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Abstract—Recent revisions to the ISO C++ standard have
added specifications for parallel algorithms. These additions
cover common use-cases, including sequence traversal, reduction,
and even sorting, many of which are highly applicable in HPC,
and thus represent a potential for increased performance and
productivity.

This study evaluates the state of the art for implementing het-
erogeneous HPC applications using the latest built-in ISO C++17
parallel algorithms. We implement C++17 ports of representative
HPC mini-apps that cover both compute-bound and memory
bandwidth-bound applications. We then conduct benchmarks on
CPUs and GPUs, comparing our ports to other widely-available
parallel programming models, such as OpenMP, CUDA, and
SYCL.

Finally, we show that C++17 parallel algorithms are able
to achieve competitive performance across multiple mini-apps
on many platforms, with some notable exceptions. We also
discuss several key topics, including portability, and describe
workarounds for a number of remaining issues, including index-
based traversal and accelerator device/memory management.

Index Terms—Performance Portability, Programming Models,
GPUs C++17, PSTL, stdpar,

I. INTRODUCTION

A. Background

The C++ programming language has frequently been used
as the main implementation language for HPC applications.
The language has several interesting properties that make
it an ideal first choice for current HPC projects. From a
performance perspective, C++ is an unmanaged and unsafe
language (in terms of memory access) that compiles to native
code. As such, the runtime performance is usually comparable
to a counterpart written in a C or C-like language.

From a productivity perspective, modern C++ is a nominal
and statically typed language that supports advanced language
features such as lambdas, templating and object-orientation
— features that help reduce duplication and improve code-
base scalability. A common theme in C++ is that complex
abstractions typically incur very low (zero in many cases)
performance penalty when compared to managed languages
that offer the same level of abstraction. For example, C++11
lambda expressions, when used together with templates, result
in a commanded inlining of the lambda body directly into
the receiver. This behaviour is mandated by the standard and
not an opportunistic optimisation deferred to the compiler.

Beyond low-cost abstractions, C++ also requires a conforming
toolchain to ship with an implementation of the C++ Standard
Library headers. The headers cover many common program-
ming tasks, and are regarded as one of the main productivity
features of C++.

In terms of stability and portability, ISO C++ is a committee
driven language with an accompanying formal ISO specifi-
cation (e.g. C++20 is also known as International Standard
ISO/IEC 14882:2020). Feature additions or changes usually
go through an extensive refinement process that is then voted
on by committee members before final integration into the
specification. The C++ committee, WG21 (Working Group
21), has been releasing new specifications on a 3-year cadence
starting since C++11, bringing new features and improvements
to the language. Because C++ is only a specification, there
exists many production-ready compilers from familiar names,
such as GCC from FSF, Clang and derivatives from multiple
vendors, NVHPC from NVIDIA, and MSVC from Microsoft,
to name a few. In all, C++ represents a standardisation of
practical abstractions for programs that require bare-metal
performance while remaining portable.

B. C++ Parallelism Technical Specification

The C++ language offers a range of algorithm-related func-
tions in the numeric and algorithm header. These headers
are intended to improve productivity by providing a predefined
set of common algorithms that are easy to use, portable, and
well tested. Many of the algorithms operate on C++ iterators,
which ensures good compatibility across all C++ containers
and any third-party containers that implement the interface.
Notably, many algorithms are designed in a functional style
that operate on higher-order functions (i.e. lambda expressions
or functors); the implementation details in the algorithms such
as the induction state of a traversal, are not exposed.

Before C++17, we see a wide range of third-party libraries
and frameworks that attempt to offer a parallel or offload
implementation of C++ algorithms. For example, NVIDIA’s
Thrust library implements an abstraction layer for CUDA
where kernel invocation can be written using an API similar
to the one from C++’s algorithm library. On the CPU side,
we see concurrency libraries such as Intel Threading Building
Blocks (TBB) which offers transparent thread management.



As C++ features are usually a standardisation of common
use cases through proposals, the current parallel algorithms
extension we see in C++17 also started out as a proposal to
the C++ standard. The earliest revision dates back to 2013
(n3554[1]), with the final draft version completed in 2015
(n4507[2]) and subsequently merged into C++17. The proposal
is done in a form of a draft Technical Specification (TS) which
contains detailed considerations on the state of the art and
also the shape of the proposed API. For the Parallelism TS
draft, it carefully considered existing libraries and discussed
their strength and weaknesses. The final API was designed as
a series of overloads to the original algorithms API with an
extra execution policy parameter at the beginning. Use cases
such as exception handling, the potential for offload compute,
and even vectorisation, are also touched upon.

C. Contribution

This study provides an evaluation of the performance and
productivity properties of implementing HPC applications
using ISO C++ parallel algorithms introduced in C++17 and
newer revisions. This paper will first discuss methods of
expressing parallelism under ISO C++ in Section III. Then,
in Section IV, we provide an overview of currently available
C++17 parallel algorithms implementations in the ecosystem.
Where possible, the overview will include brief descriptions
of the backing parallelism library each implementation is built
upon. Finally, we introduce our benchmarking applications in
Section V and discuss any challenges encountered during the
porting process to ISO C++17. In the remainder of paper, from
Section VI, we present performance and productivity results
of our mini-app ports.

This paper makes the following contributions:
• We survey the state of the art for implementing HPC

applications using only standard parallelism features in
ISO C++17 or newer.

• We present ISO C++17 ports of three HPC mini-apps,
across different styles of parallelism.

• We benchmark the ports against established programming
models on a wide range of CPU and GPU platforms to
compare relative overhead.

