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Quantum phase transitions of interacting bosons on hyperbolic lattices
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The effect of many-body interaction in curved space is studied based on the extended Bose–
Hubbard model on hyperbolic lattices. Using the mean-field approximation and quantum Monte
Carlo simulation, the phase diagram is explicitly mapped out, which contains the superfluid, su-
persolid and insulator phases at various fillings. Particularly, it is revealed that the sizes of the
Mott lobes shrink and the supersolid is stabilized at smaller nearest-neighbor interaction as q in
the Schläfli symbol increases. The underlying physical mechanism is attributed to the increase of
the coordination number, and hence the kinetic energy and the nearest-neighbor interaction. The
results suggest that the hyperbolic lattices may be a unique platform to study the effect of the
coordination number on quantum phase transitions, which may be relevant to the experiments of
ultracold atoms in optical lattices.

I. INTRODUCTION

Quantum gravity is an exciting area to combine both
quantum field theory and general relativity [1, 2]. Due
to the incompatibility of the two theoretical frameworks,
constructing a unified theory remains elusive. Remark-
able progress in quantum simulations has allowed to real-
ize curved space on table-top experimental setups [3, 4],
which opens the door to explore novel quantum phenom-
ena beyond flat spaces. As quantum many-body physics
is a main theme in condensed matter physics [5], an in-
teresting question is how interacting particles behave in
non-Euclidean spaces.

While the surface of a sphere has positive Gaussian
curvature, a surface in hyperbolic space with constant
negative curvature can not be realized in Euclidean space
without distortion [6–8]. There are only three regular
tilings of Euclidean space (square, triangular, hexagonal)
but infinitely many regular tilings of hyperbolic space.
The hyperbolic lattices have the remarkable property
that a compactified manifold has genus g > 1 and a
comparable number of sites reside on the boundary of
an open hyperbolic lattice, generating strong boundary
effect. It is highly expected that the physical properties
of strongly correlated systems on hyperbolic lattices can
be drastically different from their flat-space counterparts.

Indeed significant efforts have been devoted to the
studies of statistical models on hyperbolic lattices, such
as ferromagnetic Ising model [9–13], XY model [14], per-
colation, diffusion [15], clock model [16, 17] et al.. The
ferromagnetic Ising model on hyperbolic planes has been
investigated thoroughly, and all works reveal the phase
transition follows a mean-field behavior, i.e., the critical
exponents and critical temperatures obtained are close
to the mean-field ones. Specially self-dual hyperbolic lat-
tices are different from the flat-space counterpart, where
two distinct critical temperatures Tc and T c exist, re-
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lated to one another by the Kramers–Wannier duality
relation sinh(2J/Tc) sinh(2J/T c) = 1 [18]. A new phase
appears between Tc and T c, which breaks translational
symmetry, and consists of infinite many and large clus-
ters of magnetized spins. Its existence is purely due to
the negative curvature of the embedding space, and has
been proved for a hyperbolic plane with free boundary
condition. However obstructed by the difficulty to find
large enough sizes, signatures of this intermediate phase
is still lack on a compactified hyperbolic plane [10, 19].
Similarly, percolation on self-dual hyperbolic lattices also
shows two distinct transitions [20].

Recent progress in circuit quantum electrodynamics
has made the realization of hyperbolic lattices possi-
ble, where unusual gapped flat band for free itinerant
electrons on hyperbolic analogues of the kagome lattice
were discovered [21]. Several subsequent theoretical stud-
ies were motivated by this experimental breakthrough.
Bloch band theory is generalized to hyperbolic lattices
based on ideas from Riemann surface theory and alge-
braic geometry [22]. Topological states of matter in hy-
perbolic lattices have been investigated by examining the
topological protection of helical edge states and general-
ize Hofstadter’s butterfly [23]. In particular, using graph
theory and differential geometry, quantum field theories
in continuous negatively curved space has been formu-
lated for quantum many-body systems on hyperbolic lat-
tices [24]. Naturally, it is highly desirable to directly sim-
ulate the many-body models on hyperbolic lattices using
exact numerical methods.

In this paper, we investigate interacting quantum par-
ticles on hyperbolic lattices based on the fundamental
Bose–Hubbard model, which was first derived to describe
ultracold bosons in optical lattices [25–28]. We employ
the mean field approximation, the second-order pertur-
bation theory and quantum Monte Carlo (QMC) simula-
tions to study the extended Bose–Hubbard model. The
role of the coordination number on the quantum phase
transitions is specially investigated. We reveal that the
sizes of the Mott lobes shrink and the supersolid is sta-
bilized at smaller nearest-neighbor (NN) interaction as q
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in the Schläfli symbol (see Section II) increases. These
behaviors can be well understood in terms of the increase
of the kinetic energy and the NN interaction, which are
proportional to the coordination number. Our results are
closely relevant to the experiments of ultracold atoms in
optical lattices.

