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Abstract—Wireless Body Area Networks (WBANs) utilising
Ultra Wideband communication channels often use a combina-
tion of thin sensor nodes and a heavy base node. The sensor
nodes need to be as simple and low power as possible. This
makes it difficult to maintain a good quality link. In this paper
additional post processing steps at the base node are proposed
in order to overcome these issues. A basis persuit denoising
technique, using Prolate Spheroidal Wave Functions (PSWFs),
combined with a sampling technique inspired by compressive
sensing allows data to be recovered even when the link is
interrupted for short intervals.

1 INTRODUCTION

Ultra Wideband (UWB) communications are a nat-
ural fit for Wireless Body Area Networks. The com-
bination of unlicensed use with a low spectral density,
which allows co-existence with other communication
systems, opens up a lot of possibilities. WBANs often
consist of simple low-power sensor nodes that transmit
their data to a central, more powerful node. Cost and
power limitations make the communication link very
weak and put restrictions on the amount of processing
that can be performed at the sensor nodes. Additional
processing steps to improve the quality of the commu-
nication link should therefore be located at the central
node.

In this paper basis persuit denoising is proposed
to improve the link quality. Basis persuit denoising
assumes that the relevant signal is sparse in a given
basis and that the added noise is not. By finding
this sparse representation of the signal an accurate
representation of the original signal can be obtained.
Of course the basis used has a great impact on the
performance of this technique. In this paper Prolate
Spheroidal Wave Functions (PSWFs) will be used. In
order to obtain these coefficients an L1 optimisation
algorithm will be used.

This paper is organised as follows: in Section 2
the PSWF-basis is introduced. The L1 optimisation
to obtain the coefficients of a signal in this basis is
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presented in Section 3. A proof of concept is provided
in Section 4. Finally, the paper is wrapped up with the
conclusions in Section 5.

2 PROLATE SPHEROIDAL WAVE FUNCTION BA-
SIS

The Prolate Spheroidal Wave Function arises when
solving the scalar wave equation in prolate spheroidal
coordinates. In 1961 Slepian et al. proved, [1], that
they are also the solution to the following maximisation
problem:

α(T )2 =

T∫
−T
|f(t)|2

∞∫
−∞
|f(t)|2

(1)

where f(t) is 2B-bandlimited. This means that the
zero-th order PSWF ψc,0(t) maximises α(T )2 in (1).
When this excercise is repeated over the space contain-
ing all functions orthogonal to ψc,0(t), the first-order
PSWF ψc,1(t) will maximise (1), etc. As can be seen
from the notation, the PSWFs are also function of the
time-bandwidth product c = 2BT . In this paper c can
be freely chosen to best suit the problem at hand. In
order not to overload the notation we will suppress the
dependency on c where it is not of particular interest.

The PSWFs are imbued with a lot of nice properties.
Of particular interest is the fact that they are orthog-
onal over both [−∞,∞] and [−T, T ]. They are also
complete in [−T, T ] and complete for all bandlimited
functions over the entire time interval [−∞,∞]. They
can also be scaled to have unit norm in either region.
These properties allow any bandlimited signal s(f) to
be represented as a series of PSWFs:

s(f) =

∞∑
k=0

Akψk(f) (2)

In [1], Slepian also showed that the energy of a
PSWFs ψk(f) present in [−T, T ] decreases rapidly
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when its order k increases. This means that most
physical signals, which have both limited bandwidth
and duration, are sparse in a PSWF-basis when using
an appropriate time-bandwidth constant c. In [2], [3]
this is explained in more detail for the discrete prolate
spheroidal sequence, the discrete counterpart of the
PSWF.

3 L1 OPTIMISATION

The purpose of the basis-persuit denoising technique
is to find the coefficients Ak from (2) which best rep-
resent the unknown original function s(f). A straight-
forward approach would be to project the received
signal r(f) = s(f) + n(f), where n(f) is a noise
contribution, onto the PSWF basis using:

Ak =

B/2∫
−B/2

r(f)ψk(f)df (3)

In practice (3) can only be accurately evaluated using
a Gauss-Legendre quadrature, which puts great restric-
tions on its application. Either r(f) must be sampled
directly on a Guass-Legendre quadrature or it must be
interpolated onto such a quadrature, both of which have
their own set of difficulties.