II. RELATED WORK

There have been a few studies exploring the performance
of standard parallel algorithms in C++ for high-performance
computing. The LULESH mini-app was ported to ISO C++17
and evaluated on NVIDIA GPUs, comparing only against
OpenACC [3]. This study used an index-centric approach,
developing their own counting iterator similar to ours in List-
ing 2. LULESH shares some similarity with the CloverLeaf
code used in our study, and so we extend the analysis for
standard C++ for hydrodynamics kernels significantly in this
work.

The STLBM code [4] uses C++17 for_each for a Lattice-
Boltzmann code. The kernel requires knowledge of the grid
position to calculate the stencil. They follow the data-centric
pattern shown in Listing 1, but use pointer arithmetic to locate

the position in the iteration space. The difference of the address
of the lambda-argument and the base pointer is used to recover
the index as an alternative to creating a counter iterator. The
study presented performance on CPUs and GPUs, but did not
compare to other programming models.

Drocco et al. enabled the parallel STL on distributed
systems, but did not consider heterogeneous systems [5].
Jääskeläinen et at implemented the C++17 parallel STL for
heterogeneous systems with shared virtual memory [6]. Their
approach uses HSA and HSAIL, but they expose the heteroge-
neous device via a new execution policy, although they argue
that using the standard policies to execute on accelerators
might also be conformant. Whilst they target different systems,
these approaches both explore the idea that the iterations of the
parallel algorithms can execute on some external processor.

There are a number of C++ abstraction frameworks that
provide heterogeneous computing in C++. Many of these have
informed the development of the parallel algorithms in C++.
This study focuses on the parallel algorithms available in the
standard today, so whilst we do not discuss them in detail in
this study, we will compare the performance against some well
known approaches.

III. EXPRESSING PARALLELISM

Any programming model targeting heterogeneous platforms
needs to consider how the complexities of the system are to
be controlled. A model for the platform allows identification
of the different hardware resources, be they the host CPU
or an attached accelerator device. As the system can have
multiple places to execute parts of the program (the host CPU,
the device, etc), programming models expose some way to
specify where the computation of a particular region should
happen. When this is programmable, such as in OpenMP,
SYCL, CUDA, HIP, etc., devices can be selected as a target for
compute or data transfers. Just considering the threading model
in C++, ignoring any heterogeneity, the current ISO standard
only gives ways of computing within the current thread, or in
a different thread.

Accelerator devices may have distinct memory spaces, and
provide some mechanism to migrate data between those mem-
ory spaces. The C++ of today (C++17, C++20 and looking
towards C++23) does not give much explicit control of data
location. Most notably there is no idea of distinct memory
spaces, but many hardware platforms for HPC support some
form of Unified Shared Memory, often where devices can
simply access all memory in the system via page faults. In
this way, programming the location of data is akin to managing
NUMA behaviour.

Finally, the programming model needs to express concurrent
work. C++ offers a number of ways of expressing this on
the host CPU, including threads, fibers, futures, etc. These
approaches share more similarities with task-based program-
ming models, where asynchronous units of work are defined
and processed. For HPC however, the data parallel algorithms
available in the numeric and algorithm libraries allow the
expression of parallel work, including loops over data and an



iteration space. More features are coming to C++ through the
ranges standard library to express multidimensional iteration
spaces, which may be processed concurrently by an algorithm.

As of the time of writing, C++ gives us the controls to
express our parallel work. However, it provides little in the
way of control over where that work should take place, or over
where our data may reside, especially where different memory
spaces are concerned. Control of execution space is likely
to arrive in the standard soon, with current implementations
taking various approaches (described in Section IV) to solve
this problem to accelerate adoption.

A. Data v.s. Index centric traversal

The C++ parallel algorithms are implemented as overloads
to the existing algorithms API with an extra execution policy
parameter. As such, the domain of our input must be expressed
using the standard begin and end iterator arguments. For
traversing over a sequence that holds data, this can be accom-
plished in a straightforward manner, as shown in Listing 1.
The snippet shows two variants of sequence traversal: the first
variant receives each element of the container for side effects,
the second variant maps each element of the container and
inserts it into another container.

Listing 1: Data-centric sequence traversal examples.
auto exec = std::execution::par_unseq;

std::vector<T> xs = /*...*/;
std::for_each(exec, xs.begin(), xs.end(), [](T &x){ /* ... */ });

std::vector<T> ys(xs.size());
std::transform(exec, xs.begin(), xs.end(), ys.begin(),

[](T &x){ return /* new value, witnessing x */ });

This data-centric style of parallelism (data parallel) shown
in Listing 1 is problematic for stencil-like applications, which
usually need access to neighbouring cells in a structured grid.
Similarly, accessing elements at the same index of a different
sequence in a data parallel traversal is not possible unless
the current index is tracked externally. This problem can be
worked-around naively by generating a sequence that is filled
with the indexes. Using this yields an index in the lambda term
of traversal algorithms, which can then be used to access the
required elements at the correct offset. However, this solution
incurs a memory overhead that is proportional to the size of the
input, and also runtime overhead for generating the sequence.

Recall that C++ iterators are simply an interface that can
be implemented for any type. Listing 2 shows a skeleton
implementation of a range iterator for a numeric type. With
an index range iterator, we can realise the traditional index-
centric (index parallel) traversal.