II. HYPERBOLIC LATTICES

The hyperbolic plane is a two-dimensional, homoge-
neous space that has a constant negative curvature. It is
distinguished from the Euclidean plane and spherical ge-
ometry which have zero curvature and constant positive
curvature, respectively. When embedded into a higher-
dimensional Euclidean space, every point of the hyper-
bolic plane locally looks like a saddle point. Due to the
curvature, the hyperbolic plane can not be realized in
Euclidean space without distortion.

A widely-used model of the infinite hyperbolic plane is
the Poincaré disk, where the hyperbolic plane is mapped
to the interior of a unit disk. Hyperbolic geodesics are
mapped onto circular arcs that meet the bounding cir-
cle at right angles. Hyperbolic circles are mapped onto
Euclidean circles in the Poincaré disk model.

A hyperbolic surface can be tessellated by regular poly-
gons placed edge-to-edge. Each regular tiling can be la-
beled by the number of sides of the polygons p and the
number q of polygons meeting at each vertex of the tiling.
This label is known as the Schläfli symbol {p, q}. Unlike
in Euclidean space, the sum of the angles of a triangle on
a surface of negative curvature will be less than π. Hence,
the numbers p and q satisfy the following relation,

2π

p
+

2π

q
< π ⇔ (p− 2)(q − 2) > 4. (1)

It turns out that this equation is the only condition on p
and q, so that there are an infinite number of regular
hyperbolic tilings.

A difficulty of hyperbolic space is that boundary effects
are severe. In D-dimensional Euclidean space a ball of ra-
dius r has volume ∝ rD and boundary of size ∝ rD−1 so
that boundaries can be neglected in the thermodynamic
limit. This does not hold in hyperbolic space where the
ratio between the size of the bulk and the size of the
boundary is a constant. In fact this constant can be
larger than 1/2 so that such a model is dominated by
the boundary. In order to perform finite-size scaling it is
therefore necessary to introduce periodic boundary con-
ditions. This confronts us with another problem, namely
that translations in curved spaces do not commute. This
problem can be solved algebraically by considering the
group of (orientation-preserving) symmetries of the lat-
tice [29–32]. This is a triangle group which depends
on the Schläfli symbol and which can be expressed as
a finitely presented group as

Gp,q = 〈ρ, σ | ρp = σq = (ρσ)2 = e〉

where e denotes the neutral element of Gp,q. The gener-
ator ρ corresponds to a rotation around the center of a
face and σ corresponds to a rotation around an adjacent
vertex (see Fig. 1). The vertices of the lattice are natu-
rally identified with cosets of the subgroup 〈σ〉 generated
by σ. In order to introduce periodic boundaries we con-
sider a normal subgroup N of Gp,q which only contains
hyperbolic translations and no rotations. The quotient
group Gp,q/N is then the symmetry group of a hyper-
bolic surface in which all points differing by an element
in N are identified.

FIG. 1. The regular {4, 5}-lattice (left) and the regular
{4, 6}-lattice (right) shown in the Poincaré disk model. The
group Gp,q of orientation-preserving symmetries are gener-
ated by the face-rotation ρ and vertex-rotation σ.

III. THE EXTENDED BOSE–HUBBARD
MODEL AND THE QMC METHOD

We consider the interacting bosons on hyperbolic
lattices in the grand canonical ensemble, whose basic
physics is described by the following extended Bose–
Hubbard model [33–38]:

H =− t
∑
〈i,j〉

(b†i bj + h.c.) +
U

2

∑
i

ni(ni − 1) (2)

+
∑
〈i,j〉

V ninj − µ
∑
i

ni,

Here bi (b†i ) is the bosonic annihilation (creation) oper-
ator on site i. These operators obey the commutation

relations [bi, b
†
j ] = δij . ni = b†i bi is the number operator

of bosons. 〈i, j〉 runs over all NN pairs. The first term
in Eq. (2) corresponds to the NN hopping of bosons,
with amplitude t, which we taken as the unit of energy
t = 1. The second term in Eq. (2) represents the on-
site interaction with strength U . The next line of the
Hamiltonian describe the NN interaction and the on-site
potential, with strength V and the chemical potential µ,
respectively.

