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Abstract
This paper considers several aspects of random matrix universality in deep
neural networks (DNNs). Motivated by recent experimental work, we use
universal properties of random matrices related to local statistics to derive
practical implications for DNNs based on a realistic model of their Hessians.
In particular we derive universal aspects of outliers in the spectra of deep neural
networks and demonstrate the important role of random matrix local laws in
popular pre-conditioning gradient descent algorithms. We also present insights
into DNN loss surfaces from quite general arguments based on tools from
statistical physics and random matrix theory.
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1. Introduction

The success of large deep neural networks (DNNs) optimised in surprisingly naïve ways, such
as stochastic gradient descent, has spawned a considerable amount of interest in characterising
their loss surfaces. The loss of a neural network is simply a real valued function that measures
the network’s performance on a task with respect to some reference data set. Neural network
are defined in terms of parameters, orweights, of which there are typically a very large number.
Fixing the data set, or even the data generating distribution, a neural network’s loss can be seen
as a surface in high dimensions parametrised by the network’s weights.

It was first observed4 in a sequence of experimental and theoretical papers [CHM+15,
SGAL14] that the loss surfaces of DNNs can be connected with spherical multi-spin glasses
from statistical physics [MPV87]. Mathematically, multi-spin glasses are just certain random
multivariate polynomials, or equivalently Gaussian processes with specific covariance func-
tions. These works were very influential, providing the first steps towards explaining why
DNNs can be trained at all, given the apparent intractability of their optimisation from the
viewpoint of classical optimisation theory. The key insight from the spin glass connection was
that DNN loss surfaces are indeed very complicated and filled with many local optima, but that,
in the high-dimensional limit, the local optima are arranged favourably, so that simple gradient
based optimisation methods can be expected to converge to local optima close to the global
minimum. This work has been extended in several directions. [BKMN21] extended the scope
of the results to more general neural networks, and in so doing uncovered some of the limits
of the spin glass model’s explanatory power. Departing from the direct connection between
glassy systems and neural networks, several authors have used similar high-dimensional ran-
dom models as toy models for high-dimensional optimisation. Among these works are several
that focus on the existence of spurious minima and the problem of recovering signals from
high dimensional signal-in-noise models [RABC19, MBAB20, MBC+19]. Similarly, using
spin glasses as surrogates for the complex, high-dimensional, random loss surfaces of DNNs,
[BKMN22] extended the spin glass analysis to study the non-standard loss surfaces of gener-
ative adversarial networks [GPAM+14].

A significant feature common amongst all the work mentioned so far is random matrix
theory [Meh04, LXT+18, AGZ10]. When studying the number and configuration of local
optima of high dimensional random functions, Kac-Rice formulae are an essential mathemat-
ical tool, and random matrices arise as Hessians in these formulae. For spin glasses, this path
was first trodden in the theoretical physics literature by Fyodorov [Fyo04, Fyo05] and made
rigorous in later work [AAČ13]. Specifically in the case of [CHM+15] and [AAČ13], which
lays its mathematical foundation, very detailed calculations can be completed. This is possible
because the randommatrices that appear belong to the Gaussian Orthogonal Ensemble (GOE),
one of the canonical ensembles of random matrix theory. Almost anything one could want to
know of the GOE is known and many powerful tools of random matrix theory can be applied
to it. In particular, the full joint distribution of its eigenvalues and large deviations results
for its eigenvalues and its spectral density, all of which are required by [AAČ13, CHM+15].
Works such as [BKMN21, BKMN22] show how detailed calculations can be completed bey-
ond the standard spin glass case, however these results still depend on important properties
of the GOE, as the Hessians in those cases are closely related to the GOE. In a recent work,
[GZR20] showed how valuable practical insights about DNN optimisation can be obtained by
considering the outliers in the spectrum on the loss surface Hessian. Once again, this work
relies on special properties from random matrix theory. Firstly, an expression for the outliers

4 Note that early connections between neural networks and spin systems were presented in [Gar88].
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follows from a known phase transition result whereby the largest eigenvalue ‘pops out’ of
the bulk. This results has been proven only for rotationally invariant matrix ensembles in
[BGN11], itself a generalisation of the celebrated BBP phase transition Baik, Ben Arous and
Peché [BAP05], though it was conjectured in [BGN11] to be more general (see section 2.3
below). Secondly, the explicit form of a Wigner semi-circle density was used to obtain the
concrete outlier expression used in practice.

