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ABSTRACT

Wheeled robots are subject to slip which may cause errors in position estimation if not
correctly observed. Wheel slip is typically considered only by a path-following controller.
An offline-calibrated slip value can also compensate for wheel odometry (WO). This thesis

proposes a new method of fusing visual odometry (VO) and WO with integrated slip estimation
using the Extended Kalman Filter. The approach handles the correlation between the slip and the
rover’s position estimation and occasional errors in any VO or WO measurements. Furthermore,
it is possible to tune the model to emphasise WO (e.g. when no slip is expected and thus reduces
the number of VO measurements) or rely more on VO (high slippage variability).

An adaptive filter is introduced to tune both process and measurement noises automatically
based on available measurements. It enables the assessment of noise statistics at each filter’s
iteration, leading to the design of a reactive VO scheduling algorithm. The solution does not rely
on prior knowledge of the environment and offers a route to conserve computational resources
while maintaining good navigational accuracy.

The localisation system can be further improved if the wheel slip is known in advance. This
prior information can be exploited by investigating how the wheel slip predictions, derived, for
example, from forward-facing vision or motor current, can be fused within the model using
different slip prediction schemes. The solutions provide improved localisation accuracy and hint
at the intriguing possibility of slip-based SLAM.

The above research scope was reduced to one dimension to lower the complexity and focus on
the principles of new algorithms. However, to advance some elements described in this thesis, the
adaptive filter with integrated slip estimation and reactive VO scheduling is expanded into two
dimensions. The results demonstrate improved navigational performance but highlight the need
for more work in the future.
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NQ Window size or gain for adapting process noise

NVO Window size or gain for adapting VO measurement noise

NWO Window size or gain for adapting WO measurement noise

P Covariance of the state estimate x

Pxx Covariance of x position estimate m m

Pyy Covariance of y position estimate m m

Q Covariance matrix of process noise w

R Covariance matrix of measurement noise n

RVO Covariance matrix of VO measurement noise nVO
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TVO VO measurement period, i.e. the time between two consecutive measurements s

Λ Slip profile consisting of multiple profile point Λi

Λi A profile point from Λ that consists of a position value pi and wheel slip λi associated with

that point

Ω Angular velocity of wheels (rate) rad / s

Ωi Angular velocity of i′th wheel rad / s

Θ Accumulated wheels angle rad

λ Wheel slip on the longitudinal axis -

λψ Angular wheel slip in the local frame rad

λx Longitudinal wheel slip in the local frame -
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ω Angular velocity of the vehicle (motion in a plane) rad / s
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σVO Standard deviation of VO measurement noise nVO

σWO Standard deviation of WO measurement noise nWO

σα Standard deviation of process noise wα m / s / s

σβ Standard deviation of process noise wβ -

σλψ Standard deviation of process noise wλψ rad

σ2
λxλy

Covariance between wλx and wλy -
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σλx Standard deviation of process noise wλx -

σλy Standard deviation of process noise wλy -

σλ Standard deviation of nλ measurement noise -

c Steering curvature 1 / m
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u Control input
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uφ Steering angle of an ideal steering wheel in bicycle model rad
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vy Linear velocity of the vehicle on Y axis in the local frame m / s

w Process noise
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wv Process noise that captures uncertainty of input uv m / s

wα Process noise component acting as wheels angular acceleration m / s / s

wβ Process noise component driving wheel slip estimation -
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1
INTRODUCTION

This thesis proposes a novel method of reducing the frequency of processing compute-

intense Visual Odometry (VO) without sacrificing navigational accuracy. It is mainly

achieved by integrating wheel slip within the sensor fusion algorithm and adapting

process and measurement noises to determine when the subsequent VO measurement is required.

The thesis also discusses, to some extent, how predicted wheel slip could be used to improve

localisation accuracy further. Most work is done in one dimension with an initial approach of

addressing planar motion.

1.1 Motivation

It is an exciting decade for planetary exploration. With the National Aeronautics and Space

Administration’s (NASA) Perseverance [1] (Fig. 1.1(a)) and China National Space Administration’s

(CNSA) Zhurong [2] (Fig. 1.1(b)) landing on Mars in 2021, we could see the highest surge in

planetary science since Mars Science Laboratory (MSL) Curiosity. Even though the European

Space Agency’s (ESA) ExoMars Rosalind Franklin rover (Fig. 1.1(c)), initially scheduled to launch

in 2022, has been suspended due to Russia’s invasion of Ukraine [3], there are still plans to launch

ESA’s Sample Fetch Rover (SFR) (Fig. 1.1(d)), due in 2026, as part of Mars Sample Return (MSR)

mission that aims to bring a sample of Mars back to Earth [4]. And not to mention returning to

the Moon with the Artemis program in 2024 [5], which may require a whole fleet of rovers.

SFR may become an exceptionally challenging mission, as it will have to collect all samples

dropped by Perseverance in a limited time due to the global dust storm season. To achieve this,

SFR will need to drive long distances at higher speeds than previous missions (∼200 m per

sol – a Martian day) [6]. It can become even more challenging for SFR, as it will be equipped

only with solar panels, which may constrain its operation to only a few hours around noon.
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(a) Perseverance, ©NASA/JPL-Caltech/MSSS (b) Zhurong, ©CNSA

(c) ExoMars (Visualisation), ©ESA/ATG Medialab (d) SFR (Visualisation), ©ESA/ATG Medialab

Figure 1.1: Example of Mars rovers

To make most of the time around the noon, SFR’s nominal speed is expected to be 0.0667 m/s

(early indication in [7]) which would allow covering the necessary daily distance in about 50

minutes. For comparison, a typical speed of MSL Curiosity with hazard avoidance and VO is only

0.0056 m/s compared to 0.039 m/s for a blind drive. The difference comes from the requirement of

Curiosity to stop for VO [8]. Reasons for these stops are not specified, but one may guess that i)

acquiring images while stationary reduces possible blur coming from vibrations, and ii) there are

constraints on processing resources. Interestingly, the longest distance travelled by a Mars rover

belongs to Perseverance - 319.79 m [9], however, at the moment, it is unknown whether it was a

blind drive or with all autonomy functions similar to those of Curiosity. One has to be careful

when performing any type of drive on Mars. Sandy terrain poses a real risk to rovers and their

wheels. They may get stuck in soft sand as was the case for MER Spirit, or get damaged during

traverse as it was for Curiosity. The latter relates to wheel slippage and even though engineers

work on optimising wheel design to reduce the slippage effect, in general, it cannot be avoided.

Interestingly, the ExoMars rover will be equipped with a unique wheel-walking mechanism that

offers walking capability should a wheel got stuck in the sand. Other rovers, however, do not

possess this feature and therefore investigating ways to reduce slippage is one of the motives for

this research.

There is a primary risk that the required distances will not be covered, especially if more

energy is required to deviate from the preferred path. Secondly, it leaves little time to analyse the
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surrounding environment making energy and resource management key for this mission. Even

though the environment would have been assessed already by Perseverance and scientists prior

to the SFR launch, the rover may approach the terrain differently, giving a different perspective

for images. Although not its primary function, the additional scientific output would be very

much welcomed. This, however, is a challenge because there is little free time available on the

co-processor for any other processing when driving to collect samples. But what if VO were done

less often? Could it allow for other algorithms to take advantage of freed computational resources?

And what would be the impact of fewer VO measurements?

This thesis investigates a fusion of VO and Wheel Odometry (WO) using Extended Kalman

Filter (EKF) to propose a novel method to reduce the number of VO measurements by analysing

process noise and measurement noise statistics that enable slip-based estimation. The problem is

analysed in one dimension with some elements expanded into two dimensions. By one dimension

it is assumed a longitudinal/heading direction, i.e. movement in all directions is allowed but only

the total distance travelled and longitudinal wheel slip are analysed. The research question to

answer is: Can VO frequency be reduced without sacrificing navigational accuracy?

It is best illustrated by Fig. 1.2. Insufficient VO measurements in a high-slip area lead

Figure 1.2: Pictograph illustrating the hypothetical impact of reduced VO frequency. Blue bars
indicate VO measurements, and orange bars WO. When performing infrequent VO measurements,
wheel slippage in the high slip area may not be correctly estimated leading to large drift and
increased error. On the other hand, frequent VO, even though offers a small error, wastes
computational resources when driving in a low slip area. An optimal solution would perform
infrequent VO measurements in low slip areas and frequent measurements in the high slip area,
benefiting from the advantages of the above examples but not sharing their disadvantages. This
hypothesis assumes a good VO algorithm.
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(a) Viper (Visualisation), ©NASA/Daniel Rutter (b) SOLO, ©CGI IT UK

Figure 1.3: Example of rovers with lights

to increased drift, however, too many VO measurements, when driving on solid terrain, are

considered as wasted resources. The aim is to use VO only where necessary, thus reducing

resources used while maintaining good navigational accuracy. For clarity, VO provides a relative

motion estimation and cannot correct WO drift after the fact if not used during the traverse.

Reduced VO frequency may indirectly reduce the power usage of a rover when driving on the

Moon in permanently-shadowed areas (Fig. 1.3(a)) or in an underground tunnel (Fig. 1.3(b)), the

rover will need to carry lights to illuminate the environment for cameras. Even when lights are

turned on for the duration of camera exposure, a reduced number of flashes may save enough

energy to make several kilometres-long inspections feasible.

1.2 Odometry and Wheel Slip

In the robotic world, typically, there are two types of sensors: proprioceptive and exteroceptive.

The former type relates to the robot’s internal state (e.g. motors encoders, inertial sensors, battery

voltage), whereas the latter type allows estimating the external state (the environment), for

example, using cameras or Light Detection and Ranging (LiDAR) sensors. Some researchers

also define a third type, interoceptive, which relates to internal engineering quantities used for

a system’s health monitoring. The general understanding is that proprioceptive sensors offer

fast measurements which do not cost much energy, however, they are subject to drift and the

environment’s variability. On the other hand, exteroceptive sensors can offer measurements that

take external states into account at the cost of more computational complexity.

An example of proprioceptive localisation technique in wheeled robots is WO that offers a

cheap estimate of the rover’s position by counting how far wheels have turned. However, because

wheels may slip, WO usually reports further distance than the actual. In the case of Mars, wheel

slip can contribute to over 10% of error in position estimation [10]. Although there is a chance

for a vehicle to drive further than the WO reports (sliding), it has more impact on cars, which

drive at faster velocities than rovers, when they have wheels locked during braking. Typically,
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WO is accompanied by the Inertial Measurement Unit (IMU). These units are popular among

robotics researchers, however, they are subject to drifts. It means that another technique is

usually required to correct the IMU. Because in this research we investigate how a wheel slip is

estimated and can be used to improve localisation, and because we have an access to an accurate

VO algorithm, having an IMU was not deemed necessary. Its benefit in the one-dimensional

analysis would be limited yet it would add the complexity of estimating biases. Due to the latter, it

would not be enough to use only IMU with WO, it would still require VO or another exteroceptive

localisation technique.

When it comes to exteroceptive sensors, LiDARs gain increasing popularity among researchers

and engineers due to their simplicity and robustness in low-light conditions. However, space

rovers often rely on visual information for navigation, mainly because LiDAR and Time-of-Flight

(ToF) cameras are not currently space-rated for Mars exploration and are considered too power

and mass inefficient for such missions where both of these are at a premium. The most popular

solution is to use VO, which extracts essential information from images in the form of features.

These are pixels or clusters of pixels that remain similar across several frames, as long as they

are in the camera’s field of view (e.g. a specific rock visible along the rover’s traverse). Multiple

features can be compared across left and right image frames and between current and previous

stereo image pairs to provide a rover POSE (Position and Orientation State Estimate). In this

work, the employed VO algorithm provides a POSE between two consecutive stereo image pairs.

More about an example VO algorithm can be found in [11]. Extracted features can be projected

into a 3D map allowing the rover to perceive the environment and thus detect any obstacles and

find safe routes. However, processing images on space-qualified hardware takes substantial time.

Reducing the number of these operations could potentially lead to lower energy usage and free

some computational resources that may be spent on other tasks. For example, with the latest

developments in image classification techniques [12], one can envisage an on-board system to

prioritise data for downlink or a system for reactive exploration. However, with constant robot

speed, the less frequent VO measurements are done, the bigger the measurement error may be.

With a bigger distance between two consecutive frames, there is a risk that there would be an

insufficient number of features to match resulting in a worse VO estimate.

The best localisation accuracy and the most benefits can be achieved by combining proprio-

ceptive and exteroceptive information. Imagine a walking person to visualise better the effect

of slip, WO, and VO. Humans use their eyes (stereo cameras) to analyse the world and localise

themselves within it (more complex operations than a simple delta motion). However, when they

close their eyes, they can continue walking. They might count how many steps they do (encoders)

to localise themselves in their remembered environment (stored map). Nevertheless, it might

become harder over time as steps may not necessarily have the same length. Furthermore, if

walking on a slippery sand surface, one could slip, introducing errors in the step counting process.

They could then open their eyes to correct themselves, and once their position is established,
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close their eyes again and continue counting steps (infrequent corrections). Often when eyes

are closed, other senses are strengthened. Many people close them, even subconsciously, when

listening to their favourite music or enjoying that final bite of delicious cake. These senses would

not give such vital feedback with their eyes open, which could loosely translate to having free

brain resources for other tasks when their eyes (cameras) are inactive. Humans take advantage

of processing images less often, so why robots should not?

In robotic applications, wheel slip can be treated as a drift in WO that VO can correct. It is

conceptually similar to Visual-Inertial Odometry (VIO), where an inertial sensor (IMU), subject

to drift, is combined with visual localisation techniques to offer benefits of both systems: fast IMU

update rate with vision’s localisation accuracy. However, many modern robotic systems focus

primarily on Simultaneous Localisation and Mapping (SLAM) or VIO and do not consider wheel

slip. A recent DARPA’s (Defence Advanced Research Projects Agency) Subterranean Challenge

[13] gives a good overview of the top robotic applications for GPS-denied environments. The top

team from the final’s Systems Competition, CERBERUS, used walking and flying robots. Even

though they did not use wheeled robots, their main approach for localisation was a fusion of

VIO, and Thermal-Inertial Odometry (TIO) with LiDAR [14]. Interestingly, they did mention a

Leg Odometry [15] for their quadrupedal, however, this is a recursive estimation algorithm that

was not referenced in their main paper describing chosen localisation scheme. Also, according to

[16], any quadrupedal’s slip reflexes were stabilised by internal system [17]. When looking at

the final’s virtual competition, the second-best team (the winner did not provide any information

regarding their solution), CTU-CRAS-NORLAB from the Czech Technical University in Prague,

used a combination of wheeled, tracked, crawling, and aerial robots. In [18, 19] authors explain

that they used SLAM based on LiDAR using Iterative Closest Point (ICP) method. To provide

an initial estimate for ICP, a fusion of wheel odometry and inertial sensors is used, however, no

notion of a wheel or track slip is maintained there. Another team that performed well in Tunnel

and Urban circuits was CoSTAR from NASA JPL. Their localisation solution follows the same

pattern as for previous teams. LiDAR is used for SLAM with IMU, and odometry [20], but without

any notion of wheel slip.

It can be safely assumed that for terrestrial applications where there is access to high-grade

and accurate LiDARs, SLAM plays a crucial role in robot localisation. There is no need to

understand the wheel slip with frequent localisation updates utilising powerful computers. In

the case of planetary rovers, wheel slip is primarily used for trajectory control, and it is not often

estimated with a sensor fusion framework. In [21] VO measurements "are considered truth",

which can be read as no filtering is done, which has the advantages of faster execution on flight

hardware, especially when the VO algorithm is deemed to be very precise. As for the slip, it is

estimated using true VO and WO measurements. A different approach is presented in [22], where

the Indirect form of the EKF is used to estimate state errors for integrated Inertial Measurement

Unit (IMU) measurements. It is interesting to note that to better model relative measurements,
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an augmented state is introduced using an approach called stochastic cloning, which is described

in detail in [23]. Slip presence detection is based on [24], and its actual value is then calculated

by comparing output from the filter and forward kinematics model. Another approach, presented

in [25], estimates slip value using only IMU and WO measurements, whereas the EKF, which

also fuses VO, is employed to provide position estimation.

The above solutions provide slip estimation outside Kalman Filter; therefore, there is no

notion of how good this estimation is. An integrated solution is presented in [26] where a single

longitudinal wheel slip was included in Unscented Kalman Filter’s (UKF) state vector when

modelling a six degree of freedom movement. Initial results proved better performance compared

to a model without slip estimation. Similar work is presented in [27], where a particle filter is

used to model the plane motion of a car with four longitudinal slip values being estimated (one

per wheel). A different approach to estimate slip is presented in [28], where an EKF is used to

estimate the platform’s position, orientation and velocity, and a linear Kalman Filter is used to

estimate the slip alone. Still, this approach does not capture any correlation between position

and slip.

Such correlation can be beneficial to fully understand energy cost of robot’s traverse and to

support path-planning that would avoid high-slip areas. On one end, work presented in [29]

assesses the power usage of a traverse based on the images from forward-facing cameras. The

higher the expected slippage, the more energy is required for a drive. In this work, however, the

slip is not directly extracted, and therefore it does not support the localisation function. On the

other hand, in [30] different sensor suits were proposed for different terrain types to reduce power

footprint. It was done purely on vision-based environment assessment, and the sets of sensors

were pre-configured, not allowing for dynamic adjustment of, for example, the VO framerate.

1.3 Computational Constraints

Space exploration is known for its limited computational power. It is mainly a result of the

expensive and lengthy development of radiation-hardened hardware followed by rigorous testing.

As a result, computers specification are orders of magnitude lower than terrestrial equivalents

even at the design stage and will be even more so by the time flight occurs, which is often many

years later. To put that into perspective, Perseverance has a processor with a clock speed of 200

MHz [31], whereas MER rovers Spirit and Opportunity had processors with a clock speed of only

20 MHz [10]. Because of that, a typical VO operation required Spirit, Opportunity, and Curiosity

to stop, acquire images, and wait until the position was estimated [8]. Whether Perseverance is

following the same workflow is yet to be seen when more detailed information about the mission

is published, however, in one of their latest videos, NASA claims that continuous drive was

achieved at the speed of approximately 0.045 m/s (0.1 miles per hour) [32].

With limited computational power, VO could take a significant amount of time to process. In
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the case of ExoMars rover Rosalind Franklin, the requirement is to process VO updates under

4.25 s [33] every 10 s [21] using a 96 MHz Leon2 co-processor [34]. SFR will be equipped with a

more powerful 250 MHz Leon4 co-processor [35]. It is expected to process a VO update in under

one second every two seconds. The non-linear improvement in processing speed is a result of not

only a faster clock but also better memory and Level-2 cache available on Leon4. Nevertheless,

VO will utilise 50% of a single core, which could have been used for other tasks.

Processors are not the only type of hardware available for space missions to perform complex

operations. Recently, the Field Programmable Gate Arrays (FPGA) have become increasingly

popular due to their better efficiency in floating-point operations per second per watt. FPGAs are

great at operations that require parallelism, hence their suitability for image processing. With

the latest development in the field, large FPGAs are big enough to support visual SLAM [36]

or even Convolutional Neural Network (CNN) to enable objects identification from images [37].

An FPGA is also considered for SFR to support its initial localisation function, SPARTAN [38],

however, it is understood that at the time of writing this thesis, SPARTAN competes with VisLoc

[33] (the same VO solution designed for ExoMars) and there are no publicly available documents

to indicate which algorithm was selected for SFR.

Because FPGAs require a different approach to programming than software, they require

a unique set of skills to handle. One of the solutions that offer an easy to use microprocessor

for artificial intelligence suitable in the space environment is the Intel Myriad 2 chip (also

called Vision Processing Unit (VPU)), which runs a pair of Leon4 controllers [39] among other

improvements. Currently, it is in PhiSat-1 CubeSat orbiting Earth, where it acts as a proof of

concept for applicability of Intel Myriad 2 for space applications [40]. Furthermore, an improved

version, Myriad X, has already been released for terrestrial applications, which has enormous

potential by being a dedicated device on a simple USB stick called Intel Neural Compute Stick 2.

Not for the space industry yet, the most powerful devices for parallel operations are Graphics

Processing Units (GPUs). The number of applications in the robotics world that utilise these

devices is growing rapidly. When writing this thesis, Nvidia remains the leader in providing

embedded GPUs - Nvidia Jetson. Recently, radiation testings were performed on Nvidia Jetson

TX2 by NASA [41] and on Nvidia Jetson Nano by US Air Force [42]. Both concluded that they

could be suitable for Low Earth Orbit, with the second investigation quoting 1.5 to 2 years of

operation before Jetson receives its maximum dose of radiation. It does not rule out the possibility

of launching Jetson products to the Moon for much shorter missions, however, at this stage, it

seems unlikely to use them for long-duration exploration missions.

It is still possible for Nvidia Jetson to make it to the Moon or Mars as a technology demonstra-

tion, similar to NASA Mars helicopter - Ingenuity. The helicopter is equipped with a Qualcomm

Snapdragon 820 processor, which can also be found in many modern smartphones. It allows Inge-

nuity to process monocular Visual-Inertial Odometry at 30 Hz framerate [43]. It is a remarkable

achievement to launch such modern hardware, however, it comes with some caveats. Because
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Ingenuity is a technical demonstration, its design was less constrained by rigid requirements.

It nicely shows the possibilities of having a fast processor, but it is unlikely to see Snapdragon

more often in deep space. At least, not on its own. Some may expect that future missions could

be equipped with two processors: one modern to enable fast processing and data generation on

time, and another space-qualified to which the system would switch if the other got too damaged

by the radiation. There would be a disadvantage of flying two processors instead of one, but it

depends on the trade-off analysis during mission design.

1.4 Reasons for One Dimension: Heading Direction

Intuitively, localising in only a heading direction has minimal applications and might be hard

to apply to real-world problems. However, there are several that could benefit from it. The

most obvious is pipe inspection, where robots are localising themselves on the axis along a

pipe [44]. Other places where a one-dimensional localisation is present in the form of mileposts

are motorways (driver location signs every 500 m) and railways (based on section 94 of the

Railways Clauses Consolidation Act 1845, the posts have to be erected every quarter of a mile).

Interestingly, mileposts in the XIX century were practical for engineers and surveyors and helped

determine how much passengers should pay for their trip based on travelled distance.

This total distance along an imaginary line (usually centre line) in structural engineering

is called chainage and is widely used in the tunnel industry. The term was coined in the XVII

century when Edmund Gunter introduced 66 foot long chains to measure distance (80 chains

would measure a mile). Nowadays, chainage can still be read in plans, documents, and reports

[45–47]. From a human surveyor perspective, it is easy to understand. For example, a detected

defect could be located X metres from the centre of the shaft at nine o’clock. Going to three

dimensions for a straight tunnel with a known diameter D would mean X metres forward, D/2

metres to the left, and D/2 metres up. It may not be as easy to explain for tunnels that turn, and

hence chainage coordinates are preferred.

Finally, it is not only simpler to explore an idea in one dimension, but also essential to validate

theoretical concepts in lower dimensions. If it does not work, it will not work in higher dimensions.

It is similar to the technology readiness level, where a proposal is matured from a paper-based

study through proof of concept and experiments to industrialisation and operation. Failure at

any stage prevents moving to the next one. At the same time, achieving a certain level does not

guarantee that the next level can also be achieved. In this work, when analysing movement

in the heading direction, only longitudinal wheel slip is considered. Lateral and angular slip

movements are only considered in chapter 5.
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1.5 Review of Extended Kalman Filter

This section provides basic information about discrete EKF. EKF is a heuristic for non-linear

systems which linearises dynamics and observation functions at the current estimate. Readers

familiar with the subject can skip it to the next section.

First, consider a stochastic, non-linear, time-varying dynamics system modelled by the state

transition function f and observation function h defined as

x(k+1)= f
(
x(k),u(k+1),w(k)

)
(1.1a)

z(k)= h
(
x(k),u(k),n(k)

)
(1.1b)

Where x(k) represents the system state at the time k, u is the vector of control input, z is the

observation (measurement), and w and n are process noise (also known as the disturbance

input) and measurement noise respectively. Both noises are assumed to be zero-mean Gaussian

random sequences. Their covariance matrices at time k are known (Q for process noise and R for

measurement noise), however, they remain uncorrelated in time and with each other

E[w(k)w( j)T ]=
Q(k) j = k

0 otherwise
(1.2a)

E[n(k)n( j)T ]=
R(k) j = k

0 otherwise
(1.2b)

E[w(k)n( j)T ]= 0 for all k and j (1.2c)

It is assumed that Q is at least positive semi-definite, whereas R is a positive-definite matrix.

The reason for that is explained further.

Kalman Filter, and thus EKF, is a minimum mean-square error estimator. Its aim is to

minimise the expected value of the square state error E[||x(k)− x̂(k)||2], where x̂(k) is the a

posteriori state estimate based on all observations up to and including at the time k. The problem

is equivalent to minimising the trace of the a posteriori estimate covariance matrix P̂ defined as

P̂(k)= E[
(
x(k)− x̂(k))(x(k)− x̂(k)

)T ] (1.3)

The algorithm is recursive, which means that the new estimate is based only on the previous

step. The filter works by first forming a prediction state x̃ (also known as the a priori estimate)

based on dynamics model defined as

x̃(k+1)= f
(
x̂(k),u(k+1),w(k)

)
(1.4)

The a priori estimate covariance matrix P̃ is given by propagation

P̃(k+1)= F(k+1)P̂(k)FT (k+1)+G(k+1)Q(k)GT (k+1) (1.5)
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Where F and G are Jacobians defined as

F(k+1)= ∂ f
∂x

|x̂(k),u(k+1), w̄(k) (1.6a)

G(k+1)= ∂ f
∂w

|x̂(k),u(k+1), w̄(k) (1.6b)

Note that w̄ refers to the non-zero mean of the process noise. It is only considered in the adaptive

filter discussed in chapter 3. However, for completeness, the possibility of a non-zero mean is

highlighted in (1.6).