In the following discussions, we employ the approach of
stochastic series expansion (SSE) quantum Monte Carlo
(QMC) method [39, 40] with directed loop updates to
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study the model in Eq. (2). The SSE method expands the
partition function in power series and the trace is written
as a sum of diagonal matrix elements. The directed loop
updates make the simulation very efficient [41–43]. Our
simulations are on finite lattices with periodic boundary
condition. There are no approximations causing system-
atic errors, and the discrete configuration space can be
sampled without floating point operations. The temper-
ature is set to be low enough to obtain the ground-state
properties. For such bosonic systems, the notorious sign
problem in the QMC approach can be avoided.

IV. THE MEAN-FIELD APPROXIMATION
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FIG. 2. The mean-field average density ρi (top) and su-
perfluid density ρsi (bottom) as a function of µ/U at fixed
t/U = 0.03.

The product of two bosonic operators can be decoupled
in the following mean-field channel [44, 45]:

b†i bj = 〈b†i 〉bj + b†i 〈bj〉 − 〈b
†
i 〉〈bj〉 (3)

The average value 〈b†i 〉 represents the superfluid order
parameter Ψ that characterizes the superfluid phase. It
is zero in the insulating region of the phase diagram,
and has a nonzero value in the superfluid state where
the quantum fluctuation of the boson number is large.
Moreover, |Ψ|2 represents the local density of the bosons
in the condensate state.

In the mean-field approximation, the Bose–Hubbard
Hamiltonian described by Eq. (2) turns into a sum of the
following single-site terms:

HMF
i = −zt(Ψ∗b†i + Ψbi − |Ψ|2) +H loc

i , (4)

where z represents the number of NN sites, and are 4,
5 and 6 for {4, 4}, {4, 5} and {4, 6} hyperbolic lattices,
respectively. Since H loc

i = U
2 (ni − 1)ni − µni is diagonal

in the basis {|Ni〉}, we have

〈Ni|H loc
i |Ni〉 =

U

2
(Ni − 1)Ni − µNi. (5)

Hence the matrix elements of the mean-field Hamilto-
nian HMF

i in the occupation number basis {|Ni〉} are as
follows:

〈Ni|HMF
i |Ni〉 =

U

2
(Ni − 1)Ni − µNi + zt|Ψ|2,

〈Ni + 1|HMF
i |Ni〉 = −ztΨ∗

√
Ni + 1, (6)

〈Ni − 1|HMF
i |Ni〉 = −ztΨ

√
Ni,

and all other ones are zero. For bosons, the occupation
number Ni on each site varies from 0 to ∞. We diago-
nalize the Hamiltonian Eq. (6) in a truncated basis |Ni〉
with Ni = 0, 1, · · · , Nmax

i , and the ground state of the
mean-field Hamiltonian writes as,

|Gi〉 =

Nmax
i∑

Ni=0

αNi |Ni〉 (7)

with αNi
the coefficients of the lowest eigenvalue of the

Hamiltonian matrix. Then the order parameter Ψ in the
ground state is,

Ψ = 〈Gi|b†i |G
i〉 =

Nmax
i −1∑
Ni=0

αNiα
∗
Ni+1

√
Ni + 1. (8)

By combining the Hamiltonian matrix in Eq. (6) and the
formula for the order parameter in Eq. (8), Ψ can be
determined self-consistently. With the coefficients αNi

and the order parameter Ψ, the average density

ρi = 〈ni〉 =

Nmax
i∑

Ni=1

|αNi
|2Ni, (9)

and the condensate component of the superfluid density
on the site i

ρsi = |Ψ|2, (10)

are directly obtained.
Figure 2 plots the mean-field average density ρi and

superfluid density ρsi as a function of µ/U at fixed t/U =
0.03. ρi exhibits a sequence of plateaus at integer fill-
ings, on which ρsi vanishes. The plateaus correspond to
the incompressible Mott insulators. By collecting the
positions of the plateaus at different t/U , the mean-field
phase diagram in the (t/U, µ/U) plane is mapped out.
As shown in Fig.3, the phase diagram is composed of a
sequence of Mott insulating lobes, whose sizes shrink as
q in the Schläfli symbol increases. The phase boundaries
can also be analyzed using the second-order perturbation
theory [46, 47], and the results are almost the same with
those from the mean-field theory.