Listing 2: Index-centric sequence traversal examples with
range iterator.
template <typename N> struct range {
struct iterator {
friend class range;
using difference_type = typename std::make_signed_t<N>;
using iterator_category = std::random_access_iterator_tag;
using value_type = N;
using reference = N;
using pointer = const N*;

// operator implementation for
// [],*,+,++,-,--,+=,-=,==,>=,<=,>,< omitted
protected: explicit iterator(N start) : i_ (start) {}
private: N i_;

};
iterator begin() const { return begin_; }
iterator end() const { return end_; }
range(N begin, N end) : begin_(begin), end_(end) {}
private: iterator begin_, end_;

};
std::vector<T> xs = /*...*/;
range<int> r(0, xs.size());
std::for_each(/*policy*/, r.begin(), r.end(), /*lambda*/);

C++20 implements a more general version of Listing 2
using ranges. For example, the index traversal in Listing 2
can now be written as shown in Listing 3.

Listing 3: C++20 ranges
std::for_each_n(/*policy*/,

std::views::iota(0).begin(), N, [] (int i) {/*...*/} );

IV. ISO C++ PARALLEL ALGORITHM IMPLEMENTATIONS

Only recently have compiler vendors started to ship pro-
duction ready parallel execution policy implementations for
CPUs. With the recent release of NVIDIA’s NVHPC compiler
and Intel’s oneDPL library, we also start to see viable offload
execution policies for GPUs. This section gives an overview of
currently available C++17 parallel algorithm implementations
(also called Parallel STL, or PSTL for short).

A. libstdc++ PSTL

libstdc++ is a C++ standard library implementation devel-
oped by GNU. Similar to how glibc is the default C standard
library on most Linux distributions, libstdc++ fills this role
for the C++ language. The implementation is designed to be
portable: non-GCC compilers such as Clang and derivatives
are frequently configured to use libstdc++ for a complete
toolchain.

libstdc++ implements the C++17 execution policy specifi-
cation under the PSTL component, and is backed by Intel’s
Threading Building Blocks (TBB). TBB is an open source
parallelism and concurrency abstraction library that provides
frequently-used threading primitives such as thread pools,
task schedulers, and affinity related utilities. The TBB-backed
PSTL implementation is contributed by Intel; programs that
wish to use PSTL must explicitly link against a working TBB
library during compilation.

Historically, before the introduction of C++17, libstdc++
had an experimental parallel STL implementation that imple-
mented a set of STL algorithms using OpenMP. This API
is only available with non-standard headers and lives under
the __gnu_parallel namespace, both of which have been
deprecated.

B. LLVM PSTL

Similar to libstdc++ from GNU, the LLVM project contains
an implementation of the C++17 execution policies, also
named PSTL. The initial implementation is again contributed
by Intel and uses the TBB backend, as with the libstdc++
implementation. Unlike libstdc++, this implementation also



includes an OpenMP and macOS Grand Central Dispatch
(GCD) backend, both contributed by the LLVM community.

The LLVM PSTL implementation is a standalone project
under active development, with integration into the LLVM
repository only starting in early 2019. There are plans to in-
tegrate LLVM PSTL into libc++, LLVM’s own C++ standard
library implementation. However, as of LLVM 15, the merge
appears to still be in progress.

C. Intel oneDPL

Intel oneDPL is an open source C++17 execution policy
implementation for both CPUs and GPUs. The oneDPL library
is part of Intel’s oneAPI umbrella which provides a set of
unified software components with a focus on Intel hardware.
Unlike libstdc++, the oneDPL implementation is a standalone
library which can be used independently of the system C++
standard library.

The oneDPL codebase is primarily a fork of the LLVM
PSTL, with additions to support SYCL. For the CPU im-
plementation, the codebase delegates directly to the forked
LLVM PSTL code path as touched on in Section IV-B. For
accelerators, a SYCL execution policy allows algorithms to
be offloaded to GPUs that support SYCL2020. SYCL is
an emerging heterogeneous parallel programming model that
exposes parallelism through an idiomatic C++ API. SYCL
supports GPU kernel programming in a single-source com-
pilation model (in contrast to multi-source models such as
OpenCL); SYCL’s device code (i.e. kernel) can be written in
C++ that is inline with the host code.

For oneDPL on GPUs, the library implements templated
algorithms that are backed with optimised SYCL kernels.
In this context, all SYCL2020 restrictions still apply, thus
references to heap memory in the kernel must be captured
by value, and anything that gets passed to the GPU device
must be device-copyable. This is a non-trivial restriction that
complicates the use of many C++ container types such as
std::vector.

Historically, Khronos has experimented with implement-
ing C++ parallel algorithms using the deprecated SYCL 1.2
standard[7]. While the implementation is fully functional, no
capture of pointers are allowed due to the lack of USM
support.

D. NVIDIA NVHPC

The NVIDIA NVHPC compiler includes support for C++17
execution policies through the -stdpar compiler flag. Since
2020, NVIDIA has consolidated their existing compiler com-
ponents (e.g. CUDA SDK, PGI compilers) into a complete
HPC SDK package. The former PGI compiler (an optimising
heterogeneous compiler by The Portland Group, Inc., since
acquired by NVIDIA) has been renamed to NVHPC which
integrates components from the LLVM project. The compiler
refers to its C++17 execution policy implementation as the
C++ standard parallelism support, or stdpar for short.

NVHPC is a proprietary compiler, so we can only refer to
publicly available documentations of the stdpar component.

NVHPC’s stdpar support for CPU is backed by OpenMP, a
directive-based model that is natively supported in NVHPC
with semantics and an API surface similar to NVIDIA’s own
OpenACC. For NVIDIA GPUs, NVHPC internally uses the
NVIDIA Thrust library in conjunction with compiler-level
outlining of heap pointers.