Once the state and its covariance are propagated based on the dynamics model, they can

be corrected using observations. The first step in the filter’s correction stage is to estimate the

innovation, which is the difference between the measurement and its prediction

r(k)= z(k)−E[h
(
x̃(k),u(k),n(k)

)
]= z(k)−h

(
x̃(k),u(k)

)
(1.7)

The whitening filter provides an innovation r which is statistically equivalent to the observation

z with its associated measurement noise n. The innovation sequence is generally considered

a white noise with zero mean value. However, due to the statistical equivalence between the

innovation and observation, should the observation noise n be biased, the innovation r would

also have a bias of the same magnitude. Same as in the case of process noise, an adaptive filter,

further explored in chapter 3, can extract bias from the innovation, which is later taken into

account in (1.11a). The innovation covariance matrix is defined as

S(k)= E[r(k)r(k)T ]= H(k)P̃(k)H(k)T +R(k) (1.8)

Where H is the Jacobian matrix given as

H(k)= ∂h
∂x

|x̃(k),u(k), n̄(k) (1.9)

Now, the filter gain K can be defined as

K(k)= P̃(k)H(k)T S(k)−1 (1.10)

Note that because of S(k)−1, the innovation covariance matrix needs to be positive-definite.

Given that the filter may track its state accurately, the H(k)P̃(k)H(k)T part from (1.8) might

have elements on the main diagonal close to zero, leading H(k)P̃(k)H(k)T to be almost positive

semi-definite. Thus, to avoid numerical instability during the inverse operation, R should be

positive-definite.

With the filter gain defined, the a posteriori state estimate with its covariance matrix are

defined as

x̂(k)= x̃(k)+K(k)
(
r(k)− r̄(k)

)
(1.11a)

P̂(k)= (
1−K(k)H(k)

)
P̃(k) (1.11b)

Note r̄(k) in (1.11a) which is innovation bias which is statistically equivalent to bias in observation

noise and which can be estimated using an adaptive filter. 1 in (1.11b) is identity matrix. More

information about how to derive Kalman Filter formulas can be found, for example, in [48].
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1.6 Metrics for Simulations Analysis

In several places of this thesis, simulations are described to assess the performance of specific

models. Unless specified otherwise, the following metrics are used for analysis:

• Root Mean Square Error (RMSE) of the position estimation. The smaller the error, the

more precise the estimation. Note, however, that this metric provides only a single value

and even though it may be small, there might be an occurrence of an error growing beyond

the confidence margin and then reducing back to low values. In other words, this metric

does not capture how well the filter tracks the error, only how precise it is when analysing

the whole trajectory.

• The approximate area under the 3σ confidence margin of the position estimation. The

smaller area, the more accurate the filter believes it is. Ideally, there should a narrow 3σ

confidence margin with all errors contained by it (thus low RMSE). However, in practice, it

is often seen that filters with narrow confidence margins do not track errors correctly, thus

estimated errors exceed the boundary.

• The estimated area between the estimation error and 3σ confidence margin if the error

exceeds it. This metric captures scenarios where the filter offers a narrow confidence margin,

but does not track error correctly. As a result, estimated errors grow beyond the boundary.

In the case of a filter that correctly tracks estimated errors, this value will be zero.

All areas are computed using the trapezoidal method. Note that because the Kalman filter

assumes normally distributed errors, the 3σ boundary captures 99.7% of the results. Having an

error plot within the 3σ confidence margin indicates that the filter correctly tracks errors.

1.7 Contributions, Structure, and Publications

1.7.1 Contributions

This thesis makes the following contributions:

• A novel approach is laid out in wheel slip estimation. The wheel slip is modelled as a

low-pass filter driven by a process noise rather than an estimate based on WO and external

measurement (VO in this work). The slip is indirectly measured using WO and VO, but

the first-order dynamics allow forgetting the value to process noise mean. It is typically a

zero, but it may be non-zero to reflect the environment better with an adaptive filter. This

approach benefits from filtering erroneous VO measurements detected as spikes in the slip

estimate.

12
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• A system to reactively schedule VO measurements is defined. It does not depend on prior

information about the environment. It mainly utilises statistical information of the process

noise driving the wheel slip estimation and the innovation from the VO measurements

(i.e., the difference between the predicted and measured VO). A reactive VO scheduling

approach can substantially reduce the number of VO measurements while maintaining the

required navigational. Other algorithms could utilise freed resources to advance the overall

robotic application’s capabilities further.

• Wheel slip prediction is vital from the planning perspective. It is best to avoid areas that

may pose a risk to the locomotion system. To the authors’ best knowledge, what has not

been done so far is to use the predicted wheel slip to support the localisation function online

or in a quasi-real-time manner. Typically, wheel slip predictions are used for rover planning

off-board and on the ground, even if only based on heuristic operator judgement. This thesis

explores options for improving position estimation by matching predicted wheel slip with

known profiles. This behaviour resembles SLAM. It is an exciting observation as the wheel

slip prediction could be of dual purpose.

1.7.2 Thesis Structure

Chapter 2 presents the proposed model for fusion of VO and WO with integrated slip estimation.

The wheel slip is modelled as a low-pass filter driven by a process noise. It allows for tracking the

correlation between the position and wheel slip, improving overall localisation. The low-pass filter

also filters out erroneous VO estimates should they happen. The proposed model is analysed using

simulated data and several real-world trajectories on two types of terrain: tarmac and grass. The

model is also compared with two other popular sensor fusion approaches, where both treat wheel

slip as pseudo-control input. The first model to compare is a simple fusion (i.e. without Kalman

filtering), and the second encapsulates the simple fusion with the Kalman Filter framework.

Chapter 3 introduces an adaptive filter to the fusion model with integrated slip estimation.

Two adaptive filter candidates are presented and evaluated, out of which only one is selected

based on simulations and later verified using data captured during field trials. Next, the trigger

strategies for the reactive VO scheduling are defined and discussed. They utilise the adaptive

filter and are verified using short real-world trajectories. The final system is then validated

using long trajectories from one field trial used for system tuning and from the second field trials

conducted in a different environment. It is shown that the number of VO measurements can be

significantly reduced without significant loss in position estimation accuracy.

Chapter 4 explores three models where information about wheel slip can be predicted,

measured, and fused with VO and WO. The first model assumes a point measurement of wheel

slip. It could be realised by a camera facing directly at wheels or utilising other measurements

such as torque. The second model utilises a known wheel slip profile to perform a look-up

operation. This profile could be obtained by analysing the terrain in advance, for example, by

13



CHAPTER 1. INTRODUCTION

using images from an orbiter. The final model includes the profile within the sensor fusion

framework. With this approach, wheel slip could be measured using, for example, forward-looking

cameras. This model comes with two variants: with linear and non-linear observation functions.

It is possible to recognise predicted wheel slip that resembles SLAM in both cases.

Chapter 5 provides an initial insight into moving the fusion of VO and WO with integrated

slip estimation into two dimensions. Two additional slip variables are defined: the lateral slip,

which behaves in the same way as the longitudinal slip (i.e. scales the lateral velocity), and the

angular slip, which is treated as a bias for the vehicle’s angular velocity. Similarly, all slips are

modelled as low-pass filters driven by their respective process noises. For testing, two candidate

models are defined. The first model aims to be platform-agnostic and utilises per-wheel input

controls (drive and steering). The second model uses only drive and steering control inputs for

the chassis and implements the non-linear Ackermann steering geometry in the WO observation

function. An adaptive filter with reactive VO scheduling is implemented only for one model to

inspect the feasibility of this approach in higher dimensions.

Finally, chapter 6 summarises the results, highlights key findings, and provides a discussion

by answering the research question. All is concluded in chapter 7 which also provides suggestions

for improvements and further research.

1.7.3 Publications

This thesis is based on the following publications:

1. M. Malinowski, A. Richards, and M. Woods, Power-aware Fusion of Visual and Wheel

Odometry for Mobile Platforms, in UKRAS20 Conference: “Robots into the real world”

Proceedings, EPSRC UK-RAS Network, May 2020, pp. 111–113. [49]

2. M. T. Malinowski, A. Richards, and M. Woods, Fusion of Visual and Wheel Odometry with

Integrated Slip Estimation, in AIAA Scitech 2021 Forum, American Institute of Aeronautics

and Astronautics, Jan. 2021. [50]

3. M. T. Malinowski, A. Richards, and M. Woods, Reactive Visual Odometry Scheduling Based

on Noise Analysis using an Adaptive Extended Kalman Filter, in 2021 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), Sept. 2021, pp. 294–299.

ISSN: 2153-0866. [51]

4. M. T. Malinowski, A. Richards, and M. Woods, Wheel Slip Prediction for Improved Rover

Localization, in AIAA SCITECH 2022 Forum, American Institute of Aeronautics and

Astronautics, Jan. 2022. [52]
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2
MODEL DEFINITION AND VALIDATION

This chapter lays the foundations of the work described in this thesis. Here, a new method

is proposed to estimate the robotic rover’s position corrected with slip. The solution inte-

grates the slip estimation into an Extended Kalman Filter (EKF) fusing Wheel Odometry

(WO) and Visual Odometry (VO). The approach can handle the correlation between the slip and

the rover’s position estimation and occasional errors in VO or WO measurements. Furthermore,

it is possible to tune the model to emphasise WO (e.g. when no slip is expected and thus reduce

the number of VO measurements) or to rely more on VO (high slippage variability). Accurate

tracking of uncertainty offers a route to adaptive use of VO, saving energy and computational

resources when conditions permit. In section 2.2 the proposed model is tested and verified using

simulation, whereas, in section 2.3, it is validated using results obtained during field trials using

a representative robotic platform. All tests are done in a simple one-dimensional case, which is

extended to two dimensions in chapter 5. Results are promising as the position estimation is

consistent even for various VO update periods. The model is also compared with other sensor

fusion algorithms in section 2.3.2. Finally, an example of how a failure in VO measurement is

dealt with by the proposed solution is provided in section 2.3.3.

This chapter is based on work published in [49, 50], but increased in scope. In case of any

discrepancies, this thesis supersedes the papers.

2.1 Models Definition

In this section, three different ways of VO and WO fusion are discussed:

• Filter Free Estimation that performs a simple fusion of sensor data and treats wheel slip

as a pseudo-control input
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• Separate Slip Estimation which moves the above solution into a Kalman Filter but still

treats the wheel slip as a pseudo-control input

• Integrated Slip Estimation where wheel slip is moved to the state and is driven by a process

noise. In this scenario, a non-linearity arises, calling for an Extended Kalman Filter.

When it comes to sensors fusion, it is common to use an indirect filter to estimate state errors

rather than states themselves, however, this approach is usually used with IMU, which is subject

to bias error [22, 25]. Because most of the work described in this thesis is limited to one dimension,

a direct EKF is employed.

Furthermore, the problem is simplified to one dimension, where only the total distance is

analysed. Consequently, only the longitudinal wheel slip is taken into consideration. Finally, it is

assumed that all wheels are always subject to the same type of terrain; therefore, a single slip

value is estimated for all wheels, which is given as

λ(t)= ρΩ(t)−v(t)
max{ρΩ(t),v(t)}

≈ ρΩ(t)−v(t)
ρΩ(t)

(2.1a)

λ(t)


= 0 no slip

> 0 wheels slip

< 0 wheels skid

(2.1b)

Where Ω(t) is the wheel angular velocity, ρ is wheel radius, and v(t) is the linear velocity of the

platform. Typically longitudinal slip can occur in both directions. When the ρΩ(t) element is

greater than v(t), the platform is usually accelerating or moving at a constant speed. Linear

velocity might be greater when the platform slides or during deceleration. Because this research

deals with a reasonably slow-moving rover, we assumed that slip caused by sliding could be

neglected, and therefore the longitudinal wheel slip formula can be simplified to what is presented

on the right-hand side of (2.1a). Furthermore, having a max function in the state transition could

result in linearisation errors when ρΩ(t)≈ v(t).

Note that (2.1) can be rewritten to provide linear velocity v(t) as

v(t)= ρΩ(t)−ρΩ(t)λ(t)= ρΩ(t)
(
1−λ(t)

)
(2.2)

This version is particularly interesting as it takes, as an input, λ(t) (either as a state or pseud-

control input, uλ(t), which will be explained later) and provides v(t) as an output which can be

then integrated to provide the total distance travelled. Eq. (2.2) can be depicted in a simple block

diagram as presented in Fig. 2.1.

Some models treat wheel slip as a pseudo-control input. To distinguish it, it is denoted as

uλ(t). The only difference in uλ(t) is that rather than being estimated by a filter, it is calculated

using existing VO and WO measurements. uλ(t) is only calculated each time new VO is available

and an unmodified pseudo-control value is used until the next VO measurement. In addition, WO
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Figure 2.1: Block diagram of a linear velocity, v(t) as a function of wheel slip, λ(t), wheels angular
rate,Ω(t), and their radius, ρ. It is a visual representation of (2.2). Note that when this diagram is
included in the Kalman filter, the multiplication between ρΩ(t) and λ(t) introduces non-linearity
which calls for an EKF.

measurements used to calculate uλ(t) are accumulated over the time between two consecutive

VO measurements. Formal equations are provided when discussing specific models. Similarly to

uλ(t), uΩ(t) is defined to denote an input angular velocity of wheels. In this case, this is an actual

input to the system known at each time step.

2.1.1 Filter Free Estimation

Kalman Filter is not mandatory for a localisation system. The benefits of filtered estimation

may be overshadowed by additional computations needed to calculate Jacobian matrices for

multi-variable state vector, primarily when VO produces precise measurements and is frequently

computed. In the case of the ExoMars Rosalind Franklin rover, the platform’s localisation is

provided by a component called RelLoc which quoting [21] implements the following algorithm:

RelLoc employs the angular rates from the GyroMei to propagate the attitude

estimate and, together with the incremental positions from WheelOdo propagates the

position estimate... It shall be noted that VisLoc estimates are considered truth within

RelLoc. RelLoc therefore synchronizes the various inputs, adding the propagated

GyroMei and WheelOdo data to the VisLoc samples.

Note that VisLoc (Visual Localisation for ExoMars rover) is a VO solution [33].

From the above description, it is not explicitly known whether any filtering is used. Never-

theless, for the sake of this work, it is assumed that there is none. A block diagram of a simple

Filter Free Estimation is presented in Fig. 2.2. uΩ represents an input wheel angular velocity

which after integration gives the total accumulated angle θ that can be measured using WO.

Angular velocity multiplied by wheel radius ρ is then subject to wheel slip which in this model is
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Figure 2.2: Block diagram of a Filter Free Estimation. Note how this block diagram expands the
one presented in Fig. 2.1. The system takes as inputs commanded wheels angular rate, uΩ(t),
and wheel slip as pseudo-control value, uλ(t). The total accumulated wheel angle, θ(t) is obtained
by integrating commanded input and is measured by WO, zWO. Similarly, the total distance
travelled, p(t), is obtained by integrating linear velocity and is measured by accumulated VO
measurements,z′VO(t).

inserted as pseudo-control input uλ. The result is a linear velocity of the robot, v(t), which after

integration gives the total distance travelled p, which can be measured using VO. In this case,

however, delta VO measurements are added together, providing a direct measurement of p given

by z′VO.

The pseudo-control wheel slip input is estimated by substituting WO and VO measurements

into (2.1) and thus given as

uλ(t)=
ρ
(

zWO(t)−zWO(t−TVO)
)

TVO
− z′VO(t)−z′VO(t−TVO)

TVO

max{
ρ
(

zWO(t)−zWO(t−TVO)
)

TVO
,

z′VO(t)−z′VO(t−TVO)
TVO

}
(2.3)

Where TVO is the time between VO measurements. Note that even though in (2.3) TVO could be

reduced, in a real-world application, it may not always be possible to synchronise VO and WO

measurements correctly.

2.1.2 Separate Slip Estimation

In this approach, what was previously defined as Filter Free Estimation is placed inside a

Kalman Filter where a control input uΩ with added random walk (integration of process noise

wα) drives the system. Moreover, an augmented state m, which stores the position where the

last VO measurement was performed, is introduced to better model relative VO measurements.

This work was inspired by NASA as presented in [22] who also use augmented state to model

relative measurements. Their approach is called stochastic cloning and is described in great

detail in [23]. It is interesting that even though our proposition and stochastic cloning are similar
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Figure 2.3: Block diagram of the Separate Slip Estimation dynamics system model used in
the Kalman Filter (transition and observation functions). This model is similar to Filter Free
Estimation presented in Fig. 2.2. There are two major changes. Firstly, as this model is for
the Kalman filter, process noise and measurement noises are added. The process noise wα(t)
is integrated and added as a random walk to the input commanded angular wheel rate, uΩ(t),
resulting in wheels angular rate, Ω(t). Measurement noises nVO(t) and nWO(t) are added to
VO and WO measurements respectively. Secondly, VO is modelled as relative measurements
with TVO rate, hence an augmented state m(t) is introduced. m(t) stores the position where the
previous VO measurement was performed.

in principle, they differ in how they model associated covariances. Authors in [23] assume state

independence so that new measurement does not provide any new information about the previous

state. However, in this work, because a direct Kalman Filter is used to estimate states, we believe

that each relative measurement provides new information about the previous state. It is best

described in the following example: if a system indicates that the rover moved by X meters to a

total distance of Y meters, the former state was at Y-X meters. It is new information, as we are

confirming the previous belief. This notion leads to the following definition of the augmented

state m:

m(t+)=
p(t) if VO measurement at time t

m(t) otherwise
(2.4)

Where t+ indicates a time instant after t.

A block diagram that is embedded in the Kalman Filter is presented in Fig. 2.3. Note that

relative VO measurement, zVO, and WO measurement, zWO, have added measurement noises

nVO and nWO respectively. Furthermore, note that all noises in Fig. 2.3 list mean values denoted

by a bar above their symbol (e.g. w̄α). Kalman Filter assumes that all noises are zero-mean

Gaussian white noises. This is also assumed in work presented in this chapter, however, non-zero

means are explored in chapter 3 where the adaptive filter is introduced.

Using relative VO motion, the slip pseudo-control variable can be simplified to

uλ(t)=
ρ
(

zWO(t)−zWO(t−TVO)
)

TVO
− zVO(t)

TVO

max{
ρ
(

zWO(t)−zWO(t−TVO)
)

TVO
, zVO(t)

TVO
}

(2.5)
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The state vector for Separate Slip Estimation is defined as

x(t)= [p(t),θ(t),Ω(t),m(t)]T (2.6)

This model is comparable in principle with [25] where a filter with the augmented state is

used to estimate the rover’s position, and the slip is estimated outside the filter.

2.1.3 Integrated Slip Estimation

The final model leverages the Separate Slip Estimation method by including wheel slip in the

filter’s state and modelling it as a low-pass filter driven by an unknown process noise. This

approach means that the slip’s covariance remains constant, similarly to white noise, rather

than growing as for a random walk. Generally, the low-pass filter offers similar properties to

unmodified white noise with an exception of providing non-zero slip estimation. Should the wheel

slip be treated as a white noise, it would always be zero (mean value being zero as reacquired by

Kalman filter) unless the noise mean value was modelled as an additional state in the model.

When compared to a random walk, a low-pass filer offers smaller growth of the covariance. It is

most prominent when exposed to a system where VO measurements are not available. This is

further discussed in section 2.2.2. Additionally, the low-pass filter has a tunable ’forgetting’ factor

T0 to capture the variability of terrain. Wheel slip depends on the terrain that is directly under

the robot. As the robot moves, T0 allows forgetting wheel slip value associated if the terrain that

is behind the robot and allows Kalman filter to provide a new estimate. The gain parameter of the

filter is set to one as it is a scaling factor for the wβ noise which here models all terrain properties

related to the slip. Hence, slip estimation is controlled by σβ and T0. The Block diagram of the

proposed system is presented in Fig. 2.4. Because λ is now part of the state, a non-linearity arises

from (2.1), which calls for an EKF. Others have already investigated the suitability of an EKF

Figure 2.4: Block diagram of the Integrated Slip Estimation dynamics system model used in the
EKF (transition and observation functions. This model expands the model with Separate Slip
Estimation depicted in Fig. 2.3 by moving wheel slip, λ(t), to filter’s state and modelling it as a
low-pass filter driven by a new process noise wβ(t). The low-pass filter’s gain is set to one as it
only scales the noise. Its other parameter, time constant T0 is configurable.
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for sensor fusion and position estimation, such as [25, 53, 54] to name a few. Also, in this model,

the assumption that the system moves at low velocity and is not subject to longitudinal slip

during deceleration plays an important role. It allows to use an approximation from (2.1) which

is present in the block diagram in Fig. 2.4.

Similarly to Separate Slip Estimation, all process and measurement noises are assumed to be

zero-mean Gaussian white noise. Any potential biases are discussed in chapter 3 when analysing

potential adaptive solutions. However, with this in mind, all equations are provided with explicit

noises’ means (note symbols with bars below). Even though those elements are zeroed in this

chapter, equations remain valid for chapter 3.

Finally, the state of the Integrated Slip Estimation is defined as

x(t)= [p(t),θ(t),Ω(t),λ(t),m(t)]T (2.7)

Which is similar to (2.6) but extended with λ.

From Fig. 2.4 and using augmented state m as defined in (2.4), the state dynamics, f ,

discretised with timestep ∆t is given as

f
(
x̂(k),u(k),w(k)

)=



p̂(k)+ρ∆t
(
1− λ̂(k)

)(
Ω̂(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2
(
1− λ̂(k)

)
w̄α(k)

θ̂(k)+∆t
(
Ω̂(k)+ uΩ(k+1)−uΩ(k)

2

)
+ ∆t2

2 w̄α(k)

Ω̂(k)+uΩ(k+1)−uΩ(k)+∆tw̄α(k)

e−
∆t
T0 λ̂(k)+ (1− e−

∆t
T0 )w̄β(k)p̂(k) if VO at k

m̂(k) otherwise


(2.8)

For the full derivation of the formulas refer to annex A. Note that element e−
∆t
T0 comes from

the Z-transform and could be approximated by 1− ∆t
T0

for very small ∆t. This approximation is

employed in chapter 5.

The state transition Jacobian is defined as

F(k)=





1 0 ρ∆t
(
1− λ̂(k)

) −ρ∆t
(
Ω̂(k)+ uΩ(k+1)−uΩ(k)

2

)
−ρ∆t2

2 w̄α(k) 0

0 1 ∆t 0 0

0 0 1 0 0

0 0 0 e−
∆t
T0 0

1 0 0 0 0


if VO at time k



1 0 ρ∆t
(
1− λ̂(k)

) −ρ∆t
(
Ω̂(k)+ uΩ(k+1)−uΩ(k)

2

)
−ρ∆t2

2 w̄α(k) 0

0 1 ∆t 0 0

0 0 1 0 0

0 0 0 e−
∆t
T0 0

0 0 0 0 1


otherwise

(2.9)
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Note that in (2.8) and (2.9) w̄α(k) and w̄β(k) refer to process noise mean value. Later they are

assumed to be zero, however, in chapter 3 non-zero mean values are considered when discussing

adaptation.

No correlation between wα and wβ is assumed; therefore, the process noise covariance matrix

with its associated Jacobian G mapping noise onto state are defined as

Q(k)=
[
σ2
α 0

0 σ2
β

]
(2.10a)

G(k)=



ρ∆t2

2
(
1− λ̂(k)

)
0

∆t2

2 0

∆t 0

0 1− e−
∆t
T0

0 0


(2.10b)

VO and WO measurements are linear and are expressed, together with their measurement

covariance matrices, as

zVO(k)= p̃(k)− m̃(k)+nVO(k) (2.11a)

zWO(k)= θ̃(k)+nWO(k) (2.11b)

RVO(k)=σ2
VO (2.11c)

RWO(k)=σ2
WO (2.11d)

WO measurement noise is assumed to be constant and is related to the precision of wheel

encoders, and its value can be obtained from the encoder’s manufacturer datasheet. VO mea-

surement noise is associated with image overlap: the bigger TVO is, the bigger the noise is. It is

because there is less image overlap for a longer distance between two consecutive stereo images.

As the VO algorithm tries to match extracted features from two consecutive stereo pairs, a smaller

overlap means fewer points are used for VO estimation, contributing to measurement error in

the filter. It could be debated whether a smaller overlap introduces a bias, however, for simplicity,

we assumed it to be zero. Standard deviations for various TVO were estimated by comparing VO

measurements to ground truth during the testing and calibration campaign.

Standard deviations for measurement noises used in this work were:

σWO = 0.009 rad (2.12a)

σVO0.2 = 0.004 m (2.12b)

σVO1.0 = 0.017 m (2.12c)

σVO2.0 = 0.033 m (2.12d)

x̂ was initialised as

x̂0 = [0,0,1.7857,0.02,0]T (2.13)
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Ω̂0 was set to 1.7857 rad/s because this is 0.2 m/s (desired linear velocity of the platform used in

all trials in this chapter) divided by wheel radius ρ of 0.112 m. Based on trials, the longitudinal

wheel slip on the flat tarmac was estimated as 0.02; therefore, this value was selected as λ̂0 for

all trials.

P̂0 was initialised as

P̂0 =



RVO 0 0 0 RVO

0 RWO 0 0 0

0 0 RWO 0 0

0 0 0 9E−04 0

RVO 0 0 0 RVO

 (2.14)

Measurement covariance matrices were set as initial variances for states mainly measured using

the given method. Ω and θ are both related to WO, therefore their initial variances are set to

RWO. Total distance p is mainly measured using VO, hence RVO is used as p’s initial variance.

Augmented state m is only used for VO thus it is initialised with the same value. Because p

and m are correlated by VO measurements, the initial correlation is also set in P̂0. Only initial

variance for λ was selected based on trials and errors.

2.2 Basic Simulation

The first step was to perform low-fidelity simulations to verify the mathematical model in isolation

from the environment and hardware. Secondly, simulations allowed for better inspection and

understanding of the model without ’polluting’ it with the randomness of the real world.

WO measurements were simulated every 0.1 s to be representative with telemetry feedback

of the platform used for real-world experiments. The simulated ground truth was created using

a constant control velocity (0.2 m/s) with pre-configured λ for different longitudinal wheel slip.

Thus obtained total accumulated wheel angle and distance travelled were then used as a source

of measurements with added white noise. Measurements were fused using only the model with

Integrated Slip Estimation defined in section 2.1.3, as it is the most complex of all three models

defined, and it is the solution that we propose as an improvement to the rover’s localisation.