Challenging the above-mentioned works, an experimental line of work has demonstrated
convincingly that special RMT ensembles like the GOE do not appear to be present in DNNs
[Pap18, Gra20, BGK22], for example as their Hessians. In addition, there have been chal-
lenges in the literature to the practical relevance of spin glass loss surface results for DNNs
[BJSG+19]. In this context, it is natural to question the relevance to DNNs of many of the
results discussed above. Indeed, does random matrix theory actually provide insight into real
DNNs, or are its powerful tools merely applicable to toy models too divorced from real DNNs
to be of any value? Random matrix theory itself may hold the answer to this question, in
particular its notion of universality. Broadly speaking, universality refers to the phenomenon
that certain properties of special random matrix ensembles (such as the GOE) remain true
for more general random matrices that share some key feature with the special ensembles.
For example, the Wigner semicircle is the limiting spectral density of the Gaussian Wigner
ensembles, i.e. matrices with Gaussian entries, independent up to symmetry (symmetric real
matrices, Hermitian complex matrices) [Meh04]. The Gaussian case is the simplest to prove,
and there are various powerful tools not available in the non-Gaussian case, however the
Wigner semicircle has been established as the limiting spectral density for Wigner matrices
with quite general distributions on their entries [AGZ10, Tao12]. While surprisingly general is
some sense, the Wigner semicircle relies on independence (up to symmetry) of matrix entries,
a condition which is not typically satisfied in real systems. The limiting form of the spectral
density of a random matrix ensemble is a macroscopic property, i.e. the matrix is normal-
ised such that the average distance between adjacent eigenvalues is on the order of 1/

√
N,

where N is the matrix size. At the opposite end of the scale is the microscopic, where the
normalisation is such that eigenvalues are spaced on a scale of order 1; at this scale, random
matrices display a remarkable universality. For example, any real symmetric matrix has a set of
orthonormal eigenvectors and so the set of all real symmetric matrices is closed under conjuga-
tion by orthogonal matrices. Wigner conjectured that certain properties of GOE matrices hold
for very general random matrices that share the same (orthogonal) symmetry class, namely
symmetric random matrices (the same is true of Hermitian random matrices and the unitary
symmetry class). The spacings between adjacent eigenvalues should follow a certain explicit
distribution, the Wigner surmise, and the eigenvectors should be delocalised, i.e. the entries
should all be of the same order as the matrix size grows. Both of these properties are true for
the GOE and can be proved straightforwardly with quite elementary techniques. Indeed, in
the case of 2× 2 GOE, it is a standard first exercise in random matrix theory to prove that the
eigenvalue spacing distribution is precisely the Wigner surmise (for N×N GOEs it is only
a good approximation and improves as N→∞). Microscopic random matrix universality is
known to be far more robust than universality on the macroscopic scale. Indeed, such results
are well established for invariant ensembles and can be proved using Riemann-Hilbert methods
[Dei99]. For more general randommatrices, microscopic universality has been proved by quite
different methods in a series of works over the last decade or so, of which a good review is
[EY17]. Crucial in these results is the notion of a local law for randommatrices. The technical
statement of local laws is given later in the paper, but roughly they assert that the spectrum of
a random matrix is, with very high probability, close to the deterministic spectrum defined by
its limiting spectral density (e.g. the semicircle law for Wigner matrices). Techniques vary by
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ensemble, but generally a local law for a randommatrix ensemble provides the control required
to demonstrate that certain matrix statistics are essentially invariant under the evolution of the
Dyson Brownian motion. In the case of real symmetric matrices, the Dyson Brownian motion
converges in finite time to the GOE, hence the statistics preserved under the Dyson Brownian
motion must match the GOE. The n-point correlation functions of eigenvalues are one such
preserved quantity, from which follows, amongst other properties, that the Wigner surmise is
a good approximation to the adjacent spacings distribution.