This problem can be avoided by not using (3) to
calculate the coefficients Ak, but by iteratively search-
ing for the coefficients using a proper optimisation
algorithm. This technique also forms the basis of so-
called compressive sensing schemes, first presented
in [4]. The reasoning is that because s(f) is sparse,
or nearly sparse, when expanded into PSWFs, of
all sets {Ak} that are consistent with r(f) the one
with the least amount of coefficients will provide
the best approximation of s(f). This is equivalent to
the constrained minimisation of the L0-norm of the
Ak, subject to limiting the mean-square error (MSE)
between ŝ(f), the estimation s(f), and r(f)

min
Ak

‖Ak‖0 subject to |r(f)− ŝ(f)|2 < ε (4)

where the L0-norm, defined as ‖Ak‖0 =
K∑

k=0

A0
k is the

amount of nonzero Ak, for some suitable value of ε.
Unfortunately this problem is NP complete. However,
[4] also shows that in most cases minimising the L1-
norm leads to equivalent results as mimimising the L0-
norm:

min
Ak

‖Ak‖1 subject to |r(f)− ŝ(f)|2 < ε (5)

with ‖Ak‖1 =
K∑

k=0

|Ak|. Various algorithms to effi-

ciently mimimise (5) exist. Another important result
from [4] states, that if the sensing matrix satisfies the

Restricted Isometry Property, ie. if its columns are
almost orthogonal, and using a measurement vector of
length m ≥ C S logN/S samples:
• the recovery s(f) is exact when s(f) is sparse
• the MSE between s(f) and its reconstruction ŝ(f)

is optimal using only S coefficients when s(f) is
compressible, but not exactly sparse.

where N is the length of ŝ(f), S the maximum amount
of basis functions and C a small constant that is
problem dependent. As a rule of thumb, between 2
and 4 samples should be taken for each unknown
coefficient Ak, to allow for optimal reconstruction.
The advantage of this approach is that it does not
impose any restrictions on the sampling. In fact the
more randomly distributed the samples are, the higher
the probability becomes that the optimisation from (5)
converges to the right solution. The downside is that
this is computationally more difficult to achieve than
(3).

4 VALIDATION

We will validate this technique on both the mag-
nitude |Htx(f)| and phase 6 Htx(f) of the transfer
function of the bowtie antenna from [5]. The transfer
function was measured between 400 MHz and 20 GHz
using 801 samples. From these samples a subset is
randomly chosen, which serves as the measurement
vector y. (5) is then solved using the CVX and SeDuMi
matlab toolboxes. For the magnitude of the transfer
function |Htx(f)|, 50 PSWF coefficients Ak will be
estimated, for the phase 6 Htx(f), 30 coeffients. Using
the rule of thumb, this means we need about 100
measurements for |Htx(f)| and 60 measurements for
6 Htx(f). Figure 1 and 2 shows the original funtion,
its estimate after L1 minimisation and the measurement
vector y for |Htx(f)| and 6 Htx(f) respectively. It can
be seen that the reconstruction of 6 Htx(f) is better
than that of |Htx(f)|, but that in both cases the result
is quite good.

Figures 3 and 4 show the estimated coefficients
|Htx(f)| and 6 Htx(f) respectively. We can now see
why the algorithm performed better on 6 Htx(f): this
function approximates the initial assumption of sparsity
better than |Htx(f)|. Its coefficients go smoothly to
zero, while the coefficients of |Htx(f)| never quite
settle down to 0 when the order k increases, due to
a combination of measurement noise and small signal
contributions.

On Figures 5 and 6 the relative error between the
original function and its reconstruction, defined as:

Error =
|s(f)− ŝ(f)|

s(f)
(6)

with s(f) the original and ŝ(f) the reconstructed func-
tion, is shown for |Htx(f)| and 6 Htx(f) respectively.
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Figure 1. Original and reconstructed |Htx(f)|
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Figure 2. Original and reconstructed phase of Htx(f)

0 10 20 30 40 50

−6

−4

−2

0

2

4

·10−3

PSWF order

A
k

Figure 3. Estimated PSWF coefficients of |Htx(f)|
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Figure 4. Estimated PSWF coefficients of the phase
of Htx(f)
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Figure 5. Relative error on |Htx(f)|

The relative error comfirms the previous results: the
reconstruction is very good for 6 Htx(f) with a relative
error below 5%. The relative error on |Htx(f)| is
worse: very high spikes at the sides and a few spikes
above 10% otherwise. The high error level at the
sides is largely due to the fact that |Htx(f)| is very
low at these frequencies, which increases the relative
error disproportionally. The other spikes are due to the
fact that |Htx(f)| is not perfectly sparse and hence
not all information can be reconstructed using just 50
coefficients Ak.

5 CONCLUSION

A new method to acquire UWB signals, based on the
compressive sensing framework has been presented.
It allows the reconstruction of the transmitted signal
using a very limited amount of arbitrarily located sam-
ples, greatly reducing the requirements on the hardware
and channel at the cost of additional post processing.
The technique works by assuming that the transmitted
signal is sparse in a basis of prolate spheroidal wave
functions. This assumption is broadly satisfied for most
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Figure 6. Relative error on the phase of Htx(f)

physical systems. The accuracy of the reconstruction is
directly related to how well the assumption of sparsity
holds. Unfortunately the performance degrades rapidly
if the signal is not completely sparse. Improvements to
the robustness is a topic for further research.
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