For testing and verification, a 100-m long test case was defined with wheel slip taking the

shape of two bumps, as shown in Fig. 2.5. When simulating the model, three parameters are

investigated:

• The standard deviation σβ which drives the wheel slip estimation. The expectation is

that with low covariance values, there will be not enough dynamic allowed to change λ,

maintaining its default value (mean value of the noise). The high standard deviation of the

process noise should result in noisy λ estimation, and thus, travelled distance p.
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Figure 2.5: Ground-truth wheel slip profile for the simulated test case. The profile has a default
non-zero value with two ’bumps’ in opposite directions to test how robust models are when
exposed to positive and negative changes to slip.

• The time constant of the low-pass filter T0. It defines how fast λ is reached and how fast

it is ’forgotten’ to the mean value of the noise. A long time constant may increase error

as λ may not be updated fast enough to reflect the environment. On the other hand, a

short time constant may not maintain the correct slip estimation long enough between VO

measurements.

• VO measurement period TVO. Frequent VO offers a reasonable means of localisation,

however, given the limited computational power on robots and the number of complex

tasks they are being asked to perform, reducing the need for VO measurements can be

beneficial. The drawback is that VO estimation error increases as the separation between

consecutive image frames increases. To model that, σVO is increased linearly with increased

TVO. Furthermore, a longer time between VO updates may hurt the system with low T0,

as mentioned earlier.

2.2.1 Simulation Results

This section presents the results of the simulations aiming to assess the model’s behaviour. For a

given set of σβ (0.1, 0.5, 1.0, and 2.0) and T0 (1, 20, and 100 s), the trajectory was re-run with

TVO 0.2, 1.0, and 2.0 s. Fig. 2.6 shows an example trajectory and Fig. 2.7 presents the metrics for

errors in position estimation as defined in section 1.6. The following conclusions could be drawn

regarding the model with Integrated Slip Estimation:

• Low σβ leads to underestimation of λ. WO drives the system with little information about

the wheel slip. In (2.8), λ is defined as an interpolation between the previous value and
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Figure 2.6: An example of simulated trajectory with TVO = 0.2 s and T0 = 20 s. Each colour
represents different σβ (note the legend). Small σβ indicates that the terrain is fairly stable and
thus the model can trust WO more. It means that not enough information is provided to estimate
wheel slip λ which, being modelled as a low-pass filter, gradually becomes zero (mean value of wβ

process noise. It is wrong as the ground truth wheel slip is non-zero, as seen in Fig. 2.5. On the
other hand, bigger σβ allows fusing more VO measurements into wheel slip estimation resulting
in a small error.

the mean of the process noise wβ which, in the case of EKF, is zero. It leads to wheel slip

being ’forgotten’ to a wrong value (note that in the test case seen in Fig. 2.5 the slip is

always non-zero). Increasing the time constant T0 improves the performance a little, as

the slip has more time to reset back to zero. Also, with small σβ, the variance in position

estimation is not correctly tracked, leading to errors in position estimation growing beyond

the confidence margin.

• Increasing σβ reduces RMSE considerably but at the expense of increased position estima-

tion confidence margin. As more information from VO is fused, so is the variance in position

estimation increased to accommodate possible offsets coming from relative measurements.

It can also be seen that this increase in the variance is related to TVO, the longer time

between VO measurements, and thus the bigger measurement covariance RVO, the bigger

is position estimation variance.

• Increasing T0 has only a noticeable impact at low σβ, but the former offers minor improve-

ment as the latter increases. Time constant would be more meaningful when a slip was

rapidly changing, for example, in a significant step-change. However, such conditions are

not real-world representative.
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RMSE

Area

under 3σ
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(a) TVO = 0.2 s (b) TVO = 1.0 s (c) TVO = 2.0 s

Figure 2.7: Summary of metrics for errors in position estimation for the model with Integrated
Slip Estimation. The time constant T0 is labelled on each plot separately (1 s, 20 s, and 100 s).
Note small RMSE and narrow 3σ confidence margins for frequent VO measurements. Also, the
bigger σβ, the smaller RMSE at the cost of a slightly bigger confidence margin. For very small
σβ, errors were exceeding the confidence margin (bottom plots).

2.2.2 Model Properties

There are a few notable properties of the model which are worth mentioning. The first is that the

low-pass filter allows to bound the variance in position estimation when no VO measurements are

available, and thus wheel slip remains unobservable. It is possible that in the environment where

wheel slip is known and does not change, cameras are turned off to minimise computational

resources usage. Example variances in position and wheel slip estimations for a model that uses

a low-pass filter to drive wheel slip estimation (Integrated Slip Estimation) and an equivalent

using only a random walk (i.e., when λ(k+1) = λ(k)+∆twβ(k)) is presented in Fig. 2.8. Note

the scale and exponential nature of the variance in position estimation Fig. 2.8(b) as opposed to

Fig. 2.8(a).

The second exciting property can be spotted in augmented state m. In section 2.1.2 it was

mentioned that we believe that each new VO measurement should provide information about
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(a) Wheel slip modelled as a low-pass filter (b) Wheel slip modelled as a random walk

Figure 2.8: Variances in position estimation (blue) and wheel slip estimation (orange) for the
model with Integrated Slip Estimation where wheel slip is modelled as a low-pass filter (a) and
as a random walk (b) without any VO measurements. Parameters used: σβ = 1, T0 = 1 s. Note
the scale on both Y axes. Variance in wheel slip estimation reaches only 0.05 for a low-pass filter
compared to over 50 for a random walk. Should a white noise be used to model wheel slip, its
variance would be equal to σ2

β
(1 in this case). Linear growth in wheel slip estimation variance

for random walk translates to exponential growth in variance in position estimation.

Figure 2.9: Zoomed in variances in p (blue) and m (orange) estimations (note difference scale).
Notice how both drop when a new VO measurement is available. It shows that each VO contributes
provides new information not only to the current position, p, but also to the position where the
previous VO was performed, m.

the position where the previous VO was performed, i.e. m. Fig. 2.9 shows example variances for

p (blue) and m (orange) (note different scales on Y axes). It is possible to see that with new VO

measurement not only the variance in position estimation is decreased, but so is the variance

in the augmented state m. It shows that each VO measurement also provides new information
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about the position where the previous measurement was performed. Because VO compares delta

motion between current image pair and previous; therefore, if it detects that rover moved, for

example, 20 cm, it may well update the past position having all the WO measurements in between

to support that decision.

2.3 Experimental Results

2.3.1 Field Trials

2.3.1.1 System Setup

For experimental results, CGI’s1 custom-built rover was used, as presented in Fig. 2.10. The rover

was equipped with two hardware synchronised Grasshopper3 cameras for VO measurements,

eight Dynamixel MX-106R servos (four steering and four drive) with AS5045 rotatory position

sensors for WO measurements, and Real-Time Kinematic (RTK) Global Navigation Satellite

System (GNSS) for ground truth (OxTS xNAV 550 with dual antenna and GenPro 325e modem

Figure 2.10: Mobile platform used during the experiments shown driving on the tarmac and
grass. A stereo camera (red on the mast) was used for VO measurements. Each wheel had a servo
mounted in their hub that provided telemetry used for WO.

1CGI is an IT and business consulting services firm that operates across the globe. In 2019 CGI acquired SCISYS
together with their robotics team whose hardware and software were used in this thesis.
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using Leica SmartNet). The target rover speed was 0.2 m/s, and WO measurements were done at

around 10 Hz. VO provided six degrees of freedom measurements that were transformed to rover

frame, whose origin is in the geometrical centre of the rover projected at the ground level. Ground

truth was transformed into the same frame for comparison. Raw VO imagery was captured at 5

Hz, enabling post-processing using different TVO. The rover was manually driven using CGI’s

proprietary software.

Because the VO algorithm that was used in this project (a variation of [33]) did not provide

associated covariance, VO measurement noise was estimated during several test runs in CGI’s car

park. The rover was operated on flat terrain, and imagery for VO was captured. VO was re-run

multiple times during the post-processing step with different update frequencies. All results were

compared against the ground truth to calculate the measurement error. Thus obtained standard

deviation values were used to model measurement noise for various TVO. This ’calibration’

trajectory was not used to analyse the proposed model’s performance.

2.3.1.2 Calibration

Correct sensor calibration is key to any robotics system. Small offsets in sensors mounting

may lead to significant estimation errors. Also, individual sensors calibration is essential, as

a miscalibrated camera may lead to wrong focal length or principle point measurements that

directly impact VO performance. A good example is presented in Fig. 2.11 using data from the

Hengrove data set, which is explained in section 2.3.1.3. The top Fig. 2.11(a) illustrates the

initial results with one trajectory reporting an unexpected jump in the position estimation error

(yellow plot). After further investigation, this trajectory was identified as wide Ackermann’s

platform turn to continue driving back towards the original start point. Such error during the

turn is often associated with poorly aligned or calibrated mounting points of sensors. After a

more detailed inspection, RTK’s GPS antenna mounting was identified as wrongly specified by

order of magnitude: 2 cm instead of 20 cm, which could have been a user error. The middle

Fig. 2.11(b) illustrates position estimation error with updated ground truth, which smoothes

the jump. However, knowing that the used VO algorithm tends to be quite reliable, further

investigation was done towards the camera itself to understand why errors were growing outside

the filter’s 3σ confidence margin (dashed lines). After a detailed examination of the images

themselves, it occurred that the stereo camera was miscalibrated. Using a checkerboard to

recalibrate it and re-running VO lead to better position estimates as presented in the bottom

Fig. 2.11(c).

2.3.1.3 Dataset Overview

Field trials were planned in the area with varying terrain to validate the proposed model better.

Hengrove Park in Bristol was identified as a candidate site (former airfield). It offers a long flat

tarmac surface (runway) with large fine grass areas and meadow-like terrain. The path overview
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(a) Default GPS antenna and default stereo camera calibration

(b) New GPS antenna and default stereo camera calibration

(c) New GPS antenna and new stereo camera calibration

Figure 2.11: Example of calibration impact on error in position estimation. Top graph: initial
results. Central graph: RTK antenna position was recalibrated. Bottom graph: in addition to the
previous, the stereo camera was recalibrated.

30



2.3. EXPERIMENTAL RESULTS

is presented in Fig. 2.12 where green lines indicate full RTK coverage and red sections show lost

RTK coverage where only Differential GPS localisation was available. The path between points A

and B was used for RTK GNSS warm-up and initialisation. The path between points B and C is

purely on the tarmac. The path between points C and D is on the grass, where the first stage

was on a fine-cut pitch. Later the rover climbed a small hill, drove back down, and finally drove

across long grass terrain, which can be seen in Fig. 2.10 on the right. Although the model under

investigation is only 1D, the rover was moving in 2D, estimating the total distance travelled as

per Fig. 2.12.

2.3.2 Tuning and Validation

In this section, the impact of σβ, T0, and TVO on the proposed model’s performance are analysed

and discussed. The aim is to verify the model’s consistency in position estimation. To achieve this,

first, the entire trajectory on the tarmac (between points B and C in Fig. 2.12) is inspected, which

is approximately 500 meters long. Tarmac has very little slip; therefore, model performance can

be assessed in isolation. Next, both trajectories on tarmac and grass (between points B and D in

Fig. 2.12) were divided into 500 seconds-long sections without any overlap. Because the rover

drove at 0.2 m/s, it gave 100 metre-long trajectories.

2.3.2.1 Tuning Process Noise Which Drives Wheel Slip

First to analyse is the impact of σβ on the Integrated Slip Estimation model. The expectation

is that the model’s behaviour on changing noise statistics would follow the pattern presented

in section 2.2.1 when simulating the model. As a starting point, TVO is set to 2 s. Faster VO

Figure 2.12: Recorded ground-truth path in Hengrove Park from SmartNet. Green lines indicate
full RTK coverage, whereas red only dGPS.
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(a) σβ = 0.1 (b) σβ = 0.5 (c) σβ = 1.5

Figure 2.13: Impact of different σβ on the proposed model’s position estimation and confidence
margin. Solid blue line - model, solid red - unfiltered VO, solid green - unfiltered WO, dashed blue
- model’s 3σ confidence margin.

(a) σβ = 0.1 (b) σβ = 0.5 (c) σβ = 1.5

Figure 2.14: Integrated Slip Estimation’s position error across multiple trajectories with different
σβ. Black lines indicate trajectories on tarmac and green on grass. Dashed lines represent 3σ
confidence margin.

measurements would dominate the position estimation over WO with estimated slip. On the

other hand, a long time between VO updates may result in some errors introduced into the model.

At this stage, the aim is to inspect the model’s behaviour; thus, edge cases should be minimised.

T0 is set to 20 s based on results from simulations.

Results presented in Fig. 2.13 with real-world data confirm the findings from simulations.

Plot 2.13(a) shows how the Integrated Slip Estimation model (solid blue) closely follows unfiltered

WO measurements (solid green) for small σβ, whereas on graph 2.13(c) model’s error in position

estimation is almost exact as for unfiltered VO (solid red). Note how EKF’s confidence margin

(dashed blue) changes its shape based on information, including measurement noise, from sensors

it relies on.

Next, the same analysis is performed on multiple 500-second-long trajectories on tarmac

and grass. Similarly to single trajectory analysis, plots for low σβ in Fig. 2.14(a) follow WO

measurements, which overestimated the distance (positive error). On the other hand, plots with

bigger σβ follow VO measurement more closely, which, in this case, may slightly underestimate
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(negative error). Because the filter trusts VO measurements more, any failures in VO estimation

impact the system performance severely. It is seen as two green lots in 2.14(c). This problem is

further discussed in section 2.3.4.

Based on Fig. 2.13(b) and Fig. 2.14(b), it can be seen that the best performance is achieved for

σβ equal to 0.5. From now on, this value will be used when assessing other parameters and for

models’ comparison in section 2.3.3. It is also worth noting that the exact value is not necessarily

required, as tuning process noise statistics is a job for an adaptive filter that is discussed in

chapter 3.

2.3.2.2 Tuning Time Constant

As presented in Fig. 2.4, a model with Integrated Slip Estimation has a tunable time constant T0

which smoothens slip estimation. Also, it allows tuning how fast past slip information should

be "forgotten". Properties of T0 are best illustrated with a spike in the slip estimation (such

as simulated Test Case 2 with a step-change in slip). Because when using real-world data it

is impossible to know the ground truth slip (even with RTK, it requires to be combined with

WO), the same approach is chosen as before. First, the entire path on the tarmac is analysed for

three different T0 values. Next, the same parameters are assessed on both types of terrain using

500-second-long trajectories. Based on the outputs from the previous section, σβ is set to 0.5, and

TVO remains set to 2 s.

From Fig. 2.15 and 2.16 it cannot be conclusively said which T0 value offers better perfor-

mance. It seems there is not much difference between 1 s and 20 s, whereas a model with the time

constant set to 100 s improves visibly only one grass trajectory. However, the improvement is not

substantial. Because of that and knowing how the slip estimation behaved during simulations,

we set T0 to 20 s.

(a) T0 = 1 s (b) T0 = 20 s (c) T0 = 100 s

Figure 2.15: Impact of different T0 on the proposed model’s position estimation and confidence
margin. Solid blue line - model, solid red - unfiltered VO, solid green - unfiltered WO, dashed blue
- model’s 3σ confidence margin.
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(a) T0 = 1 s (b) T0 = 20 s (c) T0 = 100 s

Figure 2.16: Integrated Slip Estimation’s position error across multiple trajectories with different
T0. Black lines indicate trajectories on the tarmac and green on grass. Dashed lines represent 3σ
confidence margin.

2.3.2.3 Effect of VO Frequency on Position Estimation

The period between VO updates is not a configurable parameter, but knowing how the model

behaves for various TVO can improve the overall understanding of the system’s performance.

The expectation is that the EKF will perform better with more frequent VO measurements and

decrease its precision with longer TVO, as VO measurement noise should contribute more to the

final position estimation. In contrary to simulation results where VO’s measurement covariance

was scaled linearly with TVO, here measurement noise was calibrated using dedicated trials in a

car park for each TVO under investigation. Based on previous sections, σβ was set to 0.5 and T0

to 20 s.

Results for a single long trajectory and multiple short are presented in Fig. 2.17 and

Fig. 2.18 respectively. Note how the model follows almost exactly the unfiltered VO estimation in

Fig. 2.17(a). As expected, the longer TVO, the more information from WO is fused. Fig. 2.18(c)

gives a good indication that 3 seconds is the longest time between VO updates for a rover driving

(a) TVO = 0.2 s (b) TVO = 1.0 s (c) TVO = 3.0 s

Figure 2.17: Impact of different TVO on the proposed model’s position estimation and confidence
margin. Solid blue line - model, solid red - unfiltered VO, solid green - unfiltered WO, dashed blue
- model’s 3σ confidence margin.
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(a) TVO = 0.2 s (b) TVO = 1.0 s (c) TVO = 3.0 s

Figure 2.18: Integrated Slip Estimation’s position error across multiple trajectories with different
TVO. Black lines indicate trajectories on the tarmac and green on grass. Dashed lines represent
3σ confidence margin.

at 0.2 m/s. Trajectories on tarmac remain fairly accurate, and within 3σ margin, however, some

trajectories on grass start to fail.

In some plots from Fig. 2.18(c) it is possible to notice a few sharp changes in the errors. These

are believed to be erroneous VO measurements fused into the model. This problem will be further

discussed in section 2.3.4.

2.3.3 Models Comparison

The model with Integrated Slip Estimation has been tested and verified using low-fidelity

simulations and then validated using real-world data from field trials. The important question

is how its performance compares with other similar solutions? In this section, a comparison

between models defined in section 2.1 is provided. Where applicable, all parameters are the same

with σβ and T0 for Integrated Slip Estimation being set to 0.5 and 20 s, respectively. For all

three models, TVO will change to see how they compare at various VO update periods. Finally,

because there is no estimation about the confidence margin in Filter Free Estimation, only errors

in position estimation are provided for clarity.

There are several remarks based on results presented in Fig. 2.19.

• The Filter Free Estimation in Fig. 2.19(a) indeed treats VO updates as truth and closely

follows its updates. Recall from previous plots that WO was always overestimating due to

slip, but VO, at larger TVO was underestimating. It is clearly seen for Filter Free Estimation.

Furthermore, there are erroneous spikes for some grass trajectories when TVO is set to 2 s

and 3 s. These are correctly filtered out when using a basic Separate Slip Estimation in

Fig. 2.19(b).

• Separate Slip Estimation with frequent VO is remarkably bad. If the VO frequency is

slightly slower, the results are similar to Filter Free Estimation. It is understood that the

problem comes from noisy wheel telemetry. In the article, [50] the time base was incorrectly
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TVO = 0.2 s

TVO = 0.4 s

TVO = 1.0 s

TVO = 2.0 s

TVO = 3.0 s

(a) Filter Free Estimation (b) Separate Slip Estimation (c) Integrated Slip Estimation

Figure 2.19: A comparison of errors in position estimation between different fusion models:
Filter Free Estimation on the left, Separate Slip Estimation in the middle, and Integrated Slip
Estimation on the right. Note TVO on the left which is applicable to all plots in the row.
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Figure 2.20: Pseudo-control wheel slip for various TVO. The blue plot is for 0.2 s, and other colours
are for 0.4 s, 0.6 s, 0.8 s, and 1.0 s. Note how they are comparable in contrast to the blue plot.

increased, leading to smoother slip estimation and thus position estimation. It is best

depicted in Fig. 2.20, where slip estimation for frequent VO measurements is very noisy. It

happens because the WO is noisy, and there are not enough WO measurements between

VO to smoothen the noise. The problem does not exist if TVO is increased to 0.4 s. Filter

Free Estimation has the same pseudo-control slip, but the estimated position is always set

to what VO reports (VO measurements are considered truth). Furthermore, Separate Slip

Estimation uses delta VO measurements using augmented state. When pseudo-control slip

is incorrect, errors are propagated, likely, because the filter also adjusts the augmented

state m. It is in line with model properties listed in section 2.2.2 and refers specifically

to Fig. 2.9, where each VO measurement adds new information about the location where

the previous VO measurement was performed (augmented state). In this case, it works to

Separate Slip Estimation disadvantages.

• Integrated Slip Estimation has a slightly bigger error spread at the end of trajectories.

However, as opposed to other solutions for which error decreases as TVO increases, there is

no noticeable gradient pattern in the errors for the model with Integrated Slip Estimation.

Because of that, the model proves to be repeatable regardless of VO frequency. Its perfor-

mance only deteriorates when TVO is 3 s, which is understood, as the VO operates at the

edge of its capabilities. Nevertheless, position estimates do not degrade as fast as for other

models.

• It is interesting to observe that for TVO set to 3 s, errors from trajectories on tarmac grow in

the negative direction for models where slip is treated as pseudo-control input, whereas for

Integrated Slip Estimation, they grow in the positive direction. It is understood that for the
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former two, even though VO measurements have a considerable higher measurement error,

they dominate the fusion. The discrepancy between VO and WO confuses the filter (in the

case of Separate Slip Estimation) because only one process noise drives the system. In the

case of Integrated Slip Estimation, wheel slip is also driven by the process noise, and the

discrepancy between VO and WO may be used to identify this noise better. Also, knowing

higher VO measurement error associated with such large TVO, the filter prefers WO. As a

result, the fused position is closer to the unfiltered WO estimation that overestimates the

travelled distance.

2.3.4 VO Error Handling

Both Filter Free Estimation and Separate Slip Estimation differ from the Integrated Slip Esti-

mation as they treat slip as a pseudo control parameter. There is no notion of how good the slip

estimation is in these approaches. Assuming no terrain can result in slip estimation spiking at

specific time instances, such spikes can indicate an error, most likely, in VO measurement. As

slip is a function of VO, any inaccurate measurement contributes directly to the estimate. With

large TVO, these corrupted values are used longer to "correct" WO until new VO measurement

is available, resulting in increased position estimation error. The low-pass filter used in the

Integrated Slip Estimation model allows filtering these slip estimates providing better VO error

handling in the fusion process.

Spike in slip estimation may happen simultaneously when the filter produces a sharp change

in position estimation, which can indicate a fault in measurement. As an example, a single

trajectory on grass is investigated. Note a rapid change in the error in Fig. 2.19(b) for TVO set

to 2 s in one green plot around the second 150. It is best seen when overlaying error in position

estimation with estimated slip as presented in Fig. 2.21. Fig. 2.22 presents two left camera images

from the stereo pair that generated the VO estimate under question. According to RTK, there

was 0.4 m displacement; however, the VO measurement reported only 0.04 m distance travelled,

which is an order of magnitude lower than expected. It can be acknowledged that images present

a displacement with significant rotation, which, together with complex texture, could mislead the

VO algorithm. In this example, as seen in Fig. 2.21, it was a single event in the trajectory. In the

case of pseudo control uλ estimation presented on graph 2.21(a), once calculated, the wrong slip

is used for another 2 seconds and the system never fully recovers. However, the Integrated Slip

Estimation model can recover from this error because of the exponential nature of the low-pass

filter, and thus it provides better position estimation in between VO measurements.

2.4 Summary

This chapter presents a new approach to estimating wheel slip when fusing VO and WO by

integrating the slip state inside an EKF. This Integrated Slip Estimation model was first tested
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(a) Pseudo-control uλ from Separate Slip Estimation (b) λ from Integrated Slip Estimation

Figure 2.21: Single trajectory with overlaid error in position estimation (blue) and slip estimation
(orange). Note how the system with Integrated Slip Estimation better filters wheel slip due to its
low-pass filter. As a result, the error in position estimation is relatively small compared to the
system with wheel slip treated as a pseudo-control input.

(a) Left camera image (b) Next left camera image

Figure 2.22: Left camera images which produced erroneous VO measurement.

and verified using low-fidelity simulation and later validated during field trials and compared

against other similar approaches. The new method allows the EKF to choose which sensor it

relies on more for a given terrain type. It can become a powerful tool when traversing across

different types of terrain as it enables the estimation of slip variance. Chapter 3 will exploit the

filter’s knowledge of wheel slip estimation’s variance to reduce VO usage in a reactive scheme.
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3
ADAPTIVE EKF AND REACTIVE VO SCHEDULING

In the previous chapter, a new model was proposed for the fusion of VO and WO with

integrated wheel slip estimation. It was shown that it has a single σ2
β

parameter (a variance

in wβ process noise) which allows selecting whether the system trusts VO or WO more. The

parameter was analysed and tuned manually, but it is terrain-dependant. For a solid surface

(like tarmac), one can expect the covariance to be relatively small, and thus WO could be treated

as the primary source of localisation. However, wheel slip may vary with the less uniform surface,

resulting in a need for more frequent VO measurements. It may lead to higher power output

and computational demand that could be otherwise spent performing other critical or scientific

operations. To address this problem, section 3.2 investigates the adaptive nature of EKF so that

the σβ may be adjusted online. Two solutions are explored and compared using simulated data in

section 3.2.4. In section 3.2.5 the algorithms are validated using the Hengrove dataset mentioned

in the previous chapter. Furthermore, reactive VO scheduling is proposed to reduce the number of

VO measurements required to free computational resources whilst maintaining good navigational

accuracy. Various VO trigger strategies are discussed and compared in section 3.3 but only for

the most promising adaptive EKF candidate.

This chapter is based on our IROS paper [51]. Also in this chapter, in case of any discrepancies,

this thesis supersedes the papers.

3.1 Introduction

There are three main areas in mobile robot navigation where knowledge about the terrain may

improve the localisation accuracy, lower energy usage, or decrease computations. The first is

a priori knowledge of the terrain, where either wheel slip can be evaluated from imagery [55]
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or information about the slip was calibrated on a representative terrain [25]. The second area

deals with how wheels interact with the terrain. Novel approaches may see reduced energy

consumption and extended traverse duration [56, 57]. Finally, an intelligent scheduler may be

proposed that trades the number of measurements made by localisation sensors for an acceptable

increase in the variance in position estimation. The first work in that area is presented in [58],

where the decision on when to perform accurate localisation is based on belief state. The work is

then expanded into a more detailed resource trade-off analysis in [59]. Camera scheduling may

also be employed in a situation where the vehicle speed is variable, and image acquisition needs

to be dynamically adjusted to maintain required overlap, as presented in [60].

This work is similar to [58] and [59], but it differs in two aspects. Firstly, it is assumed

that no a priori information is available, i.e. no feature maps are generated beforehand for VO,

which makes it another dead reckoning sensor. Secondly, rather than using a belief Markov

decision process, a process noise variance σ2
β

is analysed, directly impacting the slip estimation,

translating to poorer quality of WO measurements. We also believe to be the first to adapt VO

measurement based on slip estimation.