The NVHPC GPU implementation is able to track heap
allocations by reference, even when they are behind multiple
layers of pointer indirection. In practice, this requires almost
no attention from the programmer’s side on writing portable
programs that run on GPUs. This is a flexibility that oneDPL
(with the SYCL2020 backend) cannot support.

E. HPX

HPX is a software framework by the STE||AR group
that provides portable implementations of current and future
C++ standards. The framework is focused mainly on scaling
across multiple nodes with a strong emphasis on asynchronous
programming. Many features of C++ draft proposals related
to concurrency and threading have implementations in HPX.
While HPX do currently implement the C++17 execution
policy APIs, the library requires explicit initialisation of the
framework which is not part of the C++17 execution policy
specification. In addition, HPX only has scheduling support
for accelerator offload tasks; kernels must still be written in a
separate source file.

F. AMD HCC

Up until 2019, AMD had experimental support for C++17
execution policies via the now deprecated open source HCC
compiler. Beyond C++17 execution policies, the HCC com-
piler supports targeting the AMDGCN ISA for a wide range
of parallel programming models, including HC, OpenMP, and
even C++ AMP. Unfortunately, since the last release in mid-
2019, AMD has deprecated the HCC compiler and shifted
focus to HIP, an open source programming model that partially
resembles the CUDA API.

V. MINI-APPS IN THE STUDY

To evaluate performance, we have selected two mini-apps to
cover compute-bound (miniBUDE) and memory bandwidth-
bound (BabelStream) application domains. To evaluate pro-
ductivity, we select a larger mini-app (CloverLeaf) that has a
high unique kernel count and dependency on MPI. For all
mini-apps in this study, we conduct benchmarks against a
vendor-supported programming model (OpenMP for CPUs,
CUDA/SYCL for NVIDIA and Intel GPUs) and also the
backing implementation of the C++17 execution policy (e.g.
TBB or OpenMP) if one exists. Where possible, we cover
both heterogeneous compute where algorithms are offloaded
to GPUs, and traditional multicore CPU workloads on single
and multiple socket systems using current HPC hardware
platforms. To do this, we select currently maintained C++17
execution policies implementations, as shown in Table I.



Implementation CPU Offload (GPUs)

GNU libstdc++ PTSL TBB Not supported
Intel oneDPL TBB, OpenMP SYCL2020 with USM
NVIDIA NVHPC OpenMP NVIDIA GPUs (Pascal or newer)

TABLE I: C++17 execution policy implementations

Algorithm 1 BabelStream kernels
1: procedure COPY(A[n], C[n], n)
2: for i← 0 to n do C[i]← A[i]

3: procedure MUL(A[n], B[n], C[n], scalar, n)
4: for i← 0 to n do B[i]← scalar ∗ C[i]

5: procedure ADD(A[n], B[n], C[n], n)
6: for i← 0 to n do C[i]← A[i] +B[i]

7: procedure TRIAD(A[n], B[n], C[n], scalar, n)
8: for i← 0 to n do A[i]← B[i] + (scalar ∗ C[i])

9: procedure DOT(A[n], B[n], scalar, n)
10: for i← 0 to n do sum← sum+ (A[i] ∗B[i])

return sum

A. BabelStream

BabelStream is a memory-bandwidth bound mini-app that
implements the original McCalpin STREAM kernels: Copy,
Mul, Add, Triad [8]. The mini-app also implements an ad-
ditional dot product kernel as shown in Algorithm 1. As
the name suggests, BabelStream implements these kernels in
multiple programming models (e.g. CUDA, SYCL, OpenMP,
etc.), the coverage implies that BabelStream also runs on a
wide range of hardware, including CPUs, GPUs, and acceler-
ators [9]. Each of the implementations is written in a generic
and idiomatic way to serve as exemplars for a particular
parallel programming model.

The BabelStream benchmark measures the runtime of each
kernel and computes the total bandwidth attained based on
the elapsed time. Precautions have been taken to ensure
no unrealistic compiler optimisations are possible: the data
movement must take place.

We use the 229 element size (≈ 4GB) to validate results
with past studies. For platforms that do not support this value,
we use the default, which is clearly marked in Section VI.
The benchmark is configured to run each kernel 100 times
and records the maximum attained bandwidth.

For the C++17 port1, we are presented with the three styles
of parallelism discussed in Section III. We chose to implement
both index and data based parallelism and compare perfor-
mance. A C++20 range implementation was also attempted
but none of the current implementations support multi-core or
offload execution.

B. miniBUDE

MiniBUDE is a molecular dynamics mini-app that simu-
lates docking of molecules to predict the resulting structure:
a process frequently used for drug discovery[10]. This is
a performance proxy application that implements only the
compute-intensive virtual screen step of the full scale Bristol
University Docking Engine (BUDE). Intuitively, the virtual
screen process computes the charge interactions between a

1https://github.com/UoB-HPC/BabelStream/tree/option_for_vec

Algorithm 2 miniBUDE Fasten Kernel
1: procedure FASTEN( const i, const xform3×3[],

const proteins[ps], const ligands[ls], out energy[])
▷ Values R,DSLV,DSLVR, NZ,DST1, DST,HRD, T

are part of the simulation constants
2: for il← 0, ls do
3: lpos1×3 ← xform · ligands[il].pos1×3

4: for ip← 0, ps do
▷ Atom distance and sphere radii sum

5: dist← distance(lpos, proteins[ip].pos1×3)
6: d← dist−R

▷ Steric energy, formal/dipole charge interactions
7: energy[i]← energy[i]+

(1− dist ∗ (1/R)) ∗ (d < 0?2 ∗HRD : 0)
8: e← init∗

(d < 0.f?1 : (1− d ∗DST1))∗
(d < DST?1 : 0)

9: energy[i]← energy[i] + (typeE?− |e| : e) ∗ T
▷ Nonpolar-Polar repulsive interactions

10: dslvE = dslvInit∗
((d < DSLV ∧NZ)?1 : 0.f)∗
(d < 0?1 : (1− d ∗DSLVR))

11: energy[i]← energy[i] + dslvE ∗ 0.5

set of predefined ligand and protein molecules with different
transformation poses.