V. THE QMC RESULTS

We first consider the case with V = 0. In the atomic
limit t = 0, whether a boson can be added to the jth
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site with nj bosons is determined by the energy dif-
ference ∆E = E(nj + 1) − E(nj) = −µ + Unj with

E(nj) = −µnj + U
2 nj(nj − 1) the total energy of the

bosons on the jth site. If the total energy is lowered,
i.e., ∆E < 0, one more boson can be added to the site.
Thus µ/U = nj(nj = 0, 1, 2, ...) separates different in-
sulating phases at integer fillings. Next we turn on the
hoppings and the phase diagrams obtained from QMC
simulations for {4, 5} and {4, 6} hyperbolic lattices are
shown in Fig.3. It contains incommensurate superfluid
and insulators at integer fillings. Although each insulator
in the atomic limit persists, its range along the µ/U axis
is reduced and incommensurate superfluid regions appear
between the commensurate insulating regions. The phase
boundary between Mott insulator and superfluid phase
has a lobelike shape. As q in the Schläfli symbol [here
q = 5, 6 in Fig.1(a) and (b), respectively] increases, the
sizes of the lobes shrink, and the critical hopping ampli-
tude to break the Mott insulator decreases.

FIG. 3. Phase diagram of the Bose–Hubbard model in the
(t/U, µ/U) plane on the hyperbolic lattice with the Schläli
symbol: (a) {4,5} and (b) {4,6}. The false color represents
the value of the compressibility κ = dρ

dµ
. An insulator is char-

acterized by κ = 0, while a superfluid phase by a finite κ. The
red lines represent the results of the mean-field theory, and
the green dotted lines are from the second-order perturbation
theory. They are almost the same, and are indistinguishable
in the figures.

The above phase diagrams are obtained by comput-
ing the compressibility κ = ∂ρ

∂µ as a function of µ/U at

constant t/U . Figure 4 shows the average density ρ as a
function of µ/U on the cut with fixed t/U = 0.03, along
which the typical quantum phases of the phase diagram
can be characterized. The average density ρ exhibits a se-
quence of plateaus at integer fillings, on which κ vanishes.
So the plateaus correspond to the incompressible Mott
insulators, whose gaps are determined by the widths of
the plateaus. Between the insulators, the average den-
sity increases continuously with the chemical potential
and the compressibility has a finite value, implying the
system is in the superfluid phase.

We also calculate the average kinetic energy per
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FIG. 4. The average density (a) and the kinetic energy (b)
as a function of the chemical potential for the normal square
lattice {4,4}, and the hyperbolic lattices {4,5} and {4,6}.

site[48],

Ek =
−t
∑
〈i,j〉〈b

†
i bj + h.c.〉
N

, (11)

as a function of µ/U for the same parameters as in
Fig.4(a). In the Mott insultor, the kinetic energy is
greatly suppressed, and takes constant values, exhibiting
a series of plateaus corresponding to those in the curve
of the average density. When the system becomes super-
fluid, the kinetic energy is lowered, and takes a maximum
value approximately at the medium density of two adja-
cent Mott insulators.

Next we include the NN repulsion V , which favors a
staggered charge density wave (CDW). In order to char-
acterize this phase, we calculate the static structure fac-
tor,

SCDW =
1

N

∑
ij

(−1)sgn(i,j)〈ninj〉, (12)

where sgn(i, j) = 0(1) if i, j belong to the same (opposite)
sublattice. A perfect CDW with only occupied and un-
occupied NN sites has SCDW = Nm2/4, where m is the
number of bosons on the occupied sites. Thus a CDW
insulator is characterized by the plateaus of the static
structure factor and the average density with the mag-
nitudes SCDW/N ∼ m2/4 and ρ = m/2(m = 1, 2, ...),
respectively. The inclusion of the NN interaction will
also generate an exotic supersolid phase, which is char-
acterized by both nozero SCDW and nozero κ.

Figure 5 plots ρ and SCDW as a function of the chemical
potential for several values of V at t/U = 0.05. As V
increases, there appears a ρ = 1/2 plateau in the ρ − µ
curve, and meanwhile the structure factor keeps constant
with the value SCDW/N ∼ 1/4. Hence it is identified
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FIG. 5. The average density and the static staggered structure factor as a function of µ at several values of V : (a) the square
lattice; (b) {4, 5} and (c) {4, 6} hyperbolic lattices. Here U = 20t is used, and is taken as an energy scale of the chemical
potential.

as a ρ = 1/2 CDW insulator. Introducing holes to the
CDW insulator makes the ρ, SCDW curves discontinuous,
implying the crystalline order is destroyed immediately
by the holes. The instability is caused by the formation of
domain walls, which leads to a phase separation between
a ρ = 1/2 insulator and a ρ < 1/2 uniform superfluid. As
shown in Fig.5, such a behavior happens on both square
and hyperbolic lattices.

It is well known that adding bosons to the ρ = 1
2 CDW

insulator can induces the supersolid phase on square lat-
tice [38]. Similarly, the supersolid phase can also be gen-
erated on hyperbolic lattices. At fixed V , the region of
the supersolid phase is enlarged compared to that of the
square lattice. Besides, the supersolid region expands as
q in the Schläfli symbol increases.