The high-level system overview is depicted in Fig. 3.1, where relations between EKF, adap-

tation and VO scheduling are provided. EKF’s innovation residual r, as defined in (1.7) as

r = z− h
(
x̃,u

)
(time index skipped for clarity), is used during the adaptive step. The trigger

component utilised the residual together with estimated mean values for noises and their respec-

tive covariance matrices to decide whether to schedule VO measurement. The same results of

Figure 3.1: An overview of the adaptive process for Kalman Filter and Visual Odometry triggering.
Before EKF provides its estimation of the state, x̂ based on measurements, z, the measurement
residual, r is sent to the adapt algorithm. It provides updated covariance matrices and means
values for process and measurement noises. These are not only used during the correction step of
EKF but also used to determine if VO measurement should be performed.
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adaptation are then used in the next EKF iteration. Note that there is an expectation that some

noises, in particular, wβ, have unknown means and covariances. While means could be estimated

as a bias by augmenting the Kalman Filter state [61, 62], covariances require an adaptive filter

approach. To avoid defining biases in EKF, the means are estimated in the adaptation module and

treated as nonlinearity in the model. Note that (1.6) and (1.11a) already take that into account.

If the observation noises were white, as assumed and expected by EKF, adding an adaptive

filter would give only a slight advantage. However, when running the test for whiteness, explained

for example in [48], it becomes evident that neither WO nor VO observation noises are white

and unbiased. Even though an adaptive filter still assumes white noise, it allows to estimate

mean (bias) and modifies covariances so that they may better represent the non-white noise. To

properly handle non-white noises, a colouring filter is required, however, for this work, it was

skipped in favour of a more straightforward approach of just implementing an adaptive filter.

3.2 Adaptive EKF

There is no single solution for adaptive filtering. Out of four categories defined in [63], namely:

Bayesian, maximum likelihood, correlation, and covariance matching, two most popular can-

didates were selected for investigation and implementation. Regardless of the category, the

adaptation process remains the same as listed in Algorithm 1.

Algorithm 1 Adaptive Filtering Process
1: Prediction, as defined in (1.4) and (1.5)
2: R-adaptation: observation noise adaptation
3: Correction, as defined in (1.11)
4: Q-adaptation: process noise adaptation

Note that for R-adaptation the innovation residual (1.7) is used. Interestingly, in [64] the

author proposes to use the post-fit residual, given as r′ = z− h(x̂,u) (note x̂ instead of x̃), for

the R-adaptation performed after the correction step. It has the bonus of ensuring that the R

matrix always remains positive. However, in the case of this work, there was no visible benefit of

employing this technique compared to the traditional approach in adaptive filtering. Thus, to

simplify the process, both adaptive filters follow Algorithm 1.

3.2.1 Adaptive Limited Memory Filter

The first adaptive filter identified for investigation is Adaptive Limited Memory Filter (ALMF),

first introduced in [65]. The algorithm enjoys popularity among researchers even in more recent

times [66, 67] proving its usefulness despite its age. A moving window provides an unbiased

estimator of w, Q, r and R. The first impression is that such an algorithm would not be optimal

for on-board frequent position estimation due to its batch processing (moving window). However,
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the authors of [65] provide an implementation that alleviates this problem, making it suitable for

demanding applications. As they state, the provided implementation is necessary for time-variant

systems.

Based on [65], the unbiased estimators for the model with Integrated Slip Estimation are

defined as

r̄(k)= 1
N

k∑
j=k−N+1

r( j) (3.1a)

R̂(k)= 1
N −1

k∑
j=k−N+1

((
r( j)− r̄(k)

)(
r( j)− r̄(k)

)T − N −1
N

H( j)P̃( j)H( j)T
)

(3.1b)

w̄(k)= 1
N

k∑
j=k−N+1

w( j) (3.1c)

Q̂(k)= 1
N −1

k∑
j=k−N+1

((
w( j)− w̄(k)

)(
w( j)− w̄(k)

)T − N −1
N

G†( j)
(
F( j)P̂( j−1)F( j)T − P̂( j)

)
G†( j)

T
)

(3.1d)

where

w( j)=G†( j)
(
x̂( j)− f

(
x̂( j−1),u( j),0

))
(3.2)

Eqs. (3.1a) and (3.1c) are trivial as they are simple mean estimated over N samples. As for the

(3.1b) ((3.1d) follows similar steps), recall (1.8) given as S(k)= E[r(k)r(k)T ]= H(k)P̃(k)H(k)T +
R(k). R̂ is calculated by taking the expected value of (1.8), such that

E[S(k)]= E
[
H(k)P̃(k)H(k)T +R(k)

]= E
[
H(k)P̃(k)H(k)T]+E

[
R(k)

]
(3.3)

Eq. (3.3) can be evaluated for R̂ = E
[
R(k)

]
to match (3.1b) as follows (assuming indices from one

to N for better readability)

E
[
R(k)

]= E
[
S(k)

]−E
[
H(k)P̃(k)H(k)T]

(3.4a)

R̂(k)= E
[
E

[
r(k)r(k)T]]− 1

N

N∑
j=1

H( j)P̃( j)H( j)T (3.4b)

R̂(k)= E[r(k)r(k)T ]− 1
N

N∑
j=1

H( j)P̃( j)H( j)T (3.4c)

R̂(k)= 1
N −1

N∑
j=1

((
r( j)− r̄(k)

)(
r( j)− r̄(k)

)T
)
− 1

N

N∑
j=1

H( j)P̃( j)H( j)T (3.4d)

R̂(k)= 1
N −1

N∑
j=1

((
r( j)− r̄(k)

)(
r( j)− r̄(k)

)T − N −1
N

H( j)P̃( j)H( j)T
)

(3.4e)

There are two highlights regarding (3.4): Firstly, the expected value of an expected value is

just an expected value, i.e. E
[
E[a]

]= E[a]. Secondly, the expected value E
[
H(k)P̃(k)H(k)T]

was

evaluated as a simple average over N samples. It comes from the definition of expected value as

mean.
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Interestingly, the classic Kalman Filter usually has one process noise per state. When they are

of different sizes (in this work, there are five states and two process noises), the state transition

function f describes how the process noise is mapped into states. As a result, a Jacobian G

defined in (1.6b) may not be a square matrix. Consequently, only a pseudoinverse matrix exists,

G†, as present in (3.1d) and (3.2). In (3.1) a single-window N is defined for both R-adaptation

and Q-adaptation, however, realistically these may be different values. Even more, VO and WO

could have different window sizes. In [65] the assumption was that only one measurement source

is used, which directly impacts process noise estimation. In the case of sensor fusion, this process

is not as straightforward, and correct window sizes need to be established.

3.2.2 Sage-Husa Adaptive Bayes Filter

The algorithm proposed by Sage and Husa in [68] and Husa’s dissertation [69] is another viable

solution for an adaptive filter due to its recursive nature. Even [65] identifies it as the most

promising solution for online applications, despite criticising the assumptions to be "rather

vague". The iterative nature of this algorithm makes it also popular with modern applications

[70], and other filtering techniques such as with UKF [71].

The algorithm exists in two forms: optimal and suboptimal. The former estimates noise

statistics by maximising the a posteriori density function p[x(k),w,Q, r,R|z(k)]. This approach

utilises past information in a complex manner that requires storing matrices used in each filter’s

prediction and correction steps. On the other hand, the suboptimal solution used in this work is

a recursive algorithm that simplifies the optimal solution. Because of that, it is also the more

popular version. An optimal version could be evaluated in the future to compare its accuracy and

complexity with the suboptimal counterpart. Formulas for r̄, R̂, w̄, and Q̂ used in Integrated Slip

Estimation model are given as

r̄(k)= 1
N

(
(N −1)r̄(k−1)+ r(k)

)
(3.5a)

R̂(k)= 1
N

(
(N −1)R̂(k−1)+ (

r(k)− r̄(k)
)(

r(k)− r̄(k)
)T −HP̃(k)HT

)
(3.5b)

w̄(k)= 1
N

(
(N −1)w̄(k−1)+w(k)

)
(3.5c)

Q̂(k)= 1
N

(
(N −1)Q̂(k−1)+G†(k)

((
x̂(k)− x̃(k)

)(
x̂(k)− x̃(k)

)T + P̂(k)−F(k)P̂(k−1)F(k)T
)
G†(k)

T)
(3.5d)

There are a few remarks regarding the (3.5):

• (3.5d) differs from what was presented in [51]. The IROS paper has an incorrect formula

missing the
(
x̂(k)− x̃(k)

)(
x̂(k)− x̃(k)

)T component. The formula was correctly implemented

making the results correct and not invalidating the contribution made.

• Time indices associated with (3.5b) could be debatable. From the original papers, [68, 69]

it seems as if the R-adaptation should be made after the EKF correction. However, in the
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literature, it is common to perform the R-adaptation as mentioned in Algorithm 1. This

approach is also in line with ALMF, which aims to remove the bias from the observation

noise prior to the EKF correction. We assumed this was the correct behaviour and updated

the Sage-Husa algorithm accordingly.

• The original algorithm would see N set to k; however, this approach may not be best suited

for non-stationary and time-invariant systems.

3.2.3 Implementation Considerations

Some valuable considerations when implementing adaptive Kalman Filter have already been

discussed in [65]. Similarly to this approach, all values on the main diagonal of covariance

matrices are reset to absolute values. Negative values on the main diagonal may arise as a result

of subtraction in (3.1b), (3.1d), (3.5b), and (3.5d).

Even though a constant time step ∆t is assumed, this may not always be satisfied in a

real-world application. If the time step between two consecutive predictions is small enough, the

Jacobian G (defined in (1.6b) as ∂ f
∂w |x̂,u, w̄) may become ill-conditioned rendering G† unusable.

Should this happen, the Q-adaptation step is skipped. It was determined by trials and errors

that a satisfactory test to evaluate the usability of G is given as

∥G∥∥G†∥−T0 > 0.01 (3.6)

Where ∥G∥∥G†∥ is 2-norm condition number of matrix G and T0 is time constant of the low-pass

filter driving wheel slip estimation.

It is also important how the correction step is implemented. There could be two separate

corrections for each sensor alone with only VO and WO measurements. If only milliseconds were

between the measurements, they would not impact EKF performance. However, this tiny time

step may significantly impact the adaptation. It is one of the reasons (3.6) is required. A third

correction step is included for combined VO and WO measurements should they happen within

10 ms to better handle such a situation. Even though with this approach the performance is

better, the check (3.6) is still necessary.

3.2.4 Basic Simulations

In this section, both algorithms are compared using the test cases as presented in Fig. 3.2. Because

VO and WO happen at different times, each adaptive algorithm has its own window size and

gain (from now on both are referred to as gains), such that NWO will be used for RWO-adaptation,

NVO for RVO-adaptation, and NQ for Q-adaptation. With simulated data, all measurements are

expected to have zero mean noise, therefore, (3.1a) and (3.5a) are skipped and zero mean residual

is assumed. The key challenge is to identify gains for optimal filter performance. Simulations

were done for each test case, where NVO and NWO were varying from 10 to 100 every 10, whereas
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(a) Test Case 1: Constant Non-Zero Slip (b) Test Case 2: Step-Change in Slip

(c) Test Case 3: Sinusoidal Slip (d) Test Case 4: Bumps

Figure 3.2: Ground-truth slip profile for four test cases used to evaluate ALMF and Sage-Husa
filters. Note that the last test case is the same as in Fig. 2.5 but with a different scale. Test cases
two and three are quite unrealistic, however, they are good at capturing how well filters adapt to
either rapid or continuous change in wheel slip.

NQ was varying from 10 to 1010 every 20. The edge values were selected based on trials and

errors, noting that optimal parameters for simulation for both algorithms were within the range.

From a practical perspective, increasing values by 10 or 20 reduced the number of simulations

without any major impact on RMSE. Other EKF parameters were set as T0 = 20 s, and σβ =

1. Each simulation was repeated for different TVO : 0.2,1,2,3 s. After simulations, RMSE was

calculated for each run and then averaged across all test cases for a given TVO. Because ALMF

gave worse RMSE compared to the Sage-Husa filter, only the latter is discussed with its results

presented in Fig. 3.3, where the colours of points indicate RMSE for a given set of gains. Sets for

which RMSE was the smallest for both algorithms are listed in Table 3.1. Note how Sage-Husa

(Sim) provides a much smaller RMSE compared to ALMF (Sim). It is especially visible for TVO =

3 s (bottom row). It is of particular interest given that the aim is to reduce the frequency of VO
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(a) TVO = 0.2 s (b) TVO = 1.0 s

(c) TVO = 2.0 s (d) TVO = 3.0 s

Figure 3.3: RMSE for the Sage-Husa filter across all test cases for different TVO using simulated
data. Deeper blue colour indicates a smaller RMSE. Note how, in general, large RMSE was
associated with small NQ and small NVO.

while maintaining good localisation performance.

The initial assumption was that the same parameters obtained during simulations could be

used as-is when validating the Sage-Husa filter using the Hengrove dataset. However, when the

algorithm was subjected to real-world data, its performance was far worse than non-adaptive

Table 3.1: Optimal gains for adaptive filters across all test cases

ALMF (Sim) Sage-Husa (Sim) Sage-Husa (Hengrove)
TVO NVO NWO NQ RMSE NVO NWO NQ RMSE NVO NWO NQ RMSE

0.2 80 40 30 0.008 100 10 810 0.001 30 100 730 0.139
1.0 50 80 10 0.053 100 10 510 0.018 100 100 370 0.225
2.0 70 10 10 0.086 100 10 490 0.027 100 100 570 0.277
3.0 30 50 30 1.298 100 40 370 0.020 30 100 1010 0.378
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EKF. As such, the same process for obtaining gains was repeated using the Hengrove dataset

with the new sets of parameters listed in Table 3.1 and labelled as "Sage-Husa (Hengrove)".

The results of the validation are described in the next section 3.2.5, but what can be noted

at this stage is that the parameters vary much. For example, there could be some correlation

between TVO and NQ when inspecting "Sage-Husa (Sim)", but the real-world data contradicts it.

Furthermore, Fig. 3.3 indicates lower RMSE for higher NVO, which is also not the case when

using the Hengrove dataset. It shows that simple simulations that do not capture realistic noises

could be misleading. As such, no conclusions are drawn regarding individual gains. The only valid

observation that can be made regarding the Sage-Husa filter is whether the search for optimal

parameters should have been extended. In the case of simulated data, NVO reached its maximum

(a) Test Case 1: Constant Non-Zero Slip (b) Test Case 2: Step-Change in Slip

(c) Test Case 3: Sinusoidal Slip (d) Test Case 4: Bumps

Figure 3.4: Errors in position estimation for the Sage-Husa filter with TVO = 3 s and gains as
defined in Table 3.1. Blue lines represent EKF, red Sage-Husa filter, and yellow ALMF. Dashed
lines are 3σ confidence margins with colours associated with models. Other parameters used, σβ
= 1, T0 = 20 s.
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(100), whereas, for the Hengrove dataset, it was NWO (100) in all cases, and NQ (1010) for TVO

= 3 s. However, in the case of simulated data, the RMSE was already very small, thus, it was

decided not to extend the search. In regards to the real-world data, even though existing sets

could be suboptimal, it allows visualising better the impact of reactive VO scheduling that is

explained in section 3.3 and which successfully rectifies all erroneous trajectories.

What is vital at the simulation stage is that ALMF was outperformed by the Sage-Husa

filter, which is from now on referred to as the Adaptive EKF (AEKF). To illustrate it better,

example errors in position estimation for both algorithms using simulated data with TVO = 3 s

are presented in Fig. 3.4.

3.2.5 Validation using Real-World Data

After simulations, the chosen AEKF is validated using data from Hengrove trials. As indicated

earlier, the N parameters obtained during simulations were poor when the algorithm was exposed

to realistic noises and measurements. As such, a new set of N parameters was obtained. Based

on the findings from the section 2.3.2, during the second search campaign, T0 was set to 20 s

and the initial σβ was set to 0.5. The resulting parameters were listed in Table 3.1 and using

these exact same parameters for each TVO, plots in Fig. 3.5(a), 3.5(b), 3.5(c), and 3.5(d) were

generated. Good performance, with some minor exceptions, is well-understood given that the

adaptive parameters were found using the same data. Note how all trajectories in Fig. 3.5(d) are

improved compared to EKF in Fig. 2.18.

Note that adaptive gains were found with combined VO-WO measurements disabled, i.e. only

individual correction steps were allowed even when the time between them was a few milliseconds

(compare with section 3.2.3). With the combined measurements allowed, the resulting NQ was

very small. As a consequence, the 3σ confidence margin was too strict making most errors fall

outside the margin (even though RMSE was small). It is an effect of analysing only RMSE without

taking the filter’s covariance into account. A more comprehensive parameter search could be done

in the future, for example, by excluding parameters for which the errors exceed 3σ confidence

margin.

In the next section, a reactive VO scheduling algorithm is proposed to improve the quality

of AEKF while performing VO as rarely as possible. Because of that, the system with VO

measurements every 3 s is inspected in more detail beforehand. Note that in Fig. 3.5(d), even

though most of the errors are within the 3σ confidence margin, there is a noticeable trend that

could lead to errors growing outside the margin if the system was operated longer. A possible

solution to this problem is to estimate the mean residual (as defined in (3.5a)), which was

not taken into consideration during simulations. Examples of errors in position estimation are

presented in Fig. 3.5(e) and 3.5(f). There are two immediate observations: firstly, this approach

does not work for small TVO. It is understood that there is an observability issue, where it

is impossible to determine whether the discrepancy in observation comes from the wheel slip
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(a) TVO = 0.2 s (b) TVO = 1.0 s

(c) TVO = 2.0 s (d) TVO = 3.0 s

(e) TVO = 0.2 s with non-zero r̄ (f) TVO = 3.0 s with non-zero r̄

Figure 3.5: Error in position estimation for Adaptive EKF using the Hengrove dataset. Black plots
are for trajectories on the tarmac and green for those on grass. Notice improved 3σ confidence
margin tracking (dashed lines) compared to EKF. The last two plots are with non-zero r̄ which
improves performance for longer TVO but vastly deteriorates it for smaller.
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or if there is a measurement bias that should be captured by r̄VO. However, these problems

are not visible for longer TVO. It is understood that with the larger TVO, the initial RVO is

big enough to accommodate sources of discrepancies in the measurements better. Furthermore,

most of the trajectories seem to have a rather stable trend, especially on the tarmac (black). On

the other hand, there are some drawbacks to this approach: there are a few grass trajectories

(green) in Fig. 3.5(f) which have errors of a bigger magnitude than before. It is, however, a good

starting point for a reactive VO scheduling algorithm to rectify these by requesting additional

VO measurements while maintaining that relatively flat trend of errors. In addition, it should

be investigated in the future if the reason for which system with TVO = 3 s works better when

the mean residual is estimated comes from a VO measurement bias that is associated with

reduced image overlap. In section 2.1.3, it was highlighted that increased TVO in this work is

only associated with increased measurement noise (standard deviation) with example values

presented in (2.12). It is thus likely, that there could be additional bias that is being picked by

the adaptive filter.

3.3 Reactive VO Scheduling

So far, VO was always performed at a fixed frequency. From the results, it can be noted that the

position estimation is quite good on tarmac even when performing VO every 3 s. However, for

some trajectories on the grass, more frequent VO measurements would be required to provide a

similar level of accuracy. Therefore, the goal is to allow the algorithm to choose when the next

VO measurement should happen. The aim is to optimise the number of image acquisition and

VO measurements which may free up some computational resources or even lead to lower power

consumption. A system with VO measurements every 3 s is used as a baseline. For the purpose of

this task, adaptive parameters are fixed to NVO = 30, NWO = 100, and NQ = 1010 according to

Table 3.1.

3.3.1 Trigger Strategies

As indicated in Fig. 3.1, the Trigger component is used to determine if VO measurement is

required. It utilises information about the process and measurement noises, however, other

information can be fed into it to build more comprehensive trigger strategies. In this work, four

strategies are evaluated in the following order:

1. A known VO error - the VO library used in this project provides an error code for each VO

estimate. So far, all VO measurements were fused as-is. However, knowing that there was

an error, it is possible to skip the measurement and schedule a new one immediately after.

When a known error occurs, the predicted measurement is stored in a temporary variable
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and added to the next measurement. As such, (2.11a) can be rewritten as

zVO(k)= p̃(k)− m̃(k)+nVO(k)+ zVOacc (k) (3.7a)

zVOacc (k)=
zVOacc (k−1)+ p̃(k−1)− m̃(k−1) if VO failed at k−1

0 otherwise
(3.7b)

Note that in this approach, the covariance matrix RVO is not increased. It could be argued

whether a successful VO measurement should inherit errors of past failures, however, it is

left for an adaptive algorithm to adjust the matrix.

2. An unknown VO error - as discussed in section 2.3.4, there are moments where VO provides

a wrong estimate but the algorithm does not report any error. EKF can already handle it

to some extent because such errors are treated as spikes in wheel slip. The low-pass filter

allows to ’forget’ the erroneous value back to σ̄β. Nevertheless, it is advantageous to perform

another VO measurement after such an event to reconfirm the wheel slip estimate. To

determine if the VO measurement was statistically valid, a squared Mahalanobis distance

[72] is calculated as

d2(k)= (
r(k)− r̄(k)

)T S(k)−1(
r(k)− r̄(k)

)
(3.8)

Because the model is limited to one dimension, d(k)2 follows a Chi-square distribution with

one degree of freedom. In the appropriate tables, one can find that for such measurement

to be valid with 95% probability (the equivalent of 2σ), the squared distance needs to be

not greater than 3.841. Even though a measurement may not be statistically valid, it is

still fused, and measurement noise statistics are updated accordingly. We noticed that a

more relaxed rule was required once identified problems reported in the introduction to

this chapter were fixed. Furthermore, 95% probability was also selected by NASA in their

work on slip prediction using squared Mahalanobis distance [22, 53], which seems to be a

proven trade-off.

3. The maximum time from the last VO measurement TVOMAX - VO algorithm compares the

current stereo pair with the previous one. If the distance between the two is too large, the

estimate may be erroneous. Because the robot is assumed to move at a constant speed, this

translates to a time between VO measurements. For this work, we assume a constant value

of TVOMAX = 3 s.

4. Increase in σ2
β

by 1.6% - wβ process noise is responsible for driving the wheel slip estimation

λ. An increase in the noise covariance may result from higher uncertainty of the slip, which

should prompt a VO measurement to provide a fresh estimate of λ. With all other trigger

strategies implemented and enabled, a simulation campaign was performed (similar to

one presented in section 3.2.4) for a number of
σ2
β
(k)

σ2
β
(k−1) thresholds. The smallest RMSE was

achieved for 1.016, hence the 1.6% value in the strategy.
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3.3.2 Adapting NVO

One of the trigger strategies evaluates the quality of the VO update to determine if there was

an error or not. Even if the measurement is not statistically valid with 95% probability, the

measurement is fused to allow covariance matrix RVO to expand. The estimated mean value

r̄VO is more problematic because updating it based on an erroneous measurement would only

propagate that error further. To lower the negative impact it might have, should an unknown VO

error be detected, NVO is set to 100 (30 by default). By increasing the gain, the negative impact

of the residual on the adaptation is reduced, while the information is still fused as opposed to

skipping RVO-adaptation altogether.

3.3.3 Results

In this section, results of AEKF with reactive VO scheduling algorithm are provided. It is shown

how strategies compare to each other (e.g. a strategy three without the reduction of NVO) and how

the system compares with EKF as defined in chapter 2. For each model, RMSE and the number of

VO measurements are compared. Results are presented in Fig. 3.6. In addition, Fig. 3.7 presents

a tradeoff between RMSE and the number of VO measurements for individual trajectories and as

a mean for each model.

The most accurate model, presented in Fig. 3.6(a), is EKF with TVO = 0.6 s but at the expense

of 834 VO measurements. VO update rate was selected to mimic ExoMars and Sample Fetch

Rover (SFR) behaviour. In the case of the ExoMars rover, the nominal speed is 1.1 cm/s, and VO is

going to perform every 10 s, which translates to an 11 cm distance between stereo pairs. For SFR,

the nominal speed is expected to be reduced to 6.67 cm/s, while VO is expected to perform every

2 s giving 13.34 cm separation between image frames. When capturing the Hengrove dataset,

the robot was driven at 20 cm/s which with TVO = 0.6 s gives a 12 cm distance between images -

similar to ExoMars and SFR.

EKF and AEKF with TVO = 3.0 s presented in Fig. 3.6(b) and Fig. 3.6(c) are only shown for

convenience to better illustrate the impact of extending the time between VO measurements

and adding adaptation on errors in position estimation. Plots start to improve when reactive

VO scheduling is added. Beginning with Fig. 3.6(d), adding only strategies 1-3 without adapting

NVO (section 3.3.2) delays error accumulation for the most prominent grass trajectories (green).

The positive impact of adapting NVO when a suspected error is detected is seen when analysing

Fig. 3.6(e). All error plots are already with a 3σ confidence margin. Surprisingly, adding the

fourth strategy does not improve RMSE. Visually, the error plots seen in Fig. 3.6(f) seem similar

to the previous model. However, as seen in tradeoff plots in Fig. 3.7, the average RMSE is slightly

increased, as is the number of VO measurements (Fig. 3.7(b)). It could be concluded that more

VO measurements may negatively impact the performance of the model, however, given that

this analysis is done only in one dimension, further investigation should be done when assessing

higher dimensions with additional sensors, such as IMU.
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(a) EKF with TVO = 0.6 s (b) EKF with TVO = 3.0 s

(c) AEKF with TVO = 3.0 s
(d) AEKF with reactive VO scheduling, strategies 1-3
without adapting NVO

(e) AEKF with reactive VO scheduling, strategies 1-3 (f) AEKF with reactive VO scheduling, all strategies

Figure 3.6: Error in position estimation for various models and reactive VO scheduling strategies.
Black plots are for trajectories on the tarmac and green for those on grass. Dashed lines indicate
3σ confidence margins. Both adaptive solutions at the bottom provide a smaller spread of errors
compared to Fig. 3.6(b) and bound confidence margin better than Fig. 3.6(a).
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(a) Individual trajectories (b) Mean

Figure 3.7: A tradeoff between RMSE and the number of VO measurements. An ideal solution
would be confined to the bottom-left corner.