MiniBUDE is compute-bound mini-app that contains only a
single, though non-trivial, compute kernel. A high-level pseu-
docode structure is shown in Algorithm 2; the kernel makes
heavy use of single-precision trigonometric, square root, and
absolute value operations in a partially unrolled loop. Similar
to BabelStream in objective, miniBUDE is also implemented
in multiple programming models. The general structure of
the kernel is designed with vectorisation in mind. For all
programming models, the kernel exposes a loop unrolling
variable (PPWI) that controls the inner loop unroll count to
support vectorisation.

For benchmarking, the kernel driver reads in a predefined
dataset that contains known results. The kernel runtime is
then measured and the results validated against the control.
To extend the duration of the benchmark, miniBUDE can
be configured to repeat a docking run, similar to running
the multiple virtual screen step back-to-back in the full scale
application. We use the bm1 dataset with the default 10
iterations to validate results with the original study[10].

For the C++17 port2, only the index-based parallelism is
considered because miniBUDE already partitions the task
based on numeric groups.

C. CloverLeaf

CloverLeaf is a 2D hydrodynamic simulation application
implemented using the compressible Euler equations[11]. The
implementation uses the second-order accurate method with
discretisation of the values on a structured grid; the simulation
tries to solve PDEs (partial differential equations) on the
conservation of mass, energy, and momentum using the finite-
volume method.

Programmatically, CloverLeaf is implemented as a series
of steps which traverse a 2D grid (e.g. double[][]). Like
BabelStream and miniBUDE, CloverLeaf has implementations

2https://github.com/UoB-HPC/miniBUDE/tree/v2

https://github.com/UoB-HPC/BabelStream/tree/option_for_vec
https://github.com/UoB-HPC/miniBUDE/tree/v2


Algorithm 3 High-level CloverLeaf kernel overview
▷ Each procedure traverses the full W×H grid, some procedures may
invoke multiple kernels

1: while step < maxStep do
2: procedure IDEAL_GAS

▷ Pressure/sound speed via ideal gas equation of state with a fixed gamma
3: procedure VISCOSITY

▷ Artificial viscosity via the Wilkin’s method to smooth out shock front
and prevent oscillations

4: procedure PDV
▷ Cell energy/density δ via velocity gradients

5: procedure CALC_DT
▷ Compute the minimum timestep based on CFL conditions, velocity
gradient, and velocity divergence.

6: procedure ACCELERATE
▷ Update velocity field via cell pressure/viscosity gradients

7: procedure FLUX_CALC
▷ Edge volume fluxes using the velocity fields

8: procedure ADVECTION
▷ Setup fields for the next iteration

9: procedure RESET_FIELD
▷ Edge volume fluxes based on the velocity fields

10: procedure FIELD_SUMMARY
▷ Total mass, internal energy, kinetic energy, and volume weighted
pressure

11: step← step+ 1

in multiple parallel programming models. CloverLeaf is a chal-
lenging mini-app to implement ports for most programming
models. At its core, CloverLeaf has over 100 unique kernels
that involve 1D/2D traversal and 1D/2D reductions of multiple
values.

CloverLeaf accepts input decks as the starting parameters
for the simulation. An input deck includes seed parameters,
simulation step count, and the expected solution for validation.
For benchmarking, we have selected the bm_16 deck for
consistency with our past results [12]. For scaling results, we
use the same bm_16 deck but limit the timestep to 300 steps.
In both cases, the total runtime of the simulation is measured.

For the C++17 port of CloverLeaf3, we have implemented
the index parallel variant only. The data parallel variant is
not possible without a complete rewrite because CloverLeaf
requires traversal of multiple grids at once based on the same
index. Similar to other ports of the CloverLeaf, the C++17
porting process rewrites all kernels (excluding the top-most
simulation loop) in idiomatic C++.

VI. RESULTS

A. Platform software setup

To evaluate the performance of ISO C++ parallelism fairly
and comprehensively, we have selected current HPC hardware
platforms from multiple vendors and compiled our mini-apps
with multiple compilers where possible. Table II shows the
hardware configurations used for benchmarking. We have
listed the theoretical memory bandwidth for each platform,
this will be the value used Section VI-C. For floating point
performance, we compare relative performance between mod-
els in Section VI-D and Section VI-E so the FLOPS value is
not shown.

3https://github.com/UoB-HPC/cloverleaf_stdpar

On CPU platforms, we are interested in two properties:
the micro architecture and memory access. Architecture wise,
we consider both the traditional x86 and also AArch64 with
SVE support. We also select platforms with different memory
hierarchies, ranging from single NUMA regions to eight in a
dual socket configuration.