The above behavior can be understood qualitatively
from the formation mechanism of the supersolid. The
supersolid is most likely to happen with zV ∼ U , when
an added boson can be placed on either an occupied or
unoccupied site since the total energy differs little for
the two cases. The boson can delocalize between the two
sublattices to further lower the kinetic energy. The effec-
tive Hamiltonian in the two-state basis is approximated
as follows

H̃ =

(
U − µ zt
zt zV − µ

)
. (13)

The total energy is directly obtained by diagonalizing
the matrx, and we have the ground-state energy: E =
(U+zV )/2−

√
(zt)2 + ∆2−µ with ∆ = (U−zV )/2. The

kinetic energy is −
√

(zt)2 + ∆2 ∝ t for small ∆, which
is large. Hence it is energetically favorable for the doped
bosons to hop and form a superfluid on top of the CDW
background, realizing a supersolid.

The coordination number of a hyperbolic lattice is z =
q. Thus as q increases, the supersolid can be stabilized
by smaller V (∼ U/z). For the V = 3t cases in Fig.5, zV
with z = 6 is closest to U (here U = 20t is used), thus
the supersolid region of the {4, 6} hyperbolic lattice is
the largest.

VI. CONCLUSIONS

We studied the Bose–Hubbard model on bipartite
{4, 5} and {4, 6} hyperbolic lattices using SSE QMC sim-
ulations. In the presence of only on-site interaction, the
phase diagram contains Mott insulators at integer fillings
and incommensurate superfluid. As q in the Schläfli sym-
bol increases, the size of the Mott insulating lobes shrink.
It is caused by the increase of the kinetic energy, which
is proportional to the coordination number. By further
including NN interaction, there appear staggered CDW
at half integer fillings and exotic supersolid states. It is
found that the supersolid is stabilized at smaller V for
larger q. We qualitatively analyze the underlying mech-
anism for this behavior. Our results suggest that the
hyperbolic lattices provide a unique platform to study
the effect of the coordination number on quantum phase
transitions in Bose–Hubbard model. With the remark-
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able progress in cold-atom systems, the extended Bose–
Hubbard models have been realized experimentally with
extremely tuneability and cleaness [49]. Besides, the as-
sembly of defect-free, arbitrarily shaped arrays of optical
traps using holographic methods and fast, programmable
moving tweezers has been reported [50, 51]. Thus it is
very possible that our results will be experimentally real-
ized in the setups with ultracold atoms in optical lattices.
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Appendix A: The second-order perturbation theory

The analytical form of the self-consistent equation can
be obtained using the second-order perturbation theory.
In order to do this, we start from Eq.(4), and have
H loc
i |Ni〉 = εNi |Ni〉 with

εNi
= −µNi +

U

2
Ni(Ni − 1). (A1)

The ground state |N loc
i 〉 (N loc

i is a positive integer) is
then obtained by minimizing εNi

, and we have:N
loc
i = 0 if µ ≤ 0

N loc
i − 1 <

µ

U
≤ N loc

i if µ > 0.
(A2)

Near the phase boundary, the value of Ψ is small.

Hence the term M = −zt(Ψ∗b†i + Ψbi) in Eq.(4) can be
taken as a perturbation, and the ground-state energy is
directly calculated using the second-order perturbation
theory:

Ei0 = εN loc
i

+ ai2|Ψ|2 +O(|Ψ|4), (A3)

ai2|Ψ|2 = zt|Ψ|2 +
∑

Ni 6=N loc
i

|〈N loc
i |M |Ni〉|2

εN loc
i
− εNi

.

Using the relations

〈N loc
i |M |N loc

i + 1〉 = −ztΨ
√
N loc
i + 1, (A4)

〈N loc
i |M |N loc

i − 1〉 = −ztΨ∗
√
N loc
i ,

we obtain

ai2|Ψ|2 = zt|Ψ|2+ (A5)

z2t2|Ψ|2
(

N loc
i + 1

µ− UN loc
i

+
N loc
i

−µ+ U(N loc
i − 1)

)
.

The phase boundary in the plane (t/U, µ/U) is defined
by the condition ai2 = 0, thus the following self-consistent
equation is reached,

1

t/U
= −z

(
N loc
i + 1

µ/U −N loc
i

+
N loc
i

−µ/U + (N loc
i − 1)

)
.

(A6)

The above equation is solved numerically, and the ob-
tained transition lines for {4, 4} square, {4, 5} and {4, 6}
hyperbolic lattices are almost the same with those from
the mean-field approximation.
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