It is worth noting that AEKF with reactive VO scheduling provides a much better track of

the position estimation variance. It still grows, albeit at a lower rate than for EKF. It can be seen

as if it reaches a semi-steady state. Also, the level at which it settled is similar to EKF with TVO

= 0.6 s. Combining this with the fact that, on average RMSE values are comparable and the final

system requires four times fewer VO measurements, the reactive VO scheduling system could

contribute vastly to a reduction of computational resources.

3.3.4 Validation Using Two Long Trajectories from the Hengrove Dataset

Multiple short trajectories (100 metres) were evaluated in the previous section. In addition, the

same trajectories were used in simulations to identify optimal gain parameters for the adaptive

filter and the ideal threshold for the fourth reactive VO scheduling strategy. When using data

for tuning, it is unsurprising to see systems well-behaving when subjected to the same data.

Therefore, two 500-m long trajectories are used to validate the system: one on the tarmac and one

on the grass. Note that the tarmac trajectory was also used in section 2.3.2 when tuning EKF’s

parameters, however, the time constant T0 had little impact, and the adaptive filter now controls

σβ. Fig. 3.8 shows errors in position estimation and Fig. 3.9 presents a tradeoff between RMSE

and the number of VO measurements for each model and each trajectory. Rather than showing

EKF with TVO = 3 s, a 2 s period was selected as it offers a surprisingly low RMSE that is worth

highlighting.

First, regarding the reactive VO scheduling, the fourth strategy improves the performance

considerably. Even though the errors in Fig. 3.8(d) sometimes exceed the 3σ confidence margin,

their trend remains fairly flat compared to only three reactive strategies seen in Fig. 3.8(c). It is

reflected in Fig. 3.9, where the model with all reactive strategies (black diamonds) achieves lower

56



3.3. REACTIVE VO SCHEDULING

(a) EKF with TVO = 0.6 s (b) EKF with TVO = 2.0 s

(c) AEKF with reactive VO scheduling, strategies 1-3 (d) AEKF with reactive VO scheduling, all strategies

Figure 3.8: Errors in position estimation for two long trajectories validating reactive VO schedul-
ing algorithm using the Hengrove dataset. Black plots are for the trajectory on the tarmac and
green is for the one on the grass. Dashed lines indicate 3σ confidence margins. Note how the
AEKF with all trigger strategies (the last plot) provides good position estimation with errors
maintained within 3σ confidence margin for most of the time. The performance EKF with TVO =
2.0 s is surprisingly good, but do note a sharp change in the green trajectory. It is believed to be
an error in VO which, in this case, helped the position estimation.
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Figure 3.9: A tradeoff between RMSE and the number of VO measurements based on two long
trajectories from the Hengrove dataset. An ideal solution would be confined to the bottom-left
corner. Note how the AEKF with all triggering strategies implemented (black diamond) trades
higher RMSE for a lower number of VO measurements compared to EKF with TVO = 2 s (green
x’s). It would be up to the mission requirements to decide which model is more favourable, but do
note the caveats mentioned regarding the EKF in Fig 3.8(b).

Table 3.2: Total execution time for each model

model total execution time [s]

EKF, TVO = 0.6 s 140.8812
EKF, TVO = 2.0 s 115.0567

AEKF + 1-3 reactive 131.0465
AEKF + all reactive 125.2199

RMSE at the cost of a few more VO measurements compared to only three strategies (yellow

triangles). When AEKF with reactive VO scheduling is compared to EKF, the latter performs

very well and has smaller RMSE. In addition, EKF with a lower VO framerate provides even

better performance (green crosses in Fig. 3.9). However, note how the grass trajectory for this

model (green plot in Fig. 3.8(b)) has a sharp change around 2000th second. The error plot had

a growing trend but was suddenly stopped. It does not seem to be an effect of Gaussian noises

but rather a possible error in VO measurement, which happened to improve performance in this

case. Furthermore, the 3σ confidence margin for EKF continues to grow in both Fig. 3.8(a) and

Fig. 3.8(b), whereas for AEKF with reactive VO scheduling it remains fairly stable.
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Table 3.2 lists the total time of execution for all models. This time excludes any VO processing.

It captures only the time to perform sensor fusion. Note that AEKF with only reactive strategies

1-3 takes more than the other model, even when performing fewer corrections with VO measure-

ments. It is assumed that the time comes from the inversion of matrices during the Q-adaptation.

As the errors grow for this model, there might be situations where numerical computations take

longer than usual to perform. What is interesting, however, is that the AEKF with reactive VO

scheduling may not offer much gain compared to EKF with TVO = 2 s. EKF requires, on average,

225 more VO measurements. The algorithm takes about 0.1 s on a modern machine to execute

(all models were also executed on a modern machine), which, if VO processing were taken into

account, would extend the total time by an additional 22.5 s. It would take only 12 s more to

execute than AEKF with all reactive VO scheduling strategies. From the system perspective,

it might be debatable if this additional processing time outweighs the complexity that comes

with the proposed model. The main advantage of the proposed solution is the ability to track the

variance, albeit at a slightly worse quality of position estimation. On the positive side, there is a

huge amount of time that can be saved when compared to EKF with TVO = 0.6 s, the equivalent

of what can be expected on ExoMars and SFR.

Finally, it is worth discussing why this additional trigger strategy made such a difference

for two long trajectories, whereas there were no noticeable differences in the position estimation

when analysing multiple short trajectories. To illustrate this behaviour better, σ2
β

for both models

and both trajectories is presented in Fig. 3.10. For both trajectories, both models adapt σ2
β

similarly, which is reflected in a comparable λ estimate, to around 500th second. This timestamp

marks the end of all short trajectories, which can indicate why their results were nearly identical

in the previous section. After that, covariances and wheel slip estimations diverge. In the case

of AEKF with only reactive strategies 1-3 (blue plots), it seems that on the tarmac its σ2
β

is

stabilised on a fairly constant value (Fig. 3.10(a)), which starts to grow only towards the end

of the trajectory. This is reflected in a constant λ estimate in Fig. 3.10(c). When the process

noise reaches a small level, the filter makes little use of measurements and trusts mainly the

mathematical model. Because of that, no new information about the environment can be fused

into the state leading to bigger errors in the position estimation. AEKF, with all reactive VO

scheduling strategies implemented (orange plots), triggers additional measurements should σ2
β

increase by 1.6%. It seems enough to notify the filter that there are some discrepancies between

the mathematical model and the environment. As a result, λ is tracked more accurately. The

grass trajectory presents the other edge case for process noise covariance. Here, because of the

terrain variability, AEKF with only reactive strategies 1-3 implemented adapts the covariance to

large values (Fig. 3.10(b)) making λ noisier and less precise (Fig. 3.10(d)). The additional reactive

strategy allows scheduling more VO measurements when the covariance grows, thus maintaining

it on a level that is not too high (noisy slip estimates) and yet not too low (disregarding information

from the measurements).
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3.3.5 Validation Using One Long Trajectory from the Sand Bay Beach Dataset

Reactive VO scheduling algorithm work on two 500 m long trajectories from the Hengrove dataset.

There might be still some doubts regarding the performance given that the complete analysis and

tuning was done using the same dataset. This section analyses one ∼500 m long trajectory from

the Sand Bay Beach dataset. The additional field trials were scheduled for the purpose of chapter

4, and therefore the dataset is described in section 4.4.1. The trajectory in question is interesting

for two reasons: firstly, the terrain consists of concrete pavements, loose sand, and grass; secondly,

(a) σ2
β

on Tarmac (b) σ2
β

on Grass

(c) λ on Tarmac (d) λ on Grass

Figure 3.10: σ2
β

and λ for long tarmac and grass trajectories for AEKF with two reactive VO
scheduling strategies approach (blue - only strategies 1-3, orange - all strategies). Note how the
first approach on tarmac maintains very low σ2

β
which consequently leads to the filter preferring

WO over VO (compare with chapter 2). This is reflected by the black trajectory in Fig. 3.8(c) having
a growing error plot associated with WO. The trajectory on the grass, however, has much larger
peaks of σ2

β
for the first approach which lacks the strategy to trigger VO when the covariance

grows too much. Because of it, the second approach can maintain lower covariance and thus a
less noisy λ estimate.
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(a) EKF with TVO = 0.2 s (b) EKF with TVO = 2.0 s

(c) AEKF with reactive VO scheduling, strategies 1-3 (d) AEKF with reactive VO scheduling, all strategies

Figure 3.11: Errors in position estimation for one long trajectory validating reactive VO scheduling
algorithm using the Sand Bay Beach dataset. Dashed lines indicate 3σ confidence margin. Note
how even the EKF with frequent VO measurements struggle to correctly track the error (error
plot exceeds 3σ confidence margin). AEKF with only strategies 1-3 implemented tracks error
correctly, however, the error plot has a gradient that may eventually exceed the confidence margin.
AEKF with all trigger strategies implemented offers a stable error plot around zero at the cost of
a bigger confidence margin. Note though that from the perspective of driving approx. 500 m, this
confidence margin is still small.

the rover was driving 0.4 m/s, which is double the speed used in the whole Hengrove dataset.

No parameters are adjusted, they are all unchanged. The only variation is setting TVOMAX to

2 s. It was shown that VO performance greatly deteriorates when estimating every 3 s with

a rover speed of 0.2 m/s. This translates to a 0.6 m distance between two consecutive frames.

For a representative comparison, VO should trigger twice as fast when driving at double speed.

However, to make it even more challenging, TVOMAX is set to 2 s, giving a 0.8 m distance between

the measurements. Errors in position estimation are presented in Fig. 3.11.
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Figure 3.12: A tradeoff between RMSE and the number of VO measurements based on one long
trajectory from the Sand Bay Beach dataset (double the nominal rover speed). An ideal solution
would be confined to the bottom-left corner.

What becomes apparent from Fig. 3.11 is that when driving at double the speed, EKF can

only provide relative good position estimation when VO is providing measurements at a fast rate

(Fig. 3.11(a)). The error of -5 m is only 1% of the total distance travelled, which is in line with

expectations regarding the VO performance [33]. The variance, however, is not well-tracked, and

the filter is overconfident with its estimates. Reducing the number of VO measurements for EKF

to one every two seconds (Fig. 3.11(b)) has an expected behaviour in worsening the quality of

position estimation to an unusable level. Introducing AEKF with reactive VO scheduling but

only with strategies 1-3 implemented (Fig. 3.11(c)) has a noticeable better accuracy. Nevertheless,

the error continues to grow. Only when all four strategies are implemented (Fig. 3.11(d)) does

the filter offer accurate tracking of the position without any trend in error. It has a relatively

large 3σ confidence margin, however, 15 m indicates only 3% of the total distance travelled,

which, depending on mission requirements, may not be that bad. Especially when compared to

faster travel time than nominal and far fewer VO measurements required than typically. It opens

an exciting option for mission planning where a rover first covers a considerable distance fast

and starts to perform more accurate and more detailed localisation to reduce the localisation

covariance at the end of the trajectory.

Furthermore, as presented in Fig. 3.12, the final solution’s RMSE (black diamond) is lower

by half compared to EKF with TVO = 0.2 s (blue circle) while performing 7.75 times fewer VO

measurements. The final solution offers lower RMSE than AEKF with only 1-3 trigger strategies

(yellow triangle). It is interesting to inspect based on which trigger strategies these solutions

scheduled VO measurements. To illustrate that better, Fig. 3.13 provides stacked bar charts
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Figure 3.13: Scheduled VO measurements for AEKF with 1-3 trigger strategies and all strategies.
Strategy 3, the maximum time from the last VO measurement TVOMAX , was removed for better
clarity. Note how the last strategy, implemented only for the second approach, was triggered
only three times (red stripes). At the same time, note how most of the strategies were the same
from about 50th VO measurement onward (up). Now investigate Fig. 3.11(c) and Fig. 3.11(d).
Their shapes are similar, yet three additional measurements in the second approach offered a big
improvement in position estimation.

with strategies that were selected to schedule VO measurement. Strategy 3, the maximum time

between VO measurements, was removed from the plot to make it clearer. Notice that both models

used the same number of VO measurements. The model that implemented all four strategies had

only four VO measurements related to the σ2
β

strategy (red stripes). After about 40 scheduled

VO measurements, both models used the same strategies. This is reflected in a similar shape

of plot in Fig. 3.11(c) and Fig. 3.11(d). It shows that only a few well-placed measurements can

drastically improve position estimation.

3.4 Summary

This chapter presents a new approach for dealing with wheel slip which reduces the number

of VO measurements while maintaining navigational accuracy. It may save resources when

driving on stable ground (no need for frequent measurements), whereas additional VO can

be scheduled on more dynamic terrain to maintain precise position estimation. An adaptive

filter plays a crucial role in the proposed solution as it allows for adjusting noise statistics to

better represent the environment’s variability. In addition, the adaptive element enables better

tracking of position estimation variance. Interestingly, when supplied with rare VO updates, the
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adaptive filter offered a better quality of position estimation when assuming non zero biases

in observation noises. On the other hand, they negatively impacted the system when VO was

performed frequently. It may raise a question regarding the observability of the system, hence, it

is advised to repeat trials with additional sensors (for example, another stereo pair pointing in a

different direction).

The main noises that substantially impact system performance are the VO measurement

noise and the process noise driving wheel slip estimation. Consequently, they are vital in defining

trigger strategies for an algorithm to decide when to schedule a new VO measurement. It has

been shown that even though triggering new VO measurements based on the increase in process

noise statistics does not happen often, it may significantly impact the quality of the position

estimation. The proposed solution was tuned using several short trajectories and validated on

three long trajectories from two different datasets. What is more, the robot was travelling at

double the speed in one trajectory. The solution offered a comparable accuracy to EKF, where the

latter used 4-7 times more VO measurements

Finally, only a system with one degree of freedom was here analysed. Findings may indi-

cate what to expect when analysing higher dimensions, however, the same performance is not

guaranteed. This problem is addressed, to some extent, in chapter 5.
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4
WHEEL SLIP MEASUREMENTS AND PREDICTION

Previous chapters established a one-dimensional model for improved localisation with

integrated wheel slip estimation. With the addition of adaptive filtering and reactive

VO scheduling, the system can optimise the number of required VO measurements to

maintain good localisation performance. This chapter adds another option of potentially reducing

the number of VO measurements further by discussing and analysing various ways how predicted

wheel slip can improve localisation accuracy. With the perfect knowledge of wheel slip, WO can

be directly used without the need for any VO measurements.

This chapter, based on [52], investigates how the wheel slip predictions derived from, for

example, forward-faced vision or drive current can be fused with WO and VO. The solution is

based on the model with Integrated Slip Estimation defined in section 2.1.3, using either point

slip measurements, a slip prediction model, or a slip profile within the state. The investigation

also compares different VO measurement periods, studying how VO effort trades with accuracy

for each slip prediction scheme. The solutions provide improved localisation accuracy and hint at

the intriguing possibility of slip-based SLAM for future investigation.

4.1 Introduction

As opposed to estimating slip while the robot drives, some research analyses the terrain in front

of the platform using images [29, 73–76]. Such information feeds nicely into a path-planning

function which may plot a path that avoids high-slip areas that may lead to increased power

usage or potentially damage the rover wheels. The latter can be solved by applying algorithms

that adapt wheels’ velocity [56] to reduce the risk.

This chapter explores methods of fusing slip predictions and measurements into the Extended

Kalman Filter (EKF) to improve the rover’s localisation performance. The work is similar to [55],
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where authors combine vision-based information with wheel slip to improve the slip prediction,

but not the robot’s localisation. The work is also related to [77], where a system combines

vision-based information with the torque profile of a hybrid legged-wheeled robot to improve the

localisation, but without the integrated filter. WO is correlated with vision information in that

work because both are used to train the Support Vector Machine (SVM) classifier, whereas, in

this project, any correlation is avoided. Furthermore, in the case of this project, only wheel slip is

analysed, which is a more general problem for wheeled or tracked platforms, whereas [77] seems

to apply only to one class of robots.

This work extends what was presented in chapter 2. Similarly to previous chapters, all

mathematical models, experimentation, and evaluation is limited to one dimension for the initial

exploration of the concept.

4.2 Models Definition

4.2.1 Model 0 - The Base Model

This is the model with Integrated Slip Estimation defined in the section 2.1.3. In this model, a

new estimate of wheel slip is an interpolation between its previous estimate and the process noise,

as defined in (2.8). It describes how the terrain changes in the time domain. For the purpose of

this chapter, Model 0 without the low-pass filter that drives wheel slip is referred to as the Core

Model.

4.2.2 Model 1 - Direct Slip Measurement

The filter can be readily modified to include a point measurement zλ(t) of the slip experienced

at time t, deduced either from wheel current as in [78], from a downward-facing camera or

by interpolating over a profile estimated using a forward-facing camera. The block diagram of

this model is presented in Fig. 4.1. All equations for this model (prediction, correction) are the

same as for Model 0 with additional observation model zλ. Using wheel current for point slip

measurements would need to be done with care as one would need first, most likely, to perform a

calibration to understand how much power the wheel drain when driving on various terrain types

and at various tilt angles. Furthermore, a control system may have an impact on the wheel speed

and its power consumption. For example, when there is a slippage and a wheel suddenly starts

driving much faster (no load), an internal PID controller can reduce its speed, thus reducing

power consumption and invalidating current-based wheel slip estimation.

4.2.3 Model 2 - Known Slip Profile

A more complicated way of incorporating a predicted slip profile is to incorporate it into the

prediction model within the filter. For example, an expert system [12] can analyse HiRISE
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Figure 4.1: The block diagram of Model 1, which provides a direct slip measurement. The Core
Model is the model with Integrated Slip Estimation from chapter 2 except for the low-pass filter
being outside of it. This approach allows for a better illustration of how different models proposed
in this chapter impact λ(t).

Figure 4.2: The block diagram of Model 2 with known slip profile. In this model, wheel slip, λ(t),
rather than being directly measured, is estimated by a look-up operation based on the input
slip profile, Λ, and estimated robot position, p(t). To capture errors in the pseudo slip profile, a
process noise wγ(t) is introduced.

images of Mars and translate them into a low-fidelity slip assessment. Then, as the robot drives,

it compares its position against the known profile and uses the correct wheel slip prediction.

Alternatively, the profile could be analysed using a forward-facing camera. What is distinguished

in this model is that the pseudo slip profile exists outside the Kalman Filter. As a result, there is

no correlation between the position estimation and the profile. However, because the filter’s state

does not include the profile, all filter computations are faster. The block diagram of this model

is presented in Fig. 4.2. As the wheel slip is now estimated based on the profile, to model the

uncertainty of the profile, a process noise wγ is introduced which replaces the wβ term related to

the more straightforward low-pass slip estimate used in Model 0.
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The look-up function is a simple interpolation between two nearest values. Together with the

process noise, a new equation for slip prediction, in its discrete form, is given by

λ̃(k+1)= p̃(k+1)− pi

pi+1 − pi
λi+1 + pi+1 − p̃(k+1)

pi+1 − pi
λi +wγ(k), p̃(k+1) ∈< pi, pi+1) (4.1)

Notice the similarities between (4.1) and λ in (2.8). In both cases, the predicted slip at k+1

is an interpolation between two values. In (2.8), this interpolation is made in the time domain,

whereas in (4.1), it is done in the spatial domain. The look-up function seems to be an elegant

way of replacing the low-pass filter with the slip profile.

4.2.4 Model 3A - Predicting Slip Profile with Linear Observation Model

The natural culmination of slip prediction, with the highest fidelity but also the most complicated

filter, includes the complete slip profile as part of the state. Two different ways of parameterising

the profile are explored, yielding Models 3A and 3B, respectively. The block diagram illustrating

this model is presented in Fig. 4.3. Note that the complete treatment of slip as a Gaussian process

[74, 75] is left for future investigation: simple 1-D interpolation is employed in this study.

Similarly to Model 2, this model employs a slip profile, but rather than using it as pseudo-

control input, the profile is predicted via zλi measurements. As such, the previously defined

process noise wγ can be omitted and (4.1) is reduced to a simple interpolation. Note that the

linear observation model implies slip measurements at the exact locations of the profile points

stored in the state vector, as

Figure 4.3: The block diagram of Model 3A with slip profile prediction. In this model, the slip
profile, Λ, is moved to the Kalman filter state and a linear observation model is employed to
estimate it. The observation model is linear because zλi measures the exact points of the profile.
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zλi =λi +nλi , pi = p̃(k+1)+ i, i = lMIN , lMIN + step, lMIN +2∗ step, ..., lMAX (4.2)

Equation (4.2) defines that slip observation is made for all profile points between lMIN and

lMAX in front of the predicted position. It is assumed that the vision system that performs slip

prediction is oriented forward. For this work, lMIN is defined as 1 m and lMAX as 4 m. The

number of slip profile points stored in the EKF state impacts computational performance and the

correct slip estimation. As such, slip profile points were arbitrarily decided to be stored at 1 m

intervals.

In this work, slip prediction is simulated, even when operating a rover. However, one can

expect an expert system which divides an image into patches that correspond to areas in front of

the robot. Each patch is then assigned with a predicted position and associated wheel slip value

that could be used by this model. Once the robot is driving over this area, wheel slip would be

predicted by interpolating estimated slip values for the two nearest patches (Λ profile points).

4.2.5 Model 3B - Predicting Slip Profile with Non-Linear Observation Model

As indicated, Model 3A is limited to a linear observation model. From an implementation

perspective, storing an extensive profile in the state vector may be impractical, as it would result

in a massive covariance matrix that needs to be inversed once multiplied by the observation

model Jacobian. On the other hand, few profile points may provide limited information about

the slip. It is possible to introduce a non-linear observation model that allows sampling multiple

points around the profile point to solve this problem. When deciding on the sampling density/rate,

it should be considered that too many sample points may lead to overfitting the observation

model.

Fig. 4.4 presents the block diagram of Model 3B. The observation function is similar to (4.2)

with interpolation from (4.1).

zλi =
pi − p j

p j+1 − p j
λ j+1 +

p j+1 − pi

p j+1 − p j
λ j +nλi ,

∀pi ∈ 〈 p̃(k+1)+ lMIN , p̃(k+1)+ lMAX
)∧ pi ∈< p j, p j+1)

(4.3)

Equation (4.3) may seem quite different from (4.2), but conceptually it is very similar. Several

slip measurements zλi are performed at pi locations between lMIN and lMAX in front of the

predicted position. Each measurement then contributes to the two nearest slip profile points

λ j and λ j+1. For the experiments, we decided to perform slip measurements at 0.5 m intervals

between lMIN and lMAX . Note that observation non-linearity arises because these intervals are

not pre-defined but are associated with the predicted position. Similarly to Model 3A, we decided

to store slip profile points in the EKF state at 1 m intervals.
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Figure 4.4: The block diagram of Model 3B with slip profile prediction and non-linear observation
model. This model is very similar to Model 3A. The only difference is in the non-linear observation
model which provides estimates of points that do not directly map to the slip profile Λ. Because of
that, another look-up/interpolation function is required to map all measurements to the nearest
profile point. Note different subscriptions in slip profile and profile measurements so to avoid
confusion.

4.3 Simulations

As before, the first step was to perform low-fidelity simulations to determine the behaviour

of each model under various circumstances. Similarly to what was presented in section 2.2,

three 100 m-long test cases were defined. In each test case, the control velocity was 0.4 m/s to

reflect the rover’s speed from the field trials described in the next section. WO estimated every

0.1 s, the time constant for Model 0 and Model 1 was set to 20 s, and the simulated wheel slip

measurement was performed every 5 s. This value was selected arbitrarily, assuming that terrain

classification might be quite compute-intense and would not happen too often. At the same time,

the aim was to achieve an overlap in slip measurements for Models 3A and 3B. For process

noise statistics, σα was set to 1.5, σβ to 0.5, and σγ to 0.05. Each test case was repeated with a

different VO update period to investigate its impact on each model. TVO used was zero (no VO

measurements), one, and three seconds. VO every three seconds at 0.4 m/s may provide largely

erroneous measurements, thus, it shows how each model copes with them.

The first test case simulates a sinusoidal wheel slip. It investigates how well each model

tracks the continuous change in the slip. The second test case is more realistic, where there

are only two bumps in the wheel slip, however, one is negative to highlight some interesting

properties of the models. It can be understood as driving through two patches of different terrain.

The last test case is almost identical to the previous. The only difference is that part of the
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model’s erroneous slip profile is shifted. It represents a different type of error, where the second

terrain patch was incorrectly located. Fig. 4.5 shows slip profiles for each test case. This will help

highlight the different capabilities of the three models. Blue lines represent the ground truth

slip, which is used to simulate the measurements with added random noise. The magenta lines

are erroneous slip profiles (different noise statistics compared to simulated measurements) used

for look-up operation by Model 2 and as the initial state in Models 3A and 3B.

The metrics, as defined in section 1.6 for each model and each test case are presented in

Fig. 4.6, where blue bars are for Model 0 (EKF), red - Model 1, yellow - Model 2, purple - Model 3A,

and green - Model 3B. EKF had a much larger RMSE, and its error exceeded the confidence

margin in a far greater way than illustrated on the relevant plots, but these were capped to allow

better readability of other data. Fig. 4.7 presents an example of errors in position estimation with

3σ confidence margin for each model and each test case with TVO = 1 s.

There are several observations based on the results provided in Fig. 4.6:

• Model 0, the EKF with Integrated Slip Estimation as defined in chapter 2, does not provide

good performance in any of the test cases. Admittedly, they all were quite challenging

because the ground truth wheel slip changed significantly. Compare that with results

presented in Fig. 2.21(b) where the wheel slip oscillated around 0.02 with one spike up to

0.1 (error in VO). Furthermore, without the adaptive filter, wheel slip λ in between VO

measurements is being forgotten to zero (mean value of the wβ process noise). Challenging

these test cases as they may be, any form of slip prediction improves position estimation

accuracy considerably.

• From Fig. 4.6(a) top row: models 2, 3A, and 3B improve accuracy compared to baseline with

no VO. Moving along the top row, introducing VO measurements improves the accuracy

even further with the expected behaviour of the more frequent VO, the lower RMSE.