For compilers on CPU platforms, we have selected the
latest versions of frequently used HPC compilers, including
GCC, Clang variants, and also the new NVHPC compiler.
Table III shows the versions selected for each platform. For
Clang, we use the vendor supplied variants which contain extra
optimisations for their respective platforms.

For GPU platforms, we are limited by what our selected
C++17 execution policy can support as shown previously in
Table I. We use oneAPI dpcpp version 2022.1 on Intel GPUs
and nvc++ or nvcc from the NVHPC 22.7 distribution for
NVIDIA GPUs. The V100 GPU is using CUDA 11.2 on driver
460.32, while the A100 GPU uses the newer CUDA 11.4 and
driver 470.57.

B. Porting considerations

We have followed a set of general guidelines while porting
the mini-apps to C++17 parallel algorithms. For standard con-
formance, we carefully avoid APIs that are not part of the C++
standard. This was done by test compiling against libstdc++ on
both GCC and Clang with all C++ vendor extensions disabled
(e.g. compiling with -std=c++17). In effect, except oneDPL,
our C++17 ports require no code change for both CPUs and
GPUs, and between different compilers. An exception was
made for oneDPL because, as a standalone library, it makes
use of non-standard headers and exposes the execution policy
under a different namespace, so a small (< 6 lines) shim header
is required for portability.

Special attention was made to ensure the code writ-
ten is idiomatic C++. For example, we make us of
std::transform_reduce for complex value reductions as per the
documentation, with no platform or compiler specific tweaks.
As discussed in Section III-A, each C++17 parallel algorithm
must support a standard-conforming C++ iterator. We test
this using the full custom iterator implementation shown in
Listing 2.

For NUMA awareness, we only allocate memory using
malloc or equivalent. This was done to avoid any initialisation
which allows first-touch affinity for each thread. Experimen-
tation with C++ containers such as std::vector shows that
it is non-trivial to leave the allocation uninitialised which
leads to poor performance. There are source-level workarounds
available such as custom allocators, however, these are not
attempted to limit the scope of the study.

C. BabelStream

1) CPUs: The BabelStream port implements both the data
and index parallel variant discussed in Section III. Bandwidth
results for CPUs are shown in Fig. 1a. On CPU platforms,
we compare the bandwidth to the backing implementation of
the respective C++ execution policy: TBB for libstdc++ and

https://github.com/UoB-HPC/cloverleaf_stdpar


TABLE II: Platform details

Vendor Name Architecture Abbreviation Device Type Total NUMA nodes
Theoretical Peak
Mem. Bandwidth
(GB/s)

Intel Xeon Gold 6338 x86, Ice Lake Xeon HPC CPU (32C*2) 2 (1 per socket) 409.56
AMD EPYC 7713 x86, Zen3 (Milan) EPYC HPC CPU (64C*2) 8 (4 per socket) 409.56
AWS Graviton 2 AArch64, Neoverse N1 Graviton2 HPC CPU (64C*1) 1 204.8
AWS Graviton 3 AArch64, Neoverse V1 Graviton3 HPC CPU (64C*1) 1 307.2
NVIDIA Tesla A100 (SXM 40GB) Ampere A100 HPC GPU N/A 2039
NVIDIA Tesla V100 (PCIe 16GB) Volta V100 HPC GPU N/A 900
Intel UHD P630 (Xeon E2176G) Gen9.5 UHD Server iGPU N/A 42.6
Intel IrisPro 580 (i7 6670HQ) Gen9 IrisPro Consumer iGPU N/A 34
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(c) Intel GPU results (225 elements ≈ 0.3GB)

Fig. 1: BabelStream results as % of peak memory bandwidth per platform; higher is better
Compiler AWS Graviton2/3 AMD EPYC Intel Xeon

Clang* ACfL 22.1
(armclang, LLVM 13)

AOCC 3.2.0
(LLVM 13)

oneAPI ICPX 2022.1
incl. dpcpp, icpx
(LLVM 14)

GCC 12.1.0
NVHPC 22.7, incl. nvcc, nvc, nvc++
oneDPL 2021.7

TABLE III: Compiler/library version for CPU platforms

OpenMP for NVHPC and oneDPL. We also include results
for Kokkos, a C++ performance portability library[13] that
delegates to OpenMP on CPUs.

On AArch64 CPUs, we observe very similar performance
across Graviton2 and Graviton3, in the 75% to 90% of peak
range. The performance scales well with the core count, as
shown in Fig. 2. This highlights the overall maturity of the
AArch64 codegen in all the compilers we tested. Based on this,
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Fig. 2: BabelStream CPU scaling results as % peak bandwidth
per platform, higher is better
we can also infer that the C++ parallel algorithms abstraction
did not incur any noticeable overhead. Here, the NVHPC
compiler managed to outperform other compilers by around
4%. Given that Graviton3 was only released in May 2022, it
is remarkable to see a new micro architecture performing this
well.

For x86 CPUs, the results are less clear. On models that
are NUMA-aware such as OpenMP and Kokkos, the results
are inline with previous literatures[12]. Since the C++17
execution policy in NVHPC is backed by OpenMP, we see
a similar performance for both the data and index parallel
implementations.

On GCC and Clang, the C++17 execution policy from
libstdc++ is backed by TBB, and we observe an equally
poor bandwidth on both models. This is supported by the
scaling results shown in Fig. 2. Looking at TBB’s parallelism
implementation, it appears to use a thread pool with no special
consideration for NUMA awareness, which leads to subopti-
mal data placement. Interestingly, TBB offers a partitioner
variable for a static or dynamic division of tasks; experiment-
ing with all partitions only shows very minor improvement
(<5%) compared to the default.