At themacroscopic scale, there are results relevant to neural networks, for example [PSG18,
Pas20] consider random neural networks with Gaussian weights and establish results that are
generalised to arbitrary distributions with optimal conditions, so demonstrating universality.
On the microscopic scale, [BGK22] provided the first experimental demonstration of the pres-
ence of universal local randommatrix statistics DNNs, specifically in the Hessians and Gauss-
Newton matrices of their loss surfaces. This work has recently been extended to the weight
matrices of neural networks [TSR22].

This paper explores the consequences of random matrix universality in DNNs. Our main
mathematical result is a significant generalisation of the Hessian spectral outlier result recently
presented by [GZR20]. This generalisation removes any need for GOE or Wigner forms of
the Hessian and instead leverages much more universal properties of the eigenvectors and
eigenvalues of random matrices which we argue are quite likely to hold for real networks.
Our results make concrete predictions about the outliers of DNN Hessians which we compare
with experiments on several real-world DNNs. These experiments provide indirect evidence
of the presence of universal random matrix statistics in the Hessians of large DNNs, which
is noteworthy as certainly these DNNs are far too large to permit exact eigendecomposition
of their Hessians as in [BGK22]. Along a similar line, we show how local random matrix
laws in DNNs can dramatically simplify the dynamics of certain gradient descent optimisa-
tion algorithms and may be in part responsible for their success. Finally, we highlight another
aspect of random matrix universality relevant to DNN loss surfaces. Recent work [ABM21]
has shown that the so-called ‘self averaging’ property of random matrix determinants is very
much more universal than previously thought. The self-averaging of random matrix determin-
ants has been used in the spin glass literature both rigorously and non-rigorously (e.g. [Fyo04,
Fyo05, AAČ13, BKMN21, BKMN22] inter alia) and is the key property that produces the
exponentially large/small number of local optima repeatedly observed. We argue that insights
into the geometry of DNN loss surfaces can be conjectured from quite general assumptions
about the Hessian and gradient noise and from the general self-averaging effect of random
matrix determinants.

The paper is structured as follows. Section 2 introduces our random matrix theory model
for DNN Hessians, derives results for their outliers and compares with experimental results.
Section 3 presents the proof of our main result for addition of random matrices, combining
quantum unique ergodicity (QUE) and the supersymmetric method. Section 4 proves an exten-
sion of the randommatrix determinant results of [ABM21] and presents insights into DNN loss
surfaces from complexity calculations and random matrix determinants. Section 5 describes
the role of randommatrix local laws in certain popular DNNoptimisation algorithms. Section 6
concludes the paper.

Notation. We adopt the following conventions throughout

• For a probability measure µ, gµ is its Stieltjes transform.
• µ⊞ ν denotes the free additive convolution between probability measures µ and ν.
• Hats denote empirical quantities unless stated otherwise. For example µ̂X is the empirical

spectral measure of a matrix X.
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• r(µ),l(µ) denote the right and left edges of the support of a probability measure µ
respectively.

• The bounded-Lipschitz distance between two probability measures is

dBL(µ,ν) = sup

{∣∣∣∣ˆ
R
f(x)(µ− ν)(dx)

∣∣∣∣ : ∥ f∥Lip + ∥ f∥L∞ ⩽ 1

}
, (1.1)

where ∥ f∥Lip is the Lipschitz constant of a Lipschitz function f.
• The Wasserstein-1 distance between two probability measures is

W1(µ,ν) = sup

{∣∣∣∣ˆ
R
f(x)(µ− ν)(dx)

∣∣∣∣ : ∥ f∥Lip ⩽ 1

}
. (1.2)

2. General random matrix model for loss surface Hessians

2.1. The model

Given a loss function L : Y ×Y → R, a data generating distribution Pdata supported on X ×
Y and a neural network fw : X → Y parametrised by w ∈ RN, its batch Hessian is given by