(a) Test Case 1: Sinusoidal Slip (b) Test Case 2: Bumps (c) Test Case 3: Bump Offset

Figure 4.5: Three test cases for models verification. Solid blue lines are the ground truth wheel
slip, whereas solid magenta lines represent profiles with an added error used as a source of
measurements for Model 2 and the initial state for Model 3A and 3B.
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• Model 1 seems the least effective of all proposed models. Direct slip measurement makes it

overconfident. Note how the area under the 3σ confidence margin is small (middle plots),

yet the RMSE of the position estimation is large (top plots), leading to the error growing

beyond the confidence margin (bottom plots). What drives this large RMSE is that wheel

slip measurement is done only every 5 s. Similarly to Model 0, because of the low-pass filter,

λ decreases to the mean value of the process noise wβ, which is zero without the adaptive

filter. A longer time constant T0 could be used to mitigate this problem. Alternatively, a

different method for direct slip measurement could enable a faster acquisition, for example,

based on motors current or torque.

• Model 2 can provide accurate position estimation as long as the input profile is correct, i.e.,

in test cases 1 and 2. The third test case indicates Model 2’s main weakness, as it cannot

refine the corrupted profile. It is best illustrated in Fig. 4.7(c) where there is a noticeable

RMSE

Area

under 3σ

confidence

margin

Area

between

exceeded

error

and 3σ

confidence

margin

(a) TVO = ∞ (no VO) (b) TVO = 3 s (rare VO) (c) TVO = 1 s (frequent VO)

Figure 4.6: Summary of metrics for errors in position estimation for each model and each test
case. The number of test cases is labelled on each plot separately (1, 2, and 3). Vertical axis limits
truncate some bars. Note the legend in the middle plot. In general, models which utilise slip
profiles offer smaller RMSE. The exception is the Model 2 with input pseudo slip profile in the
last use case, where an error was introduced to the profile. In this case, the model cannot rectify
the slip profile based on measurements resulting in wrong information being used.
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(a) Test Case 1: Sinusoidal Slip

(b) Test Case 2: Bumps

(c) Test Case 3: Bump Offset

Figure 4.7: Errors in position estimation (solid lines) with 3σ confidence margins (dashed lines)
for the second and third test case with TVO = 1 s. Blue colour represents Model 0, red - Model 1,
yellow - Model 2, purple - Model 3A, and green - Model 3B. Note how models utilising slip profiles
provide smaller errors with an exception for Model 2 in the last use case.
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change in the error (solid yellow line). However, Model 2 offers good position estimation

accuracy and its associated variance tracking for all other test cases.

• Both Model 3 variants A and B provide outstanding accuracy in position estimation re-

gardless of VO frequency. The version with the non-linear observation function (Model 3B)

offers a narrower confidence margin which may lead to error exceeding it, but, overall, both

methods are comparable.

• Model 3B seems to have a unique property when it comes to how it tracks the variance in

position estimation. First, notice in Fig. 4.7 how positive confidence margins for Model 2

(dashed yellow line) and Model 3A (dashed purple line) have shape similar to the opposite

of the ground truth slip profile. It is because the predicted slip λ̃(k+1) in (4.1) is correlated

with the predicted position p̃(k+1). From (4.1), partial derivative for predicted slip is

defined as

∂λ̃(k+1)
∂x

= λi+1 −λi

pi+1 − pi

∂p̃(k+1)
∂x

(4.4)

From (2.9), ∂p̃(k+1)
∂x has the

(
1−λ(k)

)
element which dictates, in Model 2 and Model 3A, the

shape of the position estimation variance (opposite profile). Should the p̃(k+1) in (4.1)

was treated as a pseudo-control input (i.e. (4.4) would be zero), the variance in position

estimation would follow a similar shape to Model 0 with a similar magnitude. But this is

not the case for Model 3B. Notice in Fig. 4.7(a) and Fig. 4.7(b) that the confidence margin

remains relatively flat, and in Fig. 4.7(c) it decreases, whereas the
(
1−λ(k)

)
would require it

to increase (compare with dashed yellow and purple lines). It is a thrilling observation as it

may indicate that the model has recognised the pattern in slip profile. It is more prominent

in Test Case 3 when the initially profile was not correct. This behaviour resembles SLAM

and is further discussed in section 4.4.3.2.

Overall, based on the results from the simulations, Models 3A and 3B seem to be the most

accurate, however, they also require more computational resources due to the included profile

in the filter’s state. For comparison, the state for Models 3A and 3B have 106 elements (one

additional state for every metre) compared to only five for all other models. Model 2 may offer an

acceptable trade-off in position estimation accuracy as long as the known profile is correct, which

might not always be guaranteed.

4.4 Experimental Results

4.4.1 Trial Setup

Because trajectories from the Hengrove Park did not offer enough terrain variability to verify

wheel slip prediction models, additional field trials were conducted in Sand Bay Beach, Somerset,
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UK. The new venue offered long, reasonably straight traverses with a mix of sand, concrete, and

grass. The trial setup was similar to what was described in section 2.3.1.1. The only differences

were: i) the RTK corrections were received from the Topnet Live service, and ii) the nominal rover

speed was increased to 0.4 m/s. Maps with recorded ground truth are presented in Fig. 4.8. The

path between points A and B was used to verify slip prediction models. The path between B and

C was used to validate reactive VO scheduling as mentioned in the section 3.3.5. Note the spikes

in the ground-truth in Fig. 4.8(b) which are the result of adjusting the rover manually (operator

occluding the GPS antennas).

The evaluated trajectory consisted of a 4 m distance on concrete, 21 m on the sand, and 3 m

back on concrete (the path between points A and B in Fig. 4.8). The rover on the test path is

depicted in Fig. 4.9. Example slip profiles calculated using raw telemetry and averaged using a

(a) An overview of the whole field trials area (b) Zoomed in region with path used for slip prediction

Figure 4.8: Recorded ground-truth from the Sand Bay Beach trials. Maps are taken from the
OxTS NAVsolve tool.

Figure 4.9: Mobile platform used during the experiments driving on concrete for 4 m, then on the
sand for 21 m, and again on concrete for 3 m.
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Figure 4.10: Various slip profiles: blue – as estimated by VO with WO, green – as estimated by
RTK with WO, magenta – as estimated by motor current, black – test profile for vision-based
mock-up, dashed – ground-truth pitch angle to indicate the change in terrain which may have
impacted the slip value while on the sand (for visualisation and a better understanding of the
terrain only).

median filter are presented in Fig. 4.10. The green line shows the ground truth profile measured

using RTK and WO. The blue line shows the slip profile measured using VO and WO, where

VO was estimated every 0.2 s (i.e. the distance between consecutive images was approximately

0.08 m). The magenta profile is achieved using motor current measurements and is discussed in

the section 4.4.3. The black line is a simulated terrain classification profile: because the main

focus of this work is on sensor fusion and position estimation, the classifier was mocked up by

using pre-configured slip values of 0.02 for concrete and 0.06 for sand. This binary classification

was assumed as a simple output of an expert vision-based slip detection system. For example, if

the robot was at the 2 m position, the profile point associated with 3 m would have a slip value

predicted as 0.02, and points associated with positions 4, 5, and 6 m would have slip values of

0.06. Finally, the dashed line is the ground truth pitch angle to indicate a slight change in terrain

angle affecting the slip. Because the system was analysed only in one dimension, the changes in

the slope were not considered.

4.4.2 Models Analysis

The results are provided with TVO = 0.2, 1, 3 s. In this analysis, VO is always providing mea-

surements. In simulations, it was already established that any form of slip prediction allows for

fairly good position estimation without any VO, but these measurements improve the overall

performance. The maximum TVO was set to three seconds, which implies approximately 1.2 m

between VO measurements. Given the mounting point of the stereo camera, such a long distance
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RMSE
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(a) TVO = 0.2 s (b) TVO = 1 s (c) TVO = 3 s

Figure 4.11: Summary of metrics for errors in postion estimation for each model when driving
in Sand Bay Beach. Vertical axis limits truncate some bars. Models from left to right: Model 0,
Model 1, Model 2, Model 3A, Model 3B, and Model 1 with wheel current measurements.

between measurements often provides not enough overlap and results in erroneous VO estimates,

which EKF fuses without further validation. The aim is to assess how the wheel slip prediction

improves position estimation even when fusing imperfect VO measurements. On the other hand,

frequent VO provides a precise estimation of wheel slip that may collide with predicted results.

For this work, measurement covariance for slip prediction, σ2
λ

= 0.000279, was carefully

selected based on trials and errors to achieve comparable results and was always the same across

all models. It resulted from not having any terrain classifier implemented – slip prediction is

simulated based on the test profile presented in Fig. 4.10. The test profile is not necessarily the

best and optimal solution, but it is comparable across different models. Also, all slip measurements

in Models 1, 3A, and 3B were done every 5 s as in simulations. Finally, the initial profile within

Models 3A and 3B was initialised with flat values of 0.02 (expected wheel slip on tarmac and

concrete) without any indication of a planned traverse over the sand. As indicated in simulations,

in the case of Model 3B, an initial profile that differs from what is expected results in decreased

variance in position estimation when a change in slip is detected.

The metrics results for all models are presented in Fig. 4.11, where blue bars are for Model 0
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Figure 4.12: Example of errors in position estimation for Models 3A (purple) and 3B (green) with
TVO = 3 s. Dashed lines indicate 3σ confidence margin. Note that even though Model 3A provides
a lower error, Model 3B is more immune to sudden changes in position estimation resulting from
erroneous VO measurements.

(EKF with Integrated Slip Estimation), red - Model 1, yellow - Model 2, purple - Model 3A, green

- Model 3B, and cyan - Model 1 with wheel current measurements. The latest model in this set is

discussed in section 4.4.3.

What stands out is that when frequent VO measurements are available, as seen in Fig. 4.11(a),

Models 0 and 1 give the best results. It is understood that imperfect wheel slip measurements

for Models 2 and 3 using simulated test profile dominated λ estimated by VO and WO. Even

though the same test profile was used for Model 1 (red bars), it has more flexibility in adjusting λ

based on other available measurements. From Fig. 4.11(b), it is interesting to note that Model 1

gave the best accuracy when TVO was one second. In this setting, VO measurement covariance

was large enough to allow information from direct slip measurement to be fused. Otherwise, VO

dominates in providing the indirect slip estimate, similarly to Model 0. However, when VO starts

to provide erroneous estimates, it also harms Model 1 accuracy, as seen in Fig. 4.11(c) top row.

What is exciting, is that even when VO measurements are rare, models that utilise profile provide

small error enabling accurate position estimation.

All models which utilise slip profiles (Models 2, 3A, and 3B) gave comparable results. It is

exciting that they all provided good accuracy, even for rare VO measurements. From those models,

Model 3B gave the biggest RMSE at TVO = 3 s. However, these metrics do not capture how

immune models are to errors in VO measurements. Fig. 4.12 show errors in position estimation

(solid lines) with 3σ confidence margin (dashed lines) for Models 3A (purple) and 3B (green).

Note that even though Model 3A has a smaller error, it also has many sharp changes that are

not present in the error plot for Model 3B. These changes are associated with erroneous VO

measurements. Models 2 and 3A benefited from errors in this particular environment, whereas
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Model 3B was immune to them. Such robustness is more desired, and we believe that Model 3B

can provide better position estimates if there is a proper terrain identification/classification

component.

The variance in position estimation for most of the models remained small, leading to error

growing beyond the confidence margin at frequent VO measurements. It needs to be investigated

in more detail if such behaviour is overfitting due to many indirect slip measurements (VO) or a

limitation of the analysis done in one dimension. As the update period between VO measurements

increases, so does the variance, which may indicate its relation with VO measurement covariance

RVO.

4.4.3 Additional Considerations

4.4.3.1 Using Wheel Current for Slip Measurement

Some researchers [25, 77, 78] indicate that wheel current can be used to estimate wheel slip

mainly because the slip is a function of motors’ torque proportional to motors’ current. Encouraged

by their results, we decided to include this measurement in Model 1. However, rather than

performing a detailed analysis of wheel-soil interactions, the robot drove again on the same

terrain and thus obtained the motors’ current and ground-truth slip were then correlated in the

form of a linear function. The function was used for post-processing the initial trajectory analysed

in section 4.4.2. Covariance of the linear function fit was used as the measurement covariance.

The resulting wheel slip measured based on the motors’ current is presented as the magenta plot

in Fig. 4.10. Notice that it follows the same shape as the ground-truth slip (green line); however,

it is more prominent in magnitude. It is similar to what was performed in [25] but limited in

scope.

The results of fusing motor wheel current with WO and VO are promising and are presented

in Fig. 4.11 as cyan bars. This approach is more immune to errors in VO measurements than

Model 0 and original Model 1. It is likely that good performance of using wheels current to

estimate slip comes from the high frequency at which they are available (the same rate as WO).

Nevertheless, models that use slip profiles were still better, even though their estimates were

less frequent.

While the potential of this approach seems encouraging, this result must be interpreted with

caution. While one drive was used to calibrate the slip pseudo-measurement from current and a

second drive to evaluate it, these were over the same track, so it is not yet possible to eliminate

other correlating factors – something that is correctly taken into account in [22, 53] where WO is

only used for traction control, but not for pose estimation.
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4.4.3.2 Slip Profile Localisation

Simulation results indicated an interesting observation regarding Model 3B. It seems that in

Fig. 4.7(c) the system recognises the profile and, as a result, reduces the covariance of position

estimation. Fig. 4.13 presents slip profiles (estimated - blue, simulated for measurements - green)

with the covariance of position estimation (dashed magenta) for Models 3A and 3B. Note that

even for Model 3A, the covariance decreases (or reduces its growth rate) at locations where

the change in slip is present. For Model 3B, after initial growth, covariance decreases almost

for the entire traverse. It indicates as if the slip was being recognised from the profile. This

behaviour resembles a Simultaneous Localisation and Mapping (SLAM) [79] or Terrain-Reference

Positioning [80]. There is an open possibility of using slip profiles to improve localisation, which

is in line with observations from [77, 81], where the vision-based information is correlated with

what the robot can feel under its wheels.

4.5 Summary

This chapter compares various models that fuse information about the expected wheel slip with

WO and VO to improve the localisation. There is a definite enhancement in position estimation

when slip can be predicted, especially at low rates of VO. However, careful consideration in

selected measurements needs to be made to avoid unwanted correlation, leading to the overfitting

in EKF. The solution is validated using real-world data for odometry measurements and a

simulated vision-based classifier for slip predictions. An interesting observation is made where

(a) Model 3A (b) Model 3B

Figure 4.13: Slip profiles against the variance of position estimation for Models 3A and 3B with
TVO = 3 s: solid blue line – estimated wheel slip, solid green line – slip profile used for the
simulated vision-based classifier, magenta dashed line – variance of the position estimation. Note
a decrease in position estimation’s variance for Model 3B.
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the filter recognises the slip profile, which may open the possibility of slip-based SLAM.

Future work should replace a simulated vision-based classifier with a simple solution that

would consider the actual images from the cameras. The proposed system should then be validated

on more complex trajectories where the terrain type, and hence predicted slip, varies. An option to

extend the functionality further with motors current is also promising, as long as any correlation

is correctly interpreted. Finally, it might be worthwhile to explore also options of detecting only

changes in the slip rather than actual values. A reactive VO scheduling tool may benefit from

knowing expected changes in slip to acquire more images for VO around those areas.
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5
WHEEL SLIP ESTIMATION IN MOTION IN A PLANE

A large portion of robotic challenges require the system to operate on at least a two-

dimensional (2D) plane with three degrees of freedom (2D position and rotation). This

chapter investigates how to Model 2D localisation with integrated slip estimation. It be-

gins by discussing mathematical models for 2D plane motion in section 5.1.1. Then, two candidate

models are defined in section 5.1.2 and compared in section 5.1.3. Next, section 5.2 presents the

analysis of how changing process noise statistics impact the system performance. It is a starting

point for introducing the adaptation as defined in chapter 3. Then, the adopted reactive VO

trigger strategies to the 2D problem are introduced. With the above method successfully applied

to a 2D problem, there are high expectations that it would also work for a three-dimensional

problem. The final conclusions for this chapter are outlined in section 5.3. In this chapter, Wheel

Odometry (WO) is referred to as both measuring the drive wheels’ velocity and steering wheels’

angle.

5.1 Introduction

5.1.1 Background

The kinematic model for a motion on a 2D plane without taking any slip into consideration is

defined as

px(t)= px(0)+
∫ t

0
vx(τ)cosψ(τ)dτ−

∫ t

0
vy(τ)sinψ(τ)dτ (5.1a)

py(t)= py(0)+
∫ t

0
vx(τ)sinψ(τ)dτ+

∫ t

0
vy(τ)cosψ(τ)dτ (5.1b)

ψ(t)=ψ(0)+
∫ t

0
ω(τ)dτ (5.1c)
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Where px and py are location coordinates in the global frame, vx and vy are linear velocities in

the platform’s local frame, ψ and ω are orientation and the angular rate of the vehicle.

The robotic platform used in this research is a four-wheel drive, four-wheel steering Ack-

ermann vehicle, as seen in Fig. 2.10. The Ackermann steering geometry is well-known and

established, for example, in [82]. Formulas are often provided only for front-steering chassis, such

as cars, and typically may deal with a single slip parameter (body slip, rather than per wheel

slip). They are often also simplified to what is known as a bicycle model, where only one front

and one rear wheel are modelled. This simplification comes with a few key assumptions which

may not always be well-known. Firstly, the mass distribution on the vehicle has to be symmetric

on its lateral axis. Otherwise, the centre of the mass would be offset from the vehicle’s centreline,

leading to constant side slip. It would be evident at higher velocities when the dynamics’ impact

on the system cannot be neglected. Secondly, the steering wheels on the platform are physically

connected via trapezoidal steering linkage. With it, the outer wheel travels at a wider radius,

thus requiring the vehicle to have a differential or independent drive. Without it, the platform

would skid, leading to increased sideslip.

Formulas for Ackermann steering geometry for individual steering wheels, which applies

to this project, are more complex as they should be treated individually. In general, for the

Ackermann steering platform, the key relationship between i’th wheel’s angular velocity and its

steering angle is given by the platform’s angular velocity, ω, around the centre of Ackermann

steering radius

ω(t)= ρΩi(t)tanφi(t)
l i +Bi tanφi(t)

(5.2)

Where ρ is the wheel’s radius, Ωi and φi are angular velocity and steering angle of the i’th wheel

respectively (both can be measured using encoders), and l i and Bi are the coordinates of the i’th

wheel in the chassis’ local frame. Note how the component Bi tanφi is zeroed in the bicycle model.

Also, because of tanφi, (5.2) is invalid when wheels are turned at +/- 90 degrees. Finally, (5.2)

does not include the wheel slip angle, which, if included, would shift the origin of the steering arc.

Fig. 5.1 provides an overview of the ideal Ackermann steering geometry from which the geometric

relation (5.2) is derived. Note that (5.2) holds for any wheel in the system, which implies that

wheels on the inside of the Ackermann turn have bigger steering angles but lower angular speeds.

Estimating a vehicle’s position in two dimensions means it is subject to more than one slip. In

the 1D case, only the longitudinal slip was considered. When driving on a plane, the vehicle can

also have a lateral slip (moving to the side), also known as sideslip, and some form of angular slip,

which, in the car domain, can be understood as oversteer and understeer. Oversteer is a shorter

turning radius than the ideal, whereas understeer is the opposite. Both lateral and angular slips

could be neglected in low velocity for a typical car-like Ackermann platform, however, when a

robot has independent steering wheels, these slips may also capture any wheels misalignment.

For example, lateral slip may occur when the platform drives on the sandy slope and slips

sideways, but also when all wheels are turned slightly into one direction. The lateral slip is
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Figure 5.1: Ideal Ackermann steering geometry for the platform used in this project. Note the
masses measured at each wheel (Mi), which sum to the value seen in the centre (M). Assuming
front steering and rear steering is perfectly synchronised (wheels are independent), the mass
distribution would allow for a simplified bicycle model. Also, note that the graphic is out of scale
to make it easier to read.

defined as

λy(t)= arctan
vy(t)
vx(t)

(5.3)

The platform used in the research was operated at low velocity, and therefore it was not

subject to either oversteer or understeer. However, the angular slip may still occur. For example,

in a situation when driving in a straight line, wheels on one side encounter different terrain

friction. The platform would skid until all wheels were again subject to the same friction. On

the other hand, if, for example, only the front wheels of an independent steering platform were

misaligned in one direction, the vehicle would always travel in an arc (non-zero tanφi in (5.2)).

With this in mind, all types of slip should be estimated. Because the platform is rigid, there is no

active suspension, and it operates on low velocities, it can be safely assumed that only one lateral

and angular slip value for the entire body needs to be estimated. In [83] authors omit the lateral

slip altogether, stating that at the low velocity, it can be neglected. It is a valid point for a typical

car chassis. However, in a robot with four independent wheels, the lateral motion, similarly to

angular slip, may capture any misalignment in the wheel mount. When it comes to a longitudinal

slip, it could be debated whether there should be only one value for the entire platform or one for

each wheel individually. A single longitudinal slip is easier to observe using VO alone, however, if

wheel stiffness parameters were known and additional wheel measurements were available to

support per-wheel slip estimation (e.g. torque), it might be beneficial to model more slip values.
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Because all drive wheels are tightly speed controlled in the platform used for this research,

their velocity measurements would add little to no extra information above the known control

input. It would then be nearly impossible to estimate individual slip values. As such, to avoid

unobservability, a single longitudinal slip is used.

Finally, we decided to neglect dynamics because the platform operates at low velocities (0.2 -

0.4 m/s). There are examples of Kalman Filter including the dynamic system [83–85], however,

in all these cases, the platforms were either operating at higher velocity. Furthermore, most

of these applications include an accelerometer which allows measuring the second derivative

of the platform’s position. Only VO and WO are used in this project, which means that only

relative displacement and wheels angles can be measured. Kalman Filter can still estimate the

second derivative (acceleration), however, measurements errors can lead to large and erroneous

estimates of the acceleration. It, in consequence, may lead to a poor prediction of the next iteration

and system instability.

5.1.2 Models Definition

There are different ways to Model 2D sensor fusion and position estimation systems. In this

section, two solutions are outlined with a common high-level overview as depicted in Fig. 5.2. Both

models estimate chassis velocities using input data (velocities in the local frame of reference). The

kinematic model uses these velocities to provide vehicles’ position and orientation in the global

Figure 5.2: High-level architecture of 2D Model. The only difference between Model 1 and Model 2
is in the inputs: Model 1 has them per wheel, whereas in Model 2 they refer to chassis. Also, in
Model 2 the WO observation model is non-linear and includes Ackermann steering geometry.
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frame. Wheel slip (λx - longitudinal; λy - lateral; λψ - angular) is added to vehicle’s kinematic

model and therefore is unobservable from WO perspective. However, WO measurements con-

tribute to identifying control input’s uncertainties (velocity and steering process noises). Similarly

to the 1D model, wheel slip (all three types) is modelled as a low-pass filter.

1. In the first method, control input is provided to each wheel individually: drive rate uΩi and

steering angle uψi . As such, their angular rates have to be averaged to provide chassis’

linear and angular velocities. Similarly to the 1D model defined in chapter 2, only VO and

WO measurements are used to correct the state estimation. Because of that, only a single

chassis’ slip parameters are estimated. This solution could be treated as a general approach

because it does not depend on the Ackermann steering geometry.

2. In the second method, control input is used to command the entire chassis: desired linear

velocity uv and turn curvature uc. The Ackermann steering geometry is included in the

filter, but rather than modelling it inside the state transition function, it forms part of the

non-linear WO observation model.

In chapter 2, the model in continuous time was discretised by calculating integrals and

applying mathematical theorems to obtain the final equations. Because 2D models are more

complex than 1D, they are discretized using trapezoidal approximation. In addition, in the 1D

model, the uncertainty of the control input was modelled as a random walk. It was treated as

the angular acceleration of the wheel. For the 2D case, to simplify it further, the control input’s

uncertainty is modelled as white noise. The non-zero mean value is assumed for process noises

modelling slip when discussing adaptation in section 5.2.

5.1.2.1 2D Model 1 - Per Wheel Control

This model is controlled via per wheel input. For chassis motion estimation, the weighted average

of the motions of each wheel is used. We assumed the platform to be a particle system with all its

mass located at wheels. Per wheel masses Mi are used as weights (note mass values in Fig. 5.1).