Finally, we compare the oneDPL implementation of C++17
execution policies with plain OpenMP. Surprisingly, despite
delegating to OpenMP for parallelism like Kokkos, oneDPL
with OpenMP performed only marginally better than the TBB-
backed implementations. Looking at oneDPL’s implementa-
tion, it internally re-chunks the input into a hardcoded 2048
element chunk and then executes the chunk in an OpenMP
taskloop directive. This effect of this is similar to using a
non-NUMA-aware thread pool.

We noticed the Copy kernel compiled with NVHPC reported
an above-average bandwidth. Decompilation reveals NVHPC

replacing the parallel copy with a direct call to __c_mcopy4,
NVIDIA’s hand-optimised copy routine.

2) GPUs: On both Intel and NVIDIA GPU platforms, the
data and index parallel implementations attained bandwidth
that is identical or close to the vendor supported model, as
shown in Fig. 1c and Fig. 1b. For NVIDIA GPUs, we observe
a lower bandwidth for Kokkos and OpenMP target with the
Dot kernel. Since the Dot kernel implements a tree-based
reduction, optimal performance requires the runtime to pick
an optimal block size. We suspect Kokkos and the OpenMP
target backend selected a suboptimal block value.

D. miniBUDE
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(a) AArch64 and x86 CPU results
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Fig. 3: miniBUDE results as normalised runtime per platform;
lower is better

The miniBUDE port only implements the index parallel
variant discussed in Section III. Normalised runtime results
for CPUs are shown in Fig. 3a with scaling results in Fig. 4.
Similar to Section VI-C, we compare C++ parallel algorithms
implementations to their backing implementation and alterna-
tive models.

As miniBUDE is a compute-bound application, the per-
formance characteristics become decoupled from the memory
layout; the heatmap in Fig. 3a now highlight how well each
compiler optimises away abstraction layers. Overall, the TBB-
backed libstdc++ implementation is directly comparable to
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Fig. 4: miniBUDE CPU scaling results as normalised runtime
per platform; lower is better
OpenMP and Kokkos, with a slightly slower average runtime
across all platforms.

Unexpectedly, the OpenMP-backed oneDPL performed
badly, with runtime almost proportional to the core count.
Profiling reveals low processor utilisation (<50%) caused by
bad task scheduling with the 2048 chunk size — the same
issue we discussed in Section VI-C.

Across models compiled with NVHPC on AArch64 plat-
forms, we see a notable degradation compared to Clang and
GCC. We suspect the vectorisation backend in NVHPC is still
a work in progress for AArch64; PGI, the compiler NVHPC
is based on, did not support AArch64 up until the transition
to NVHPC in 2020.

On NVIDIA GPUs, we observe a higher runtime com-
pared to CUDA, OpenMP, and Kokkos. Past exchanges with
NVIDIA highlighted the probable cause to suboptimal block
sizes and a potential failure to emit an approximated square
root intrinsic[14]. Finally, Intel GPUs performed well with lit-
tle variance across all models, showcasing mature vectorisation
support.

E. CloverLeaf

The CloverLeaf port only implements the index parallel
variant discussed in Section III. Normalised runtime results
for CPUs are shown in Fig. 5a and scaling results in Fig. 6.
Similar to BabelStream, CloverLeaf is a memory-bandwidth
bound application but with a much higher kernel count. On
CPU platforms, we again see NUMA-aware models do well on
x86 CPUs, all of which have more than one NUMA node. The
overall performance degradation is proportional to the number
of NUMA nodes, with the EPYC platform performing the
worst at 8 NUMA nodes. In line with BabelStream results

for NVHPC, the OpenMP-backed execution policy is the only
combination that is comparable to OpenMP and Kokkos.

For GPUs, there are no NUMA nodes so the focus shifts
to whether each model can safely and correctly elide data
transfers between the host and device in a complex execution
graph. For both Intel and NVIDIA GPUs, the C++ index
parallel model is comparable to vendor models such as SYCL
and CUDA. Kokkos unfortunately introduced an extra kernel
launch overhead which increased runtime.
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Fig. 5: CloverLeaf results as normalised runtime per platform;
lower is better

F. Optimisation attempts

The C++17 parallel algorithms API does not expose any
further optimisation parameters, as touched on in Section III-A
and Section III. This section explores whether some perfor-
mance issues identified in previous sections can be further
minimised by patching the implementations themselves.

The OpenMP-backed oneDPL implementation performed
poorly on multiple platforms due to the hardcoded chunk size
and the use of OpenMP taskloops. The oneDPL codebase
reveals an additional re-chunking step that splits ranges into a
fixed 2048 element sub-range. Under this structure, we simply
removed the re-chunking and replaced the OpenMP directives
to operate over a plain for-loop. Fig. 7 and Fig. 8 shows the
results of this change compared to the native OpenMP and
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lower is better
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Fig. 7: CloverLeaf/miniBUDE uplift with patched oneDPL

the unpatched oneDPL implementation. Overall, this change
brings the oneDPL implementation up to par with the native
OpenMP version.

For miniBUDE on NVIDIA GPUs, we have identified a
lower than usual occupancy based on profiler output. By
patching the NVIDIA Thrust headers (NVHPC uses Thrust
internally) to use a more optimal block size, we achieved
performance equal to CUDA, as shown in Fig. 9.

In both cases, we intend to provide our findings as feedback
to the respective vendors.