Hbatch =
1
b

b∑
i=1

∂2

∂w2
L( fw(xi),yi), (xi,yi)

i.i.d.∼ Pdata (2.1)

and its true Hessian is given by

Htrue = E(x,y)∼Pdata

∂2

∂w2
L( fw(x),y). (2.2)

Both Hbatch and Htrue are N×N matrix functions of w; Hbatch is random but Htrue is determ-
inistic. Only in very specific cases and under strong simplifying assumptions can one hope
to obtain the distribution of Hbatch or the value of Htrue from L,Pdata and fw. Inspired by the
success of many random matrix theory applications, e.g. in Physics, we will instead seek to
capture the essential features of DNN Hessians in a sufficiently general random matrix model.

We introduce the following objects:

• A sequence (in N) of random real symmetric N×N matrices X. X possesses a limiting spec-
tral probability measure µ, i.e. if λ1, . . . ,λN are the eigenvalues of X then

1
N

N∑
i=1

δλi → µ (2.3)

weakly almost surely. We further assume that µ has compact support and admits a smooth
density with respect to Lebesgue measure.

• A sequence (in N) of deterministic real symmetric N×N matrices A with eigenvalues

θ1, . . . ,θp, ξ1, . . . ξN−p−q,θ
′
1, . . . ,θ

′
q (2.4)

for fixed integers p,q. We assume the existence of limiting measure ν such that, weakly,

1
N− p− q

N−p−q∑
i=1

δξi → ν (2.5)

5
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where ν is a compactly supported probability measure. The remaining eigenvalues satisfy

θ1 > .. . > θp > r(ν), θ ′
1 < .. . < θ ′

q < l(ν). (2.6)

ν is also assumed to be of the form ν = εη+(1− ε)δ0 where η is a compactly supported
probability measure which admits a density with respect to Lebesgue measure.

• A decreasing function s : N→ (0,1).

With these definitions, we construct the following model for the Hessian:

Hbatch ≡ H= s(b)X+A (2.7)

where b is the batch size. We have dropped the subscript on Hbatch for brevity. Note that H
takes the place of the batch Hessian and A taken the place of the true Hessian. s(b)X takes
the place of the random noise introduced by sampling a finite batch at which to evaluate the
Hessian. s(b) is an overall scaling induced in X by the batch-wise averaging.

This model is almost completely general. Note that we allow the distribution of X and the
value of A to depend on the position in weight space w. The only restrictions imposed by the
model are

(a) the existence of ν;
(b) the position of θi,θ′j relative to the support of ν;
(c) ν may only possess an atom at 0;
(d) the fixed number of θi,θ′j;
(e) the existence of µ;
(f) the existence of the scaling s(b) in batch size.

All of the above restrictions are discussed later in the section. Finally, we must introduce
some properties of the noise model X in order to make any progress. We introduce the assump-
tion that the eigenvectors of X obey QUE [BY17]. The precise meaning of this assumption and
a thorough justification and motivation is given later in this section. For now it suffices to say
that QUE roughly means that the eigenvectors of X are delocalised or that they behave roughly
like the rows (or columns) of a uniform random N×N orthogonal matrix (i.e. a matrix with
Haar measure). QUE is known to hold for standard ensembles in randommatrix theory, such as
quite general Wigner matrices, Wishart matrices, adjacency matrices of certain random graphs
etc. Moreover, as discussed further section 2.5 below, QUE can be thought of as a property of
quite general random matrix models.

2.2. QUE

It is well known that the eigenvectors of quite general random matrices display a universal
property of delocalisation, namely

|uk|2 ∼
1
N

(2.8)

for any component uk of an eigenvector u. Universal delocalisation was conjectured byWigner
along with the Wigner surmise for adjacent eigenvalue spacing. Both of these properties, and
the more phenomenon of universal correlation functions on the microscopic scale have since
been rigorously established for quite a variety of matrix models e.g. [EY17, EY12, EKS19].
[BY17] show that the eigenvectors of generalised Wigner matrices obey QUE, a particular

6
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form of delocalisiation, stronger than the above statement. Specifically, they are shown to be
approximately Gaussian in the following sense ([BY17] theorem 1.2):

sup
||q||=1

sup
I⊂[N],
|I|=n

∣∣∣EP((N|qTuk|2)k∈I)−EP
((

|N j|2
)n
j=1

)∣∣∣⩽ N−ε, (2.9)

for large enough N, where N j are i.i.d. standard normal random variables, (uk)Nk=1 are the
normalised eigenvectors, P is any polynomial in n variables and ε> 0. Note that the set I in
this statement is a subset of [N] of fixed size n; n is not permitted to depend on N.