It is then assumed that the chassis slip model corrects any errors in that approach. The averaging

is defined as

Mvx(t)= ρ∑
i

MiΩi(t)cosφi(t) (5.4a)

Mvy(t)= ρ∑
i

MiΩi(t)sinφi(t) (5.4b)

Iω(t)= ρ∑
i

MiΩi(t)
(
l i sinφi(t)−Bi cosφi(t)

)
(5.4c)

Where M is the total mass of the vehicle and I is the mass moment of inertia of the vehicle, which,

with the assumption that the whole mass is located only in the platform’s wheels (particle system
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with four mass particles), can be calculated as

I =∑
i

Mi(l2
i +B2

i ) (5.5)

Combining all together, the state vector with the state transition function, excluding aug-

mented states for better readability, is defined in its discrete form (discretised with a time step

∆t) as

px(k+1)= px(k)+ ∆t
2

(
v′xx(k+1)−v′xy(k+1)

)
(5.6a)

py(k+1)= py(k)+ ∆t
2

(
v′yx(k+1)+v′yy(k+1)

)
(5.6b)

ψ(k+1)=ψ(k)+ ∆t
2

(
ω(k+1)+λψ(k+1)+ω(k)+λψ(k)

)
(5.6c)

vx(k+1)= ρ

M

∑
i

MiΩi(k+1)cosφi(k+1) (5.6d)

vy(k+1)= ρ

M

∑
i

MiΩi(k+1)sinφi(k+1) (5.6e)

ω(k+1)= ρ

I

∑
i

MiΩi(k+1)
(
l i sinφi(k+1)−Bi cosφi(k+1)

)
(5.6f)

λx(k+1)=
(
1− ∆t

T0

)
λx(k)+ ∆t

T0
wλx (k) (5.6g)

λy(k+1)=
(
1− ∆t

T1

)
λy(k)+ ∆t

T1
wλy(k) (5.6h)

λψ(k+1)=
(
1− ∆t

T2

)
λψ(k)+ ∆t

T2
wλψ(k) (5.6i)

θi(k+1)= θi(k)+ ∆t
2

(
Ωi(k)+Ωi(k+1)

)
(5.6j)

Ωi(k+1)= uΩi (k+1)+wΩi (k) (5.6k)

φi(k+1)= uφi (k+1)+wφi (k) (5.6l)

Note that some states are defined as functions of other states’ predictions (k+1). This has been

made only for better readability to encapsulate common terms. To make (5.6) easier to read,

v′xx(k+1), v′xy(k+1), v′yx(k+1), and v′yy(k+1) were defined as

v′xx(k+1)= vx(k+1)
(
1−λx(k+1)

)
cosψ(k+1)+vx(k)

(
1−λx(k)

)
cosψ(k) (5.7a)

v′xy(k+1)= vy(k+1)
(
1−λy(k+1)

)
sinψ(k+1)+vy(k)

(
1−λy(k)

)
sinψ(k) (5.7b)

v′yx(k+1)= vx(k+1)
(
1−λx(k+1)

)
sinψ(k+1)+vx(k)

(
1−λx(k)

)
sinψ(k) (5.7c)

v′yy(k+1)= vy(k+1)
(
1−λy(k+1)

)
cosψ(k+1)+vy(k)

(
1−λy(k)

)
cosψ(k) (5.7d)

To simplify the state, in (5.7) we assumed a small-angle approximation for ψ(k+1)−ψ(k), which

reduces trigonometric terms to

cosψ(k+1)≈ cosψ(k) − ∆t
2

(
ω(k+1)+λψ(k+1)+ω(k)+λψ(k)

)
sinψ(k) (5.8a)

sinψ(k+1)≈ sinψ(k) + ∆t
2

(
ω(k+1)+λψ(k+1)+ω(k)+λψ(k)

)
cosψ(k) (5.8b)
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Note also that in (5.7) both λx and λy are added to the kinematic model in a similar fashion

to the 1D problem as (1−λ). Two linear velocities model plane motion, therefore, each is scaled

with their respective slip in a manner that was established in chapter 2. The angular slip λψ is

treated as an added bias to the angular velocity ω when calculating the platform’s rotation ψ.

This approach is because a scaling factor would not capture constant angular offset when not

steering. A zero rate would still be scaled to zero, therefore, a bias is required. Furthermore, the

angular slip λψ is assumed unobservable for ω, hence it is present only in (5.6c) rather than in

(5.6f).

In this model, θi and φi are directly measured using encoders on each wheel in both steering

and driving axes, thus the linear WO observation function is given as

zθi (k)= θi(k)+nθi (k) (5.9a)

zφi(k)=φi(k)+nφi(k) (5.9b)

5.1.2.2 2D Model 2 - Chassis Control

In this approach, control input commands the chassis, therefore, it controls the kinematic model

directly. From Fig. 5.1, the commanded steering curvature is defined as

uc(t)= tanuφ(t)
lA

= 1
Rφ(t)

(5.10)

Where uφ is the steering angle of an ideal steering wheel located in the front of the platform on its

longitudinal axis (lA from the centre of rotation), and the Rφ is the radius of the Ackermann turn

for the vehicle’s centre of gravity. Because the radius is infinite when driving in a straight line,

the curvature is a better way of modelling the Ackermann geometry, especially when linearising

around the zero steering angle.

Eq. (5.3) defines lateral slip, λy(t), as ratio of vy(t) to vx(t). It can be rewritten, assuming

small-angle approximation, so that vy(t) is a function of vx(t), which, on the other hand, is the

sum of control input, uv(t), and input’s uncertainty (white process noise), wv(t).

vy(t)= vx(t)λy(t) (5.11a)

vx(t)= uv(t)+wv(t) (5.11b)

Lastly, the angular velocity of the vehicle is taken from its circular motion (note added

commanded curvature’s uncertainty as wc(t))

ω(t)= vx(t)
Rφ(t)

= (
uv(t)+wv(t)

)(
uc(t)+wc(t)

)
(5.12)
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Finally, the state vector with its transition function in its discrete form (following the same

discretization workflow as in section 5.1.2.1) can be defined as

px(k+1)= px(k)+ ∆t
2

(
v′xx(k+1)−v′xy(k+1)

)
(5.13a)

py(k+1)= py(k)+ ∆t
2

(
v′yx(k+1)+v′yy(k+1)

)
(5.13b)

ψ(k+1)=ψ(k)+ ∆t
2

(
vx(k+1)c(k+1)+λψ(k+1)+vx(k)c(k)+λψ(k)

)
(5.13c)

vx(k+1)= uv(k+1)+wv(k) (5.13d)

c(k+1)= uc(k+1)+wc(k) (5.13e)

λx(k+1)=
(
1− ∆t

T0

)
λx(k)+ ∆t

T0
wλx (k) (5.13f)

λy(k+1)=
(
1− ∆t

T1

)
λy(k)+ ∆t

T1
wλy(k) (5.13g)

λψ(k+1)=
(
1− ∆t

T2

)
λψ(k)+ ∆t

T2
wλψ(k) (5.13h)

θi(k+1)= θi(k)+ ∆t
2ρ

(
vx(k+1)+vx(k)

)
(5.13i)

Similarly to the previous model, v′xx(k+1), v′xy(k+1), v′yx(k+1), and v′yy(k+1) were defined to

simplify (5.13) and are given as

v′xx(k+1)= vx(k+1)
(
1−λx(k+1)

)
cosψ(k+1)+vx(k)

(
1−λx(k)

)
cosψ(k) (5.14a)

v′xy(k+1)= vx(k+1)λy(k+1)sinψ(k+1)+vx(k)λy(k)sinψ(k) (5.14b)

v′yx(k+1)= vx(k+1)
(
1−λx(k+1)

)
sinψ(k+1)+vx(k)

(
1−λx(k)

)
sinψ(k) (5.14c)

v′yy(k+1)= vx(k+1)λy(k+1)cosψ(k+1)+vx(k)λy(k)cosψ(k) (5.14d)

A non-linear WO observation model for steering angle can be built from Fig. 5.1, where the

individual wheel’s steering angle is defined as

zφi (k)= arctan
l i

Rφ(k)−Bi
+nφi (k)= arctan

l i
1

c(k) −Bi
+nφi (k)= arctan

l i c(k)
1−Bi c(k)

+nφi (k) (5.15)

The observation for θi remains unchanged and as defined in (5.9a). With this approach, four

independent sensors indirectly measure each control input with associated uncertainty, reducing

the measurement error’s impact.

5.1.3 Models Comparison and Discussion

Similarly to the 1D problem, one calibration trajectory in a car park was used to estimate VO

measurement error for 2D motion. First, raw VO imagery was captured to estimate the six

degrees of freedom (x, y, z, roll, pitch, yaw) error for different TVO and corresponding covariance

matrices. Any mean values from the errors were neglected. It is believed that bias could arise from
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stereo camera miscalibration and lack of perfect synchronisation between VO and ground truth.

Then, only variances of px, py, and ψ were used to build RVO for 2D motion; any cross-correlation

that might have been present when analysing errors is neglected. It is dictated by the fact that

the VO algorithm [33] uses RANSAC to solve the perspective-three-point problem [86] (further

augmented by using M-estimator [87]), which provides independent estimates for each degree

of freedom. Non-zero cross-correlation may have been a result of how the rover was operated. A

possible improvement could be made by estimating RVO using photo-realistic simulations with a

perfect ground-truth so that VO results are isolated from the environment’s impact and rover’s

control system.

The main metric used when comparing both models was the Euclidean distance error. It

allows plotting a single error metric for 2D movement with its 3σ confidence margin defined as

3σ= 3
√

Pxx +Pyy (5.16)

Where Pxx and Pyy are variances of px and py position estimates respectively.

For the comparison, only trajectories from the Hengrove dataset were used (described in

section 2.3.1). To make results representative, time constants related to longitudinal and lateral

slips were set to 20 s (the same value as for T0 in the one-dimensional EKF defined in chapter 2),

whereas the time constant associated with the low-pass filter driving the angular slip was set to

1 s. Process noise variances were set as presented in Table 5.1. Typically, higher values result

in a noisier P matrix which could be seen as a saw-tooth in 3σ confidence margin for position

estimation. The variance on control inputs for Model 1 may seem quite high, however, in the case

of σ2
Ωi

, it was calculated by assuming a unit standard deviation of a linear velocity impact on the

platform (what is equivalent to σv for Model 2), scaled by an inverse of wheels radius ρ = 0.112 m

to convert it into the angular rate. As for the σ2
φi

, it was selected based on trials and errors. Low

values result in high trust in control input, making little use of any measurement updates. On

the other hand, higher σ2
φi

results in the higher trust being placed in measurements, at which

point wheel slip estimates govern a balance between WO and VO for orientation estimation.

To compare both models, it is best to present their results side by side, as seen in Fig. 5.3.

At first glance, it becomes clear that Model 2 outperforms Model 1. Some merit may be given to

Model 1 when frequent VO updates are available (top row). In those settings, only one trajectory

is completely erroneous, but for the rest Model 1 correctly tracks the convariance in position

estimation. The same cannot be said about Model 2, where errors from a few trajectories grow

beyond 3σ confidence margin. In general, it is assumed that the poor performance of Model 1 is

Table 5.1: Initial process noise variances for 2D models comparison.

σ2
Ωi

σ2
φi

σ2
v σ2

c σ2
λx

σ2
λy

σ2
λψ

Model 1 81 100 N/A N/A 0.25 0.49 1
Model 2 N/A N/A 1 1 0.25 0.49 1
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TVO = 0.2 s

TVO = 1.0 s

TVO = 2.0 s

TVO = 3.0 s

(a) Model 1 (b) Model 2
(c) Model 2 with non-zero cross-
correlation in RVO

Figure 5.3: Comparison of two models’ distance errors using trajectories from the Hengrove
dataset. Black plots represent trajectories on the tarmac and green on the grass. Dashed lines
represent the 3σ confidence margin. Note that all errors are positive as they are 2D Euclidean
distances.
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related to having four individual steering wheels. Any wheels misalignment confuses the filter

very much. Also, having one control input per wheel does not allow for any averaging of the noise,

which happens in Model 2, where WO’s observation smooths the impact of any misalignment. On

the other hand, Model 2 does not do a good job in tracking the covariance. Not only for a frequent

VO as mentioned earlier, but also for less frequent as seen in the second and third rows. The

errors are quite small, but the covariance continues to grow exponentially. Fig. 5.3(c) presents

Model 2 with non-zero RVO cross-correlation and is only provided to illustrate impact erroneous

covariance matrix may have.

Note how some trajectories seem as if they bounce back from the zero distance error, for

example, as seen in some black trajectories in Fig. 5.3(b) top row. It results from the platform

starting to turn into the opposite side of the ground-truth path and crossing it. What is interesting,

at the intersection, the error is almost zero, which indicates accurate tracking of total distance

travelled, which is in line with observations from chapter 2. One such trajectory is presented in

Fig. 5.4(a), where black ellipses indicate a 3σ error margin around highlighted points. On the

same plot, at the beginning, the estimated position path follows the path of unfiltered VO closely.

It may suggest that having only VO measurements would be a better solution, especially for fast

VO acquisition (in Fig. 5.4, TVO = 0.2 s). However, when no WO measurements are provided

to better estimate noises on the control inputs and to provide a comparison for slip estimation,

the 3σ error margin is much bigger, as shown in Fig. 5.4(b). What is interesting, when using

frequent VO measurements alone, 3σ margins look similarly to those seen in Fig. 5.3(b) middle

rows as opposed to the top row (TVO = 0.2 s). Further investigation is required to understand

this behaviour better.

Another observation can be made when inspecting the decrease in the 3σ margin on some

trajectories. For example, in the second row in Fig. 5.3(b) there is one green trajectory where

the margin goes visibly down around 200th second and then starts to grow exponentially from

around 260th second. It is a result of the platform turning. The example trajectory with plots

of Pxx, Pyy, and Pxy variances are presented in Fig. 5.5. In this trajectory, the rover started to

drive forward on X-axis for one metre, then turned right and continued on the Y-axis until the

U-turn. Similarly to Fig. 5.4, the ellipsoidal 3σ margin grows on the vehicle’s local frame’s lateral

axis - X in this example. This is reflected by the growth of variance Pxx seen in Fig. 5.5(b). When

turning, the platform starts to move on the X-axis, which results in a reduction of Pxx and an

increase in Pyy. Also, the Pxy starts to change to reflect the turn, which is also seen as a change

in ellipsoidal shape in Fig. 5.5(a). Once the platform is traversing along the Y-axis again, the

Pxx resumes growing. It seems that non-zero curvature improves the localisation performance,

however, it is not immediately obvious why. The model is fully observable thus, it may be related

to wheel misalignment or measurement covariance matrices. It would be an exciting topic to

explore in more detail using more trajectories. Nonetheless, further investigation is beyond the

scope of this project.
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(a) Fusion of VO and WO (b) Only VO measurements

Figure 5.4: An example trajectory for Model 2 with TVO = 0.2 s. On the left, note how the estimated
position (blue) intersects with the ground truth (red). Unfiltered VO and WO estimations are
presented to better understand the raw information from sensors. Black ellipses represent 3σ
errors around the estimates. On the right, WO measurements are not fused. Notice how the
estimated position follows the path of unfiltered VO, but 3σ errors are greater than when fusing
both VO and WO.

(a) Example trajectory for Model 2 (b) Uncertainties of the example trajectory

Figure 5.5: An example trajectory for Model 2 with TVO = 1 s with a U-turn on the left. The
covariance of position estimation grows on the lateral axis which is reflected in the shape of the
ellipsoidal 3σ margin during the turn, and in the variances plot on the right.

To summarise, in the case of a platform with independent wheels, where only VO and WO

measurements are available, a simple kinematic Model 2 outperforms Model 1 implementing

per wheel control. In the following sections, when discussing the adaptive EKF and reactive VO

scheduling, only Model 2 is used.
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5.2 Adaptive EKF and Reactive VO Scheduling for 2D Model

This section begins with an analysis of how changing each parameter related to process noises

impact the model’s accuracy. The aim is to establish if the adaptive solution would impact the

accuracy in the first place. Then, the same Sage-Husa [68, 69] algorithm as presented in section

3.2.2 is implemented, tested, and discussed. Finally, a simple reactive VO solution is presented to

assess its feasibility for the 2D motion problem.

5.2.1 Parameters Sensitivity

The first task is to manually change process noise parameters and assess how they impact the

filter’s position estimation performance. If the model’s accuracy does not change when varying

these parameters, an adaptive EKF would only add computational overhead without any gain

in the quality of the estimation. The parameters listed in Table 5.1 for Model 2 are selected as

the starting point. To have a clear view of the impact these parameters may cause, they are

changed to either a low value, 0.1, or a high value, 10. To better isolate the impact of varying

parameters on the quality of the position estimation, this analysis is performed for only one

straight trajectory on the tarmac from the Hengrove dataset. The analysis was performed under

TVO = 0.2, 1, and 2 s, as the process noise may have a different impact on position estimation

depending on the frequency of VO measurements.

Fig. 5.6 shows the results of changing standard deviation of each process noise using metrics

defined in section 1.6. Middle bars, red, are always the same as they represent default parameters.

When performing the analysis, only one noise statistic was changed at a time to give a clear

indication of its impact on the filter’s performance.

Below is a list of several highlights of this comparison

• The lowest RMSE (top row) was for a system fusing VO every two seconds (Fig. 5.6(c)),

with the system fusing VO every second (Fig. 5.6(b)) providing only a slightly bigger RMSE.

This behaviour needs to be investigated in the future to determine why it is not the case,

as one would expect lower RMSE for frequent VO measurements. We believe it results

from an insufficient number of WO measurements in between VO, which does not offer

enough information to estimate the increased number of wheel slip parameters correctly.

The size of the 3σ confidence margin of position estimation (middle row) is related to VO

measurement covariance matrix RVO as expected. The more frequent VO, the smaller the

covariance matrix and the smaller the margin. However, the margin is too small when

operating frequent VO leading to error in position estimation exceeding the confidence

margin.

• σv impacts the 3σ confidence margin of the position estimation. The smaller value, the

larger the confidence margin and vice versa. It also impacts RMSE, however, in a dif-

ferent way depending on TVO: for frequent VO, smaller σv increases RMSE, whereas,
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RMSE

Area

under 3σ

confidence

margin

Area

between

exceeded

error

and 3σ

confidence

margin

(a) TVO = 0.2 s (b) TVO = 1 s (c) TVO = 2 s

Figure 5.6: Parameters sensitivity for Model 2 for varying process noise statistics showing metrics
for errors in position estimation. Noise statistics on individual plots going from left to right: σv,
σc, σλx , σλy , and σλψ . Each time only one standard deviation was changed compared to default
parameters as outlined in Table 5.1. In each plot, the middle bars are always the same. Vertical
axis limits truncate some bars. Note the legend in the centre-bottom plot, where blue - lower
values than the default, red - default values, and yellow - increased values.

for infrequent VO, it increases the error. However, the impact of σv diminishes as TVO

increases.

• σc seems to impact only RMSE for frequent VO. However, what is not captured in these

metrics is the shape of the covariance of other state estimates. In this case, the bigger σc,

the noisier is the variance in orientation, Pψψ.

• The longitudinal slip has a similar impact on the 2D model to the 1D model. Also in the

case of the 2D model, lower σλx results in an overestimation of the distance travelled, best

seen in Fig. 5.6(a). For low values, the filter trusts WO more, leading to increased RMSE,

which confirms observations from chapter 2. The change in the error for smaller σλx is not

substantial, as this analysis was performed using a tarmac trajectory that already offers

very little wheel slip.
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• The lateral slip has the most impact on the shape of the trajectory. It relates to side motion

which may come from misaligned wheels. For low σλy , the estimated position follows the

unfiltered WO path more closely, leading to increased RMSE (note how unfiltered WO path

compares to ground truth in Fig. 5.4 and Fig. 5.5). Interestingly, too high σλy also impacts

the shape of the trajectory. At that point, any small changes in the steering may be enlarged

by the filter resulting in a different direction of movement.

• σλψ impacts the system differently depending on TVO. For frequent VO in Fig. 5.6(a), both

smaller and bigger σλψ offer lower RMSE. However, as TVO increases, this relation changes

so that in Fig. 5.6(c), the smallest RMSE is for the default parameter. As mentioned earlier,

these metrics do not capture the shape of covariance and as such large σλψ , similarly to σc,

results in noisier the variance in orientation, Pψψ.

Overall, it is possible to conclude that changes to noise statistics do not always impact the

system in the same way, but they rather depend on TVO. Tuning these noise statistics is better left

for an adaptive EKF rather than trying to manually define a set of parameters for a given TVO.

Especially with varying time between VO measurements (reactive VO), the impact of incorrectly

defined noise statistics may not be seen right away but after some time.

5.2.2 Adaptive EKF

The Sage-Husa algorithm is used for the 2D problem as selected in section 3.2.2 to see if it will

work with only minor changes. For the 1D problem, a simulation campaign was designed to try

and find the best set of weights for RVO, RWO, and Q adaptation. However, in this case a set of

parameters was selected arbitrarily based on several trials and errors, namely NWO = 100, NVO

= 10000, and NQ = 10000. The parameters are far from optimal, but they show whether the idea

of adaptive EKF and later reactive VO scheduling can be applied to higher dimensions. More

extensive simulations should be designed in the future, considering the possibility of different

weights within WO and VO, for example, different weights for each degree of freedom in the VO

estimate.

The following additional considerations and assumptions were also taken into account:

• All measurement noises are unbiased and therefore have zero mean value. In chapter 3, it

was shown that a non-zero mean value for VO may improve its performance for bigger TVO.

However, an additional sensor to complement VO is required to verify that properly. Without

it, adapting VO impacts both wheel slip estimation and VO’s mean residual, making one

unobservable.

• No cross-correlation in measurement noise covariance matrix is allowed for both RVO and

RWO. For WO, each encoder measurement is independent, making this assumption valid

at any time. In the case of VO, the delta motion is estimated for all degrees of freedom. It
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would make sense to allow cross-correlation in RVO, however, early results indicated worse

outcome for EKF (section 5.1.3 and Fig. 5.3(c)). As a consequence, during the R-adaptation

step, all values outside the main diagonal in RVO and RWO are set to zero. Also, in case

when VO and WO measurements arriving at the same time, there is no cross-correlation

between RVO and RWO.

• For RWO-adaptation, only the measurement noise related to steering angle is adapted.

The position estimation performance was much better when the measurements of wheels

rotation were not adapted. In the future, it might be advantageous to have separate

adaptive gains for steering and wheels’ rotation, however, here, we decided to adopt a more

(a) Errors in distance for TVO = 0.2 s (b) Errors in distance for TVO = 1.0 s

(c) Errors in distance for TVO = 2.0 s (d) Errors in distance for TVO = 3.0 s

Figure 5.7: Distance errors for an adaptive 2D model. Black plots are for trajectories on the
tarmac and green are for trajectories on the grass. Dashed lines indicate 3σ confidence margin.
Bad results for the last model with TVO = 3 s are believed to be associated with wrong orientation
estimation. Turns can happen rapidly and thus infrequent VO may not fully estimate how far
the robot has turned.
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straightforward approach.

• All process noises are biased and have a non-zero mean value, estimated during the

adaptation step. Non-zero mean is expected for wheel slip but can also be valid for control

input uncertainty, for example, when wheels constantly report different velocity than

commended.

• In the process noise, a cross-correlation between all noises is allowed except for wλψ . The

uncertainties on control inputs, wv and wc, are assumed to be correlated as the platform

may reduce its speed when driving at an angle to reduce the stress on wheels mounts. The

correlation between the control input uncertainty and longitudinal, wλx , and lateral slip,

wλy , is assumed on the same basis as the 1D model. For example, the platform may slip

when subjected to a sudden change in control velocity. Finally, both longitudinal and lateral

slips describe the terrain and are assumed to be correlated. However, the angular slip acts

as a bias and mainly captures the wheels’ miscalibration. Because of that, we decided not

to correlate it with other process noises.

The results of applying an adaptation to Model 2 are presented in Fig. 5.7. Starting with

Fig. 5.7(a), notice how errors and confidence margin are much smaller. There are still trajectories

for which errors grew outside the confidence margin, but their magnitude is 2-3 times smaller.

Fig. 5.7(b) shows an excellent improvement in the tracking of covariance in position estimation.

The errors remain similar to EKF, but the filter gives more confident estimates. It is similar in

Fig. 5.7(c) with the exception of two grass trajectories. They were also problematic for the EKF,

however, in the case of the adaptive filter, uncertainties do not bound them. Finally, there seems

to be little to no effect of the adaptive filter in Fig. 5.7(d). With large adaptive gains and low VO

frequency, the filter adapts very slowly based on available information.

5.2.3 Reactive VO Scheduling

With adaptive EKF proved to be working for the 2D problem, the next step is to investigate

reactive VO scheduling. As before, the aim is to try the same approach as defined in the chapter

3 with some adjustments, namely:

• The strategy which checks the variance of process noise that drove 1D slip estimation is

extended to all slip noises and the cross-correlation between wλx and wλy . In other words,

additional VO is scheduled whenever there is an increase by 1.6% in σ2
λx

(k), σ2
λy

(k), σ2
λxλy

(k),

and σ2
λψ

(k) compared to σ2
λx

(k−1), σ2
λy

(k−1), σ2
λxλy

(k−1), and σ2
λψ

(k−1) respectively.

• One of the trigger strategies is an unknown VO error. To statistically validate VO mea-

surement, a squared Mahalanobis distance [72] is calculated, as defined in (3.8). It follows

a Chi-square distribution with the number of degrees of freedom equal to the degrees of

freedom provided by the VO estimate itself. In the 1D problem, the VO was valid with

99



CHAPTER 5. WHEEL SLIP ESTIMATION IN MOTION IN A PLANE

EKF

AEKF

Reactive

(a) TVO = TVOMAX = 2 s (b) TVO = TVOMAX = 3 s

Figure 5.8: Distance errors for 2D reactive VO scheduling compared with EKF and AEKF. Black
plots are for trajectories on the tarmac and green are for trajectories on the grass. Dashed lines
indicate 3σ confidence margin. Note how reactive solution provides better position estimation
for TVOMAX = 2 s. For 3 s all models are subject to the same increased errors that are believed to
come from wrong orientation estimation.
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95% probability if the Mahalanobis distance was not greater than 3.841 (one degree of

freedom). In the 2D case, VO estimates delta motion in three degrees of freedom, therefore,

the threshold is 7.815.

The results of applying reactive VO scheduling with TVOMAX = 2 s and 3 s are presented

in Fig. 5.8, together with EKF and Adaptive EKF (AEKF) for better readability. Inspecting

Fig. 5.8(b), notice that one grass trajectory for which error exceeded 3σ confidence margin at the

very beginning for both EKF (top row) and adaptive EKF (middle row) achieved lower error and is

now within the confidence margin. Nevertheless, the performance of the reactive VO scheduling

system with TVOMAX = 3 s is not great. A solid performance of an adaptive filter is required for the

reactive VO solution to offer visible improvements. However, note how reducing the maximum

time between VO measurements to two seconds, as seen in Fig. 5.8(a) better illustrates the

benefits of the reactive VO scheduling system. The reactive solution (bottom row) results in a

lower error for grass trajectories while maintaining only a slightly bigger confidence margin

compared to AEKF (middle row).

5.3 Summary

In this chapter, it has been shown that the solution for fusion of VO and WO with integrated slip

estimation can be also applied to higher dimensions. With a limited number of sensors used, a

simple mathematical model proved to be more accurate when tracking the 2D position over the

more complex model that includes per wheel control. The model was successfully extended with

the existing adaptive algorithm from the chapter 3 to demonstrate the reactive VO scheduling.

The 2D model was not so well-tuned as the 1D model, but the solution is viable as a proof of

concept.