VII. CONCLUSION

We implemented three ISO C++17 ports of representative
HPC mini-apps that cover both compute-bound and memory
bandwidth-bound application spaces. The resulting ports are
almost completely portable (only 6 lines away in the worst
case) across different compilers for both CPUs and GPUs. In

GCC Clang*
0

20

40

60

80

100

44
.8

40
.544

.4

41
.6

75
.5

76
.0

70
.6

5.
9

54
.5

73
.1

Xeon 6338

GCC Clang*

38
.5

33
.339

.8

32
.6

58
.9

58
.9

59
.0

59
.1

59
.0

59
.1

EPYC 7713

C++17 data
(oneDPL)
C++17 index
(oneDPL)
OpenMP

C++17 data
(oneDPL, patched OMP)
C++17 index
(oneDPL, patched OMP)

Fig. 8: BabelStream Triad
uplift with patched oneDPL

0

1

2

1.
73

1.
02

1.
00

A100

C++17
(index)
(nvc++)

C++17
(index
patched)
(nvc++)

CUDA
(nvcc)

1.
60

1.
01

1.
00

V100

Fig. 9: MiniBUDE uplift
with patched NVHPC

effect, we show how HPC codes written in idiomatic ISO C++
can be both performance portable and require no third-party
libraries.

Beyond performance portability, this study has demon-
strated how traditional HPC programming techniques such
index-based traversal are well-supported use cases in ISO
C++17. In general, none of the C++17 implementations im-
pose unreasonable requirements on algorithm use: captured-
pointers are allowed. Based on the three ports, we conclude
that only minimal code transformation is required coming
from either a vendor-supported programming model such
as CUDA or a portability layer such as Kokkos. In par-
ticular, C++17 parallel algorithms implement tuned, non-
trivial kernels that greatly improve productivity. For example,
CloverLeaf contains multiple complex reduction kernels that
reduce a structure. This was easily accomplished with the
std::transform_reduce algorithm in the documented way.

Finally, we note the absence of explicit device and memory
management interfaces in the C++17 API; we anticipate newer
C++ standards to address this. Moreover, certain idiomatic
C++ patterns, such as using std::vectors for memory allo-
cation, are not performance-portable on all platforms. We
hope C++20 or newer additions such as std::span and
std::mdspan can fill this gap.

There is a consensus in the HPC community that pick-
ing programming models for greenfield projects is difficult:
predicting which model will outlive your project is mostly a
gamble. As we have shown in this study, we may be closer to
a world where heterogeneous systems can be programmed in
plain ISO C++.
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APPENDIX

Artifact Description

We ran BabelStream, miniBUDE, and CloverLeaf on a wide
range of hardware platforms listed in Table II.

Artifacts Available: Source code for BabelStream, with
all the models presented in this study, is available at https:
//github.com/UoB-HPC/BabelStream. The std-data and std-
indices models used in this study uses the option_for_vec
branch which contains considerations for oneDPL portability
and NUMA-awareness adjustments.

Likewise, source code for miniBUDE, with all the models
presented in this study, is available at https://github.com/
UoB-HPC/miniBUDE/tree/v2, with plans to merge the v2
branch into main shortly.

For CloverLeaf, due to the code size, each model resides in
a separate repository:

• CUDA:https://github.com/UK-MAC/CloverLeaf_CUDA
• TBB:https://github.com/UoB-HPC/cloverleaf_tbb
• SYCL:https://github.com/UoB-HPC/cloverleaf_sycl
• C++17:https://github.com/UoB-HPC/cloverleaf_stdpar
• Kokkos:https://github.com/UoB-HPC/cloverleaf_kokkos
• OpenMP:https://github.com/UoB-HPC/cloverleaf_

openmp_target/tree/omp-plain
• OpenMP target:https://github.com/UoB-HPC/cloverleaf_

openmp_target/tree/omp-target
We have created scripts to help make the results in

this paper reproducible. The source code can be found
at https://github.com/UoB-HPC/performance-portability/tree/
2022-benchmarking. The script handles setting platform spe-
cific optimisations flags for each compiler and also includes
job scripts for launching the experiments. The job script
includes optimal platform and model specific thread pinning
strategies (e.g. OMP_PROC_BIND or direct taskset/numactl,
etc).

Additional benchmarking for oneDPL experi-
ments with and without patch can be found at
https://github.com/UoB-HPC/performance-portability/tree/
2022-benchmarking-dplomp-experiment.

Experimental setup: See Table II for a list of hardware
platforms used and Section VI-A for versions on the software
stack.

Artifact Evaluation

Performed verification and validation studies: Each mini-
app contains built-in verification for correctness. For Ba-
belStream, the results are validated against a simple host
version that implements all the kernels. For miniBUDE and
CloverLeaf, the results are validated against the known values
of the input deck.

Validated the accuracy and precision of timings: For Ba-
belStream, benchmark measurements use the best result over
100 runs. For miniBUDE, benchmark measurements contain
warm-up and measurements are obtained using the best result
over 8 runs. For CloverLeaf, benchmark measurements is set

at 3k (0.3k for scaling results) timesteps and measurement is
done using the built-in profiler for accuracy.

In all benchmark runs, we cross-check results with existing
literature where possible.

Used manufactured solutions or spectral properties: N/A
Quantified the sensitivity of your results to initial conditions

and/or parameters of the computational environment: Both
BabelStream and miniBUDE contained warm-up iterations or
equivalent. CloverLeaf is designed to only measure runtime
during simulation time steps.

Describe controls, statistics, or other steps taken to make the
measurements and analyses robust to variability and unknowns
in the system: N/A
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