997	4800	6197
NH_4^+ (kg N d ⁻¹)	203±15	0.0 ± 0.0	0.3±0.0	55±1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	74±3	0.0 ± 0.0	0.0 ± 0.0
NO_2^{-} (kg N d ⁻¹)	266±9	$1.0{\pm}1.0$	0.3±0.0	52±3	89±9	0.0 ± 0.0	27±3	1.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
NO_3^{-} (kg N d ⁻¹)	79±8	10±3	0.1 ± 0.0	21±4	20±4	24±2	13±3	27±1	45±3	58±4

The denitrification and nitrification reactors provided effluent polishing (Table 2), with long-term HRTs of 3.6 and 5.2 h, respectively. The nitrification effluent contained on average 9.1 \pm 3.9 mg NO₃⁻-N L⁻¹, and no other nitrogen species. Over weeks 10-17 (2010), the four-stage

nitrogen removal plant yielded a dischargeable effluent (< 10 mg N L⁻¹), and an overall nitrogen removal efficiency 95 ± 2%.

SUMMARY

To our knowledge, the NAS[®] process is one of the first nitrogen removal processes to apply anamnox in a floccular stage and to obtain dischargeable effluent (<10 mg N L⁻¹) through a hybrid nitrogen treatment train without external carbon addition. The effluent from partial nitritation could be considered as ideally suitable to feed an anammox reactor. The anammox stage removed 77% of its loading rate, with an estimated contribution of 71% by AnAOB. These findings open up the possibility of retrofitting existing activated sludge plants to the NAS[®] process, without adding inoculum enriched in AnAOB. This has demonstrated in a 2200 m³ NAS[®] plant treating anaerobic digestate containing on average 3350 mg N L⁻¹ at an overall nitrogen loading rate of 0.5 kg N m⁻³ d⁻¹ and a nitrogen removal efficiency of 99.5%. This knowledge can therefore be of use for the design of new plants, thus allowing for higher loading rates and consequently more compact reactors.

Acknowledgments

J.D. and H.D.C. are recipients of a PhD grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen, numbers SB-091144 and SB-81068) and S.E.V. was supported as a postdoctoral fellow from the Research Foundation Flanders (FWO-Vlaanderen). The authors gratefully thank Senternovem for the financial support through the 'Innowator' programme' (DWZ0644224, project number IWA06012).

Reference

Mulder, A., 2003. The quest for sustainable nitrogen removal technologies. Water Science and Technology 48(1): 67-75.