2.3. Batch Hessian outliers

Let {λi} be the eigenvalues of H. To set the context of our results, let us first simplify and
suppose momentarily that s= 1 and, instead of mere QUE, X has eigenvectors distributed
with Haar measure, and A is fixed rank, i.e. ξi = 0˜∀i, then the results of [BGN11] would
apply and give

λ j
a.s.→

{
g−1
µ (1/θ j) if θ j > 1/gµ(r(µ)),

r(µ) otherwise,
(2.10)

for j = 1, . . . , p, and

λN− j+1
a.s.→

{
g−1
µ (1/θ ′

j) if θ ′
j < 1/gµ(l(µ)),

l(µ) otherwise,
(2.11)

for j = 1, . . . ,q.
What follows is our main results for the outliers ofH under the general conditions described

above.

Theorem 2.1. Let H be the Hessian matrix model defined in (2.7) and meeting all the condi-
tions in section 2. Then there exist Uε,Lε ∈ R such that, for j = 1, . . . , p,

λ j =

{
ω−1(θ j) if ω−1(θ j)> Uε,

Uε otherwise.
(2.12)

and for j = 1, . . . ,q,

λN− j+1 =

{
ω−1(θ ′

j) if ω−1(θ j)< Lε,

Lε otherwise,
(2.13)

and

ω−1(θ) = θ+ s(b)Rµ(s(b)θ−1)+ εs(b)2dη(θ)R ′
µ(s(b)θ

−1)+O(ε2) (2.14)

where we define dη(z) = gη(θ j)− θ−1
j .

2.3.1. An interlude on prior outlier results. It was conjectured in [BGN11] that (2.10) and
(2.11) still hold when X has delocalised eigenvectors in some sense, rather than strictly Haar.
Indeed, a careful consideration of the proof in that work does reveal that something weaker
than Haar would suffice, for example QUE. See in particular the proof of the critical lemma
9.2 therein which can clearly be repeated using QUE. There is a considerable subtlety here,
however, which is revealed best by considering more recent results on deformations of gen-
eral Wigner matrices. [KY17] shows that very general deterministic deformations of general

7
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Wigner matrices possess an optimal anisotropic local law, i.e. Y +B for Wigner Y and determ-
inistic symmetricB. It is expected therefore that Y +B has delocalised eigenvectors in the bulk.
Consider the case where B is diagonal, and say that B has a fixed number of ‘spike’ eigenval-
ues φ1 > .. . > φr and remaining eigenvalues ζ1, . . . , ζN−r where the empirical measure of the
ζ i converges to some measure τ and φr > r(τ). We can then split B= Bi+Bo where Bi con-
tains only the ζ j and Bo only the φj. The previously mentioned results applies to Y+Bi and
then we might expect the generalised result of [BGN11] to apply to give outliers g−1

µSC⊞τ (1/φi)
of Y +B. This contradicts, however, another result concerning precisely the outliers of such
generally deformed Wigner matrices. It was shown in [CDM16] that the outliers of Y +B are
ω−1(φ j) where ω is the subordination function such that gµSC⊞τ (z) = gτ (ω(z)). These two
expressions coincide when

ω−1(z) = g−1
µSC⊞τ (z

−1)

⇐⇒ ω−1(z) = ω−1(g−1
τ (z−1))

⇐⇒ g−1
τ (z−1) = z

⇐⇒ gτ (z) = z−1

⇐⇒ τ = δ0, (2.15)

i.e. only when B is in fact of negligible rank asN→∞. This apparent contradiction is resolved
by the observation that the proof in [BGN11] in fact relies implicitly on an isotropic local law.
Note in particular section 4.1, which translated to our context, would require vTGY+Bi(z)v≈
gµSC⊞τ (z) with high probability for general unit vectors v. Such a result holds if and only if
Y+Bi obeys an isotropic local law and is violated if its local law is instead anistropic, as indeed
it is, thanks to the deformation.