Besides the parameters tuning, such as the gains for varying TVO in the adaptive EKF, the

position estimation for higher dimensions could greatly benefit from additional sensors, such as

IMU. Wheels’ steering was not too reliable in tracking the vehicle’s orientation. Also, VO at a lower

framerate struggled when moving in the arc. It is generally more vulnerable to errors during turns

as the scenery may change drastically, preventing reliable feature tracking. As a result, even

though the platform may correctly track the total distance travelled, it was, on some occasions,

integrating its delta motion in the wrong direction. It is not too surprising, as all dead reckoning

solutions suffer from this problem. There was hope that an input steering/curvature would fill

this gap, but it was insufficient. An IMU could be a missing link in estimating the platform’s

orientation. Unfortunately, the only IMU was inside the RTK unit used for ground-truthing in

the available setup.
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6
RESULTS AND DISCUSSION

This chapter summarises and discusses all results from the perspective of the research

question stated at the beginning. Section 6.1 lists the main contributions from each

chapter. These are provided here for convenience before diving into the research question

to which answer is provided in section 6.2 with an interesting discussion provided in section 6.3.

6.1 Thesis Summary

6.1.1 Model with Integrated Slip Estimation

In chapter 2, a model with Integrated Slip Estimation was defined, tuned, and analysed. Even

though the model was verified only on two types of terrain, its performance was promising. Its

(a) Filter Free Estimation (b) Separate Slip Estimation (c) Integrated Slip Estimation

Figure 6.1: A comparison of errors in position estimation between different fusion models for TVO
= 2.0 s. Black are trajectories on the tarmac and green are trajectories on the grass. Note how the
model with Integrated Slip Estimation provides lower errors for all trajectories.
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(a) Pseudo-control uλ from Separate Slip Estimation (b) λ from Integrated Slip Estimation

Figure 6.2: Single trajectory with overlaid error in position estimation (blue) and slip estimation
(orange). Note how the system with Integrated Slip Estimation better filters wheel slip due to its
low-pass filter. As a result, the error in position estimation is relatively small compared to the
system with wheel slip treated as a pseudo-control input.

main advantage is modelling wheel slip as a low-pass filter driven by a process noise. The model

not only gave better accuracy compared to other representative models (Fig. 6.1) when the VO

update rate was relatively long, but it also offered the capability of filtering out incorrect VO

measurements (Fig. 6.2).

6.1.2 Adaptive EKF and Reactive VO Scheduling

In chapter 3, the model was extended with the adaptive filter. Next, several trigger strategies

were defined based on the outputs of the adaptive filter to determine when the subsequent VO

measurements should happen. This reactive VO scheduling solution improved overall position

estimation on all trajectories under investigation by scheduling new VO measurements where

needed. This approach was tuned using several short trajectories (Fig. 6.3 top row) and later

validated using long trajectories from two different datasets (Fig. 6.3 middle and bottom rows),

including one where the rover drove at double its nominal speed (Fig. 6.3 bottom row). For the

Sand Bay Beach case, a tradeoff between RMSE ans the number of VO measurements (Fig.

6.4) shows that the proposed solution maintains comparable localisation accuracy while using

approximately seven times less VO measurements.
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Short
Traj.

Long
Traj.
(Hen-
grove)

Long
Traj.
(Sand
Bay
Beach)

(a) EKF with fast VO (b) AEKF with reactive VO scheduling

Figure 6.3: Errors in position estimation for EKF with fast VO acquisition (TVO = 0.6 s for top
two rows and 0.2 s for the bottom row) and AEKF with all reactive VO strategies (TVOMAX = 3 s
for top two rows and 2 s for the bottom row). Top two rows are using Hengrove dataset, hence
black plots are for trajectories on the tarmac and green on the grass. Dashed lines represent 3σ
confidence margin.
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Figure 6.4: A tradeoff between RMSE and the number of VO measurements based on one long
trajectory from the Sand Bay Beach dataset (double the nominal rover speed). An ideal solution
would be confined to the bottom-left corner.

6.1.3 Wheel Slip Measurements and Prediction

Chapter 4 investigates how the information about the predicted wheel slip could be fused into

the model for improved navigational accuracy. The model with Integrated Slip Estimation from

chapter 2 is used as a baseline, with additional models defined to show various ways how the

wheel slip can be treated. When using a slip profile in the model, an interesting observation is

made when the model recognises slip values from the profile in measurements. It is indicated

by a reduction of variance in position estimation which resembles SLAM (Fig. 6.5). It opens the

possibility of using wheel slip as another source for position estimation.

Figure 6.5: Slip profiles against the variance of position estimation for Model 3B with TVO =
3 s: solid blue line – estimated wheel slip, solid green line – slip profile used for the simulated
vision-based classifier, magenta dashed line – variance of the position estimation. Note a decrease
in position estimation’s variance.
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ACCURACY?

(a) EKF (b) AEKF (c) AEKF + Reactive VO Scheduling

Figure 6.6: Distance errors for 2D reactive VO scheduling compared with EKF and AEKF for
TVO = TVOMAX = 2.0 s. Black plots are for trajectories on the tarmac and green are for trajectories
on the grass. Dashed lines indicate 3σ confidence margin. Note how reactive solution provides
better position estimation.

6.1.4 Motion in a Plane

All previous discussions were made for a one-dimensional problem. An initial attempt to introduce

reactive VO scheduling, as defined in chapter 3, to a two-dimensional problem is presented in

chapter 5. A simple model is defined, which utilises three different slip values: longitudinal,

lateral, and angular. The system is evaluated using only one dataset from Hengrove Park. The

results are promising given that all algorithms were used as-is (Fig. 6.6), however, there is room

for improvement and further investigation. Suggestions in that matter are listed in the next

section 7.2 but suffice to say that to achieve a good quality of results, more research in this area

is required.

6.2 Can VO frequency be reduced without sacrificing
navigational accuracy?

The answer to this question is provided solely on outputs from chapters 2 and 3. As indicated

earlier, models from chapter 4 required a simulated slip profile, whereas chapter 5 provided only

an initial attempt to use the reactive VO scheduling for two dimensions

Based on the tradeoff presented in chapter 3, adaptive EKF with reactive VO scheduling, on

average, requires 4-7 times fewer VO measurements compared to EKF with VO triggered every

0.6 seconds. At the same time, the proposed solution led to nearly double the RMSE compared

to EKF in Hengrove dataset and half the RMSE in the Sand Bay Beach dataset (whilst double

the rover speed). In both cases, the error was often less than 1% of the distance travelled, which

is often a minimum requirement. Fig. 6.7 shows the plots of the relative error. Aside from the

beginning of each trajectory when the filter initialises, the relative error is usually below the 1%

margin. Only in the Sand Bay Beach trajectory the error exceeds the margin at some point, but
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(a) Hengrove, tarmac, 0.2 m/s (b) Hengrove, grass, 0.2 m/s (c) Sand Bay Beach, 0.4 m/s

Figure 6.7: Relative absolute error to ground truth distance for each long trajectory. Dashed lines
mark 1% threshold.

even then, the error is minimised as the drive continues. With this in mind, we assumed adaptive

EKF with reactive VO scheduling to be an accurate method for 1D localisation.

With the system capable of maintaining good navigational accuracy, reducing VO measure-

ments could free enough computational resources to execute other algorithms, such as SLAM for

localisation and mapping with loop closure or machine-learning-based techniques to advance the

rover’s terrain recognition capabilities further.

However, is it possible to go one step further and assess if the adaptive EKF with reactive VO

can lead to reduced power usage for a rover?

6.3 Could AEKF with Reactive VO Lead to Reduced Power
Usage for SFR?

To begin with, it is essential to note that because SFR development is still in an early stage,

there is limited publicly-available documentation describing its systems and power budget. This

section is based on two sources of information:

• the ExoMars rover – SFR aims to re-use as many ExoMars components and subsystems as

possible. For example, the same Localisation/Navigation cameras will be used on SFR as on

ExoMars.

• ESA’s MarsFAST CDF Study Report [88] – even though it explains early concepts, some

information is relevant.

SFR is expected to drive around 200-300 m per sol (Martian day). Given that solar panels

will power it, its operations may be limited to only around noon. To cover a large distance in a

short time, SFR will have to drive fast. Originally it was assumed to drive at 8 cm/s, compared to

1.1 cm/s for ExoMars. However, there are indications that the drive speed has been since reduced

to 6.67 cm/s. This decision is to maintain a similar distance between consecutive stereo pairs
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for VO. In the case of ExoMars, VO will perform every 10 s [21]. With 1.1 cm/s that gives 11 cm

separation. In the case of SFR, VO is expected to run every 2 s, which would lead to a 13.34 cm

distance between VO measurements.

When looking at hardware power consumption, the following details were extracted:

• Stereo Camera – direct impact on VO

• LEON4 – co-processor responsible for VO estimation

• Overall locomotion and Guidance, Navigation, and Control (GNC) during traverse – baseline

Table 6.1 summarises power usage of listed items. The camera’s peak power can be further

confirmed on Neptec UK’s website1 (ExoMars camera manufacturer). However, there is no

indication about power usage in a standby mode, nor is any information on how entering standby

mode could further optimise power usage. The table shows that cameras and CPU power usage

are negligible when traversing from the overall system perspective. It is also unknown if cameras

can enter standby mode on-demand between image acquisition. Also, it is unknown if the CPU

can use less power when not utilised. Performing operations on CPU is commonly known as

“free resource”, as it is always on, and there is no publicly available information to indicate

whether Leon4 can reduce its power usage when not on full load. What is unknown at this stage

is whether running VO requires a cooling system for the CPU. Mars’s atmosphere may have

different heat dissipation properties. Should active cooling be required, it could affect the overall

power consumption.

After an informal discussion with some engineers, the following has been assumed:

• The stereo camera operates all the time. There is a low-power mode, but it is only used at

night. Entering the operational mode may require several onboard procedures like sensors

warming up.

• CPU is powered all the time and most likely does not change power draw.

• At the time of writing this thesis, the power needed for SFR’s traverse is estimated to be

around 170 W, which is 2.5 times more than expected. Any saving in powering cameras

would be negligible from the overall locomotion and GNC power perspective.

Table 6.1: Power usage for selected SFR subsystems

Item Initial Power Usage Revisited Power Usage

Localisation Camera Peak Power < 5.0 W [89] < 2.5 W [90]
Localisation Camera Stand-by Mode < 1.5 W [89] < 2.0 W [90]

LEON4 Co-Processor N/A < 3.0 W [91]
Overall Traverse 70.84 W [92], 79 W [88] 170 W

1https://neptec.com/missions/exomars-mars-mission/ - the website is no longer available as Neptec was acquired
by MDA, which does not provide information about ExoMars cameras.
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(a) Hengrove, tarmac, 0.2 m/s (b) Hengrove, grass, 0.2 m/s (c) Sand Bay Beach, 0.4 m/s

Figure 6.8: Total motors power and incremental energy for 1000 s long traverse section. The blue
line indicates current power in W, the red line is incremental energy usage in kJ.

As indicated in Fig. 6.4, reactive VO can achieve comparable accuracy for fewer images than

ExoMars and SFR baseline. However, the current avionics are not designed to take advantage

of it as they are tailored to the existing workflow. There is a minimal difference in cameras’

standard and standby power modes, and any savings there would not impact the overall power

budget during the traverse. It is somehow confirmed in a separate study [30] where it was shown

that for the same amount of energy, a representative rover traversed about 2380 m when using

VO and vision-based maps for navigation compared to a 2700 m blind drive. In that work, the

authors recognise that energy used for VO constitutes about 24.5% of the total addition (the rest

goes to map building). It could be interpreted as VO costing the rover only about 78 m of the total

distance (nearly 3% of the blind drive distance).

There are still two other possible advantages of using reactive VO. Firstly, it would free up

the co-processor, allowing leveraging other compute-intense algorithms to be executed on the go.

Based on the experiments, there are reasons to believe that the VO trigger time could be doubled

to 4 s enabling other algorithms to use spare co-processor time for other tasks.

The second advantage of using reactive VO might be counter-intuitive. Because it allows

for a greater distance between images, assuming constant SFR VO frame rate, higher rover

speed could be achieved. It, hypothetically, could lead to some energy savings. Carefully designed

experimentation would be needed to confirm or disprove it, but a crude example would be petrol

cars with the best efficiency at a speed of 55-65 miles per hour. To back this hypothesis with

results from the trials, Fig. 6.8 provides motors power and incremental energy usage for 1000 s

long intervals on the tarmac, grass, and from the Sand Bay Beach where the rover drove at double

speed. Total energy consumed during the traverses is listed in Table 6.2. Note that these power

and energy values take into account only locomotion - they exclude sensors and computation.

At first glance, driving at double the speed may double the energy used. However, note that

trajectory on the grass with the same speed as on tarmac uses 62% more energy. It shows that

more power is needed to negotiate challenging terrain rather than drive faster. In Sand Bay

Beach, the rover was subject to concrete, grass, and sand at double the speed, which, compared to
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Table 6.2: Total energy usage after 1000 s drive

Increase Compared
Terrain Nominal Speed [m/s] Total Energy Used [kJ] to Tarmac

Tarmac 0.2 20.012 1
Grass 0.2 32.441 1.62

Mixed beach 0.4 39.682 1.98

the trajectory on grass, increased power output only by 22%. It is only one example and should

not be treated as general proof of the hypothesis, but it indicates an area that may be further

explored. Of course, much depends on the locomotion system. Even though the rover used in this

project has a representative suspension and chassis, its motors may not be.

To summarise, reactive VO on its own may not lead to reduced power usage. It may only

free computational resources. However, because the results suggest that accurate localisation is

still achievable with less frequent VO measurement (longer distance between consecutive stereo

frames), a rover may favour faster travel speed. Eventually, it may lead to reduced overall power

output.
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7
CONCLUSIONS AND FURTHER RECOMMENDATIONS

This chapter concludes the thesis by providing a reflection upon the project objectives and

how they were achieved. It is done in section 7.1, whereas section 7.2 lists recommenda-

tions for future work.

7.1 Conclusions

With upcoming missions to explore Mars and Moon, more emphasis is on long-range navigation.

For rovers to achieve that, they need more powerful computing capabilities and bigger onboard

power storage units. However, we propose to revisit how sensors are controlled and how their

information is fused in the hope of freeing some computational resources and potentially leading

to reduced power usage.

This thesis investigates ways of reducing the number of VO measurements while maintaining

navigational accuracy for a rover by integrating wheel slip estimation into EKF and inspecting

how the wheel slip can be predicted. The main focus of this work was to consider only one

dimension (total distance travelled). A two-dimensional model was also explored and even though

the results were promising, it suggests that more research in this area is still required.

The main objective of this project was to assess if VO frequency can be reduced without

sacrificing navigational accuracy. As discussed in the previous chapter, it is possible. However, it

is important to note that it is based on results from only two field trials. More testing would be

highly recommended, but so far the outcome of this project is very encouraging. This problem is

further discussed to evaluate if the solution can translate into the reduced power consumption of

a rover. As highlighted, it very much depends on the avionics of the robot, however, a hypothetical

idea is presented which claims that a robot may use less energy by driving faster. A reduced VO
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frequency for a rover driving at a nominal speed could be translated into a nominal VO frequency

with a faster drive.

In the course of this project, models for wheel slip measurement prediction were also eval-

uated. Even though the results did not contribute directly to the main objective, the outcome

highlighted a possibility of a slip-based SLAM system. It could further improve localisation

accuracy, especially when driving faster.

Finally, the main objective, with a reduced scope (i.e. without actual analysis of the number

of VO measurements used and utilising only one dataset) was also assessed in 2D motion in a

plane. This work aimed to analyse if the proposed model can be scaled into higher dimensions.

This has been done successfully, albeit more work is required to fully validate the solution.

7.2 Future Work Recommendations

This section lists three main ’leftovers’ which could be pursued in the future by further strength-

ening the slip-aware localisation for wheeled vehicles.

1. Design a system for wheel slip prediction utilising image-based assessment of the terrain

in front of a robot and relating it to wheels performance. One can imagine how the terrain

is segmented into different types with associated tilt angles from depth estimation. This

information could provide a more detailed prediction of wheel slip, which could be refined

when the robot drives over that particular terrain type. By providing an in-depth analysis

of the wheel’s torque and power consumption, the system could learn to predict future

wheel slip values better. A similar approach was presented in [77].

2. When analysing motion in a plane, the maximum time between VO measurements had to be

reduced from 3 s to 2 s. We believe it was a consequence of not having enough image overlap

during turns to correctly estimate the yaw angle. Including an IMU to provide orientation

estimations in between VO measurements could lead to better overall performance. It would

be interesting to include raw IMU measurements in EKF to estimate biases and angles and

compare this approach with existing IMU filters that output unbiased orientation angles,

such as the Madgwick filter [93].

3. A more in-depth analysis of adaptive filter for motion in a plane. In this project, there

was one adaptive gain for the entire process noise, and one for each measurement noise.

However, one could imagine having a scaling matrix where individual components scale

individual noises (variances) and their cross-correlations. The same is applicable for VO

and WO measurements where each degree of freedom could have separately-tuned gain for

adaptive EKF.
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DERIVATION OF FORMULAS FOR MODEL WITH INTEGRATED SLIP

ESTIMATION

This annex provides equations for discretisation of p(t), θ(t), Ω(t), and λ(t) from the state

vector defined in (2.7) as

x(t)= [p(t),θ(t),Ω(t),λ(t),m(t)]T (A.1)

States under consideration, based on Fig. 2.4, are defined in the continuous time as:

p(t)=
∫ t

0
ρΩ(τ)

(
1−λ(τ)

)
dτ (A.2a)

θ(t)=
∫ t

0
Ω(τ)dτ (A.2b)

Ω(t)= uΩ(t)+
∫ t

0
wα(τ)dτ,wα ∼ N(w̄α,σα) (A.2c)

λ(t)= K
(
1− e

−t
T0

)
wβ(τ),wβ ∼ N(w̄β,σβ) (A.2d)

Note that the gain K for the low-pass filter in this work was set to one, however, for the com-

pleteness of this work and for the benefit of readers, an unknown value is assumed. Furthermore,

it is assumed that

wα(k+1)= wα(k)→ dwα(τ)
dτ

= 0 (A.3a)

wβ(k+1)= wβ(k)→ dwβ(τ)
dτ

= 0 (A.3b)

Because (A.2a) contains non-linearity, it is the most difficult to discretise from all (A.2).

Additionally, p(k+1) requires other equations from (A.2) to have a known discrete form. As such,
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we begin with Ω(t) noting the assumption (A.3a). Its discrete form is

Ω(k+1)= uΩ(k+1)+
∫ k+1

0
wα(τ)dτ= uΩ(k+1)+

∫ k

0
wα(τ)dτ+

∫ k+1

k
wα(τ)dτ

= uΩ(k+1)+ (
Ω(k)−uΩ(k)

)+∫ k+1

k
wα(τ)dτ

=Ω(k)+uΩ(k+1)−uΩ(k)+∆t
w̄α(k)+ w̄α(k+1)

2
=Ω(k)+uΩ(k+1)−uΩ(k)+∆tw̄α(k)

(A.4)

Next we discretise θ(t) utilising (A.4)

θ(k+1)=
∫ k+1

0
Ω(τ)dτ=

∫ k

0
Ω(τ)dτ+

∫ k+1

k
Ω(τ)dτ= θ(k)+

∫ k+1

k
Ω(τ)dτ

= θ(k)+∆t
Ω(k)+Ω(k+1)

2
= θ(k)+∆t

Ω(k)+Ω(k)+uΩ(k+1)−uΩ(k)+∆tw̄α(k)
2

= θ(k)+∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ ∆t2

2
w̄α(k)

(A.5)

Because λ(t) is an output from the low-pass filter, we use Z transform assuming Zero-Order

Hold (ZOH) model. The transfer function of a low-pass filter in s-domain is given as

G(s)= K
sT0 +1

(A.6)

We then apply ZOH model and evaluate it using information from appropriate tables

GZOH(z)= (1− z−1)Z
{G(s)

s

}
= (1− z−1)

K
(
1− e−

∆t
T0

)
(1− z−1)

(
z− e−

∆t
T0

) =
K

(
1− e−

∆t
T0

)
(
z− e−

∆t
T0

) = λ(k)
w̄β(k)

(A.7)

Eq. (A.7) can be applied to evaluate λ(k+1) noting that operator z indicates timestep at k+1

λ(k+1)=λ(k)e−
∆t
T0 +K

(
1− e−

∆t
T0

)
w̄β(k) (A.8)

Finally, we discretise p(t). It will be performed in several steps. The first step reuses some of

equations from (A.5)

p(k+1)= ρ
∫ k+1

0
Ω(τ)

(
1−λ(τ)

)
dτ= ρ

∫ k

0
Ω(τ)

(
1−λ(τ)

)
dτ+ρ

∫ k+1

k
Ω(τ)

(
1−λ(τ)

)
dτ

= p(k)+ρ
∫ k+1

k
Ω(τ)

(
1−λ(τ)

)
dτ= p(k)+ρ

∫ k+1

k
Ω(τ)dτ−ρ

∫ k+1

k
Ω(τ)λ(τ)dτ

= p(k)+ρ∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2
w̄α(k)−ρ

∫ k+1

k
Ω(τ)λ(τ)dτ

(A.9)

Now, let us investigate the
∫ k+1

k Ω(τ)λ(τ)dτ element by using the integration by parts∫ k+1

k
Ω(τ)λ(τ)dτ=

∫ k+1

k

dθ(τ)
dτ

λ(τ)dτ= [θ(τ)λ(τ)]k+1
k −

∫ k+1

k
θ(τ)

dλ(τ)
dτ

dτ (A.10)
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Next, we calculate dλ(τ)
dτ noting (A.2d) and (A.3b)

dλ(τ)
dτ

= K
dwβ(τ)

dτ
−K

dwβ(τ)e
−τ
T0

dτ
=−K

dwβ(τ)e
−τ
T0

dτ
=−Kwβ(τ)(− 1

T0
)e

−τ
T0 = K

T0
wβ(τ)e

−τ
T0 (A.11)

With (A.11) defined, it is possible to evaluate the last element (integral) from (A.10). Addition-

ally, because θ(τ) is the total wheels angle, we can assume that this function is non-decreasing,

therefore, we can apply Bonnet’s Theorem

∫ k+1

k
θ(τ)

dλ(τ)
dτ

dτ= K
T0

∫ k+1

k
θ(τ)wβ(τ)e

−τ
T0 dτ= K

T0
θ(k+1)

∫ k+1

k
wβ(τ)e

−τ
T0 dτ (A.12)

Let us again evaluate the last integral from (A.12) using the integration by parts and noting

the assumption (A.3b)

∫ k+1

k
wβ(τ)e

−τ
T0 dτ= [−T0wβ(τ)e

−τ
T0 ]k+1

k −
∫ k+1

k

dwβ(τ)
dτ

e
−τ
T0 dτ= T0wβ(k)[−e

−τ
T0 ]k+1

k

= T0wβ(k)
(
e

−k∆t
T0 − e

−(k+1)∆t
T0

)
= T0wβ(k)e

−k∆t
T0

(
1− e

−∆t
T0

) (A.13)

Now we insert (A.13) into (A.12)∫ k+1

k
θ(τ)

dλ(τ)
dτ

dτ= K
T0

θ(k+1)
∫ k+1

k
wβ(τ)e

−τ
T0 dτ

= K
T0

θ(k+1)T0wβ(k)e
−k∆t

T0

(
1− e

−∆t
T0

)
= Kθ(k+1)wβ(k)e

−k∆t
T0

(
1− e

−∆t
T0

) (A.14)

Now we insert (A.14) to (A.10) noting (A.8) and (A.5)

∫ k+1

k
Ω(τ)λ(τ)dτ= [θ(τ)λ(τ)]k+1

k −
∫ k+1

k
θ(τ)

dλ(τ)
dτ

dτ

= θ(k+1)λ(k+1)−θ(k)λ(k)−Kθ(k+1)wβ(k)e
−k∆t

T0

(
1− e

−∆t
T0

)
= θ(k+1)λ(k)e−

∆t
T0 +θ(k+1)K

(
1− e−

∆t
T0

)
w̄β(k)

−θ(k)λ(k)−Kθ(k+1)wβ(k)e
−k∆t

T0

(
1− e

−∆t
T0

)
= θ(k+1)λ(k)e−

∆t
T0 −θ(k)λ(k)+θ(k+1)Kwβ(k)

(
1− e

−∆t
T0

)(
1− e

−k∆t
T0

)
= θ(k+1)λ(k)e−

∆t
T0 −θ(k)λ(k)+θ(k+1)

(
1− e

−∆t
T0

)
λ(k)

= θ(k+1)λ(k)e−
∆t
T0 −θ(k)λ(k)+θ(k+1)λ(k)−θ(k+1)e

−∆t
T0 λ(k)

=
(
θ(k+1)−θ(k)

)
λ(k)

=
(
θ(k)+∆t

(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ ∆t2

2
w̄α(k)−θ(k)

)
λ(k)

=∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
λ(k)+ ∆t2

2
w̄α(k)λ(k)

(A.15)
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APPENDIX A. DERIVATION OF FORMULAS FOR MODEL WITH INTEGRATED SLIP
ESTIMATION

Finally, insert (A.15) to (A.9)

p(k+1)= p(k)+ρ∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2
w̄α(k)−ρ

∫ k+1

k
Ω(τ)λ(τ)dτ

= p(k)+ρ∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2
w̄α(k)

−ρ∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
λ(k)−ρ∆t2

2
w̄α(k)λ(k)

= p(k)+ρ∆t
(
1−λ(k)

)(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2

(
1−λ(k)

)
w̄α(k)

(A.16)

To summarise, the discrete form of the state variables is defined as

p(k+1)= p(k)+ρ∆t
(
1−λ(k)

)(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ρ∆t2

2

(
1−λ(k)

)
w̄α(k)

θ(k+1)= θ(k)+∆t
(
Ω(k)+ uΩ(k+1)−uΩ(k)

2

)
+ ∆t2

2
w̄α(k)

Ω(k+1)=Ω(k)+uΩ(k+1)−uΩ(k)+∆tw̄α(k)

λ(k+1)=λ(k)e−
∆t
T0 +K

(
1− e−

∆t
T0

)
w̄β(k)

(A.17)
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T. Báča, V. Spurný, F. Pomerleau, V. Kubelka, J. Faigl, K. Zimmermann, M. Saska,

T. Svoboda, and T. Krajník, “DARPA Subterranean Challenge: Multi-robotic Exploration

of Underground Environments,” in Modelling and Simulation for Autonomous Systems

120



BIBLIOGRAPHY

(J. Mazal, A. Fagiolini, and P. Vasik, eds.), Lecture Notes in Computer Science, (Cham),

pp. 274–290, Springer International Publishing, 2020.
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