Proof of theorem 2.1. The conditions on X required to invoke theorem 3.4 from section 3 are
satisfied, so we conclude that

ĝH(z) = gµb⊞ν(z)+ o(1) = gν(ω(z))+ o(1) = ĝA(ω(z))+ o(1) (2.16)

where ω is the subordination function such that gµb⊞ν(z) = gν(ω(z)) and µb is the limiting
spectral measure of s(b)X. The reasoning found in [CDM16] then applies regarding the out-
liers of H. Indeed, suppose that λ is an outlier of H, i.e. λ is an eigenvalue of H contained in
R\supp(µ⊞ ν). Necessarily ĝH possesses a singularity at λ, and so ĝA must have a singularity
at ω(λ). For this singularity to persist for allN, ω(λ)must coincide with one of the outliers of A
which, unlike the bulk eigenvalues ξj, remain fixed for all N. Therefore we have the following
expressions for the outliers of H:

{ω−1(θ j) | ω−1(θ j) ∈ R\supp(µb⊞ ν)}∪ {ω−1(θ ′
j) | ω−1(θ ′

j) ∈ R\supp(µb⊞ ν)}. (2.17)

We now consider ε to be small and analyse these outlier locations as a perturbation in ε.
Firstly note that

gµb(z) =
ˆ

dµb(x)
z− x

=

ˆ
dµ(x/s(b))

z− x
= s(b)

ˆ
dµ(x)

z− s(b)x
= gµ(z/s(b)). (2.18)

Also

ω−1(z) = g−1
µb⊞ν(gν(z)) (2.19)

= Rµb(gν(z))+ g−1
ν (gν(z))

= Rµb(gν(z))+ z. (2.20)

8
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We now must take care in computing Rµb from gµb . Recall that the R-transform of a measure
is defined as a formal power series [AGZ10]

R(z) =
∞∑
n=0

kn+1z
n (2.21)

where kn is the nth cumulant of the measure. It is known [AGZ10] that kn = Cn where the
functional inverse of the Stieljtes transform of the measure is given by the formal power series

K(z) =
1
z
+
∑
n=1

Cnz
n−1. (2.22)

Now letmn be the nth moment of µ and similarly letm(b)
n be the nth moment of µb, so formally

gµ(z) =
∑
n⩾0

mnz
−(n+1), gµb(z) =

∑
n⩾0

m(b)
n z−(n+1). (2.23)

Also let kn be the nth cumulant of µ and k(b)n be the nth cumulant of µb. Referring to the proof
of lemma 5.3.24 in [AGZ10] we find the relations

mn =
n∑

r=1

∑
0⩽i1,...,ir⩽n−r
i1+...+ir=n−r

krmi1 . . .mir , (2.24)

m(b)
n =

n∑
r=1

∑
0⩽i1,...,ir⩽n−r
i1+...+ir=n−r

k(b)r m(b)
i1 . . .m(b)

ir . (2.24)

Note, in particular, that m1 = k1. But clearly the moments of µb have a simple scaling in s(b),
namely m(b)

n = s(b)nmn, hence

mn = s(b)−n
n∑

r=1

∑
0⩽i1,...,ir⩽n−r
i1+...+ir=n−r

k(b)r mi1 . . .mirs(b)
n−r (2.26)

fromwhich we deduce k(b)n = s(b)nkn, which establishes that Rµb(z) = s(b)Rµ(s(b)z). Recall-
ing (2.20) we find

ω−1(z) = s(b)Rµ(s(b)gν(z))+ z. (2.27)

The form of ν gives

gν(z) = (1− ε)

ˆ
dt
z− t

δ0(t)+ ε

ˆ
dη(t)
t− z

=
1− ε

z
+ εgη(z) =

1
z
+ ε

(
gη(z)−

1
z

)
(2.28)

and so we can expand to give

ω−1(θ j) = θ j+ s(b)Rµ(s(b)θ−1
j )+ εs(b)2

(
gη(θ j)− θ−1

j

)
R ′
µ(s(b)θ

−1
j )+O(ε2)

= θ j+ s(b)Rµ(s(b)θ−1
j )+ εs(b)2dη(θ j)R ′

µ(s(b)θ
−1
j )+O(ε2) (2.29)

where we have defined dη(z) = gη(θ j)− θ−1
j . The argument with the lower outliers {θ′j}

q
j=1

is identical.
The problem of determining the support of µb⊞ ν is difficult and almost certainly analytic-

ally intractable, with [BES20] containing the most advanced results in that direction. However
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overall, we have a model for DNNHessians with a spectrum consisting, with high-probability,
of a compactly supported bulk µb⊞ ν and a set of outliers given by (2.29) (and similarly for
θ′j) subject to (2.17). The constants Lε,Uε in the statement (2.12) and (2.13) of the theorem
are simply the lower and upper edges of the support of supp(µb⊞ ν).

Note that (2.29) reduces to outliers of the form θ j+ s(b)2Rµ(θ
−1
j ) if ε= 0 or dη = 0, as expec-

ted from [BGN11]5.
(2.29) is a generalised form of the result used in [GZR20]. We have the power series

Rµ(s(b)θ−1
j ) = k(µ)1 +

k(µ)2 s(b)
θ j

+
k(µ)3 s(b)2

θ2j
+ . . . , (2.30)

dη(θ j) =
m(η)

1

θ2j
+
m(η)

2

θ3j
+ . . . (2.31)

where m(η)
n are the moments of η and k(µ)n are the cumulants of µ. In the case that the spikes

θj are large enough, we approximate by truncating these power series to give

ω−1(θ j)≈ θ j+ s(b)m(µ)
1 + s(b)2k(µ)2

(
1
θ j

+
εm(η)

1

θ2j

)
(2.32)

where the approximation is more precise for larger b and smaller ε and we have used the
fact that the first cumulant of any measure matches the first moment. One could consider for
instance a power law for s(b), i.e.

ω−1(θ j)≈ θ j+
k(µ)1

bυ
+
k(µ)2

b2υ

(
1
θ j

+
εm(η)

1

θ2j

)
= θ j+

m(µ)
1

bυ
+
k(µ)2

b2υ

(
1
θ j

+
εm(η)

1

θ2j

)
(2.33)

for some υ > 0. In the case that µ is a semicircle, then all cumulants apart from the second
vanish, so setting ε= 0 recovers exactly

ω−1(θ j) = θ j+
σ2

4b2υθ j
(2.34)

where σ is the radius of the semicircle. To make the link with [GZR20] obvious, we can take
υ = 1/2 and µ to be the semicircle, so giving

ω−1(θ j)≈ θ j+
σ2

4bθ j
(2.35)

where we have truncated O(ε) term. We present an argument in favour of the υ = 1/2 power
law below, but we allow for general υ when comparing to experimental data.

Remark 2.2. It is quite possible for µ’s density to have a sharp spike at the origin, or even for
µ to contain a δ atom at 0, as observed empirically in the spectra of DNN Hessians.

2.4. Experimental results

The random matrix Hessian model introduced above is quite general and abstract. Neces-
sarily the measures µ and η must be allowed to be quite general as it is well established
experimentally [Pap18, Gra20, BGK22] that real-world DNN Hessians have spectral bulks

5 Note that dη = 0 ⇐⇒ η = δ0 which is clearly equivalent (in terms of ν) to ε= 0.
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that are not familiar as being any standard canonical examples from random matrix theory.
That being said, the approximate form in (2.33) gives quite a specific form for the Hessian
outliers. In particular, the constants m(µ)

1 ,m(η)
1 and m(µ)

2 ,ε > 0 are shared between all outliers
at all batch sizes. If the form of the Hessian outliers seen in (2.33) is not observed experiment-
ally, it would suggest at least one of the following does not hold:

(a) batch sampling induces a simple multiplicative scaling on the Hessian noise (2.7);
(b) the true Hessian is approximately low-rank (as measured by ε) and has a finite number of

outliers;
(c) the Hessian noise model X has QUE.

In view of this third point, agreement with (2.33) provides an indirect test for the presence
of universal random matrix statistics in DNN Hessians.

We can use Lanczos power methods [MS06] to compute good approximations to the top
few outliers in the batch Hessian spectra of DNNs [GZR20]. Indeed the so-called Pearlmutter
trick [Pea94] enables efficient numerical computation of Hessian-vector products, which is
all that one requires for power methods. Over a range of batch sizes, we compute the top
five outliers of the batch Hessian for ten different batch seeds. We repeat this procedure at
every 25 epochs throughout the training of two standard DNNs for computer vision tasks,
VGG16 (named after the Visual Geometry Group at Oxford) and WideResNet28× 10, on the
CIFAR100 dataset [KH+09] and at every epoch during the training of a simple multi-layer
perceptron (MLP) network on the MNIST dataset [LBBH98]. By the end of training each of
the models have high test accuracy, specifically the VGG16 architecture which does not use
batch normalisation, has a test accuracy of≈ 75%, whereas the WideResNet28× 10 has a test
accuracy of ≈ 80%. The MLP has a test set accuracy of ≈ 95%. Full experimental details are
given in appendix B.

Remark 2.3. There is a subtlety with regard to obtaining the top outliers using the Lanczos
power method. Indeed, since Lanczos provides, in some sense, an approximation to the
whole spectrum of a matrix, truncating at m iterations for a N×N matrix cannot produce
good approximations to all of the m top eigenvalues. In reality, experimental results [Pap18,
GWG19] show that, for DNNs, and using sufficiently many iterations (m), the top r eigenval-
ues may be recovered, for r≪ m. We display some spectral plots of the full Lanczos results
in the appendix C which demonstrate clearly a large number of outliers, and clearly more
than 5. As a result, we can have confidence that our numerical procedure is indeed recovering
approximations to the top few eigenvalues required for our experiments.

Let λ(i, j,e)
b be the top ith empirical outlier (so i= 1 is the top outlier) for the jth batch seed and a

batch size of b for the model at epoch e. To compare the experimental results to our theoretical
model, we propose the following form:

λ
(i, j,e)
b ≈ θ(i,e) +

α(e)

bυ
+

β(e)

b2υ

(
1

θ(i,e)
+

γ(e)

(θ(i,e))2

)
(2.36)

where β(e) > 0 (as the second cumulant of a any measure of non-negative) and θ(i,e) >
θ(i+1,e) > 0 for all i,e. The parameters α(e),β(e),γ(e) and θ(i,e) need to be fit to the data, which
could be done with standard black-box optimisation to minimise squared error in (2.36), how-
ever we propose an alternative approach which reduces the number of free parameters and
hence should regularise the optimisation problem. Observe that (2.36) is linear in the paramet-
ers α(e),β(e),γ(e) so, neglecting the positivity constraint on β(e), we can in fact solve exactly
for optimal values. Firstly let us define λ̄(i,e)

b to be the empirical mean of λ(i, j,e)
b over the batch
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seed index j. Each epoch will be treated entirely separately, so let us drop the e superscripts to
streamline the notation. We are then seeking to optimise α,β,γ,θ(i) to minimise

E=
∑
i,b

(
λ̄
(i)
b − θ(i) − α

bυ
− β

θ(i)b2υ
− βγ

b2υ(θ(i))2

)2

. (2.37)

Now make the following definitions

yib = λ̄
(i)
b − θ(i), xib =

 b−υ

(θ(i)b)−2υ

(b2υ(θ(i))2)−1

 , w=

 α
β
βγ

 , (2.38)

so that

E=
∑
i,b

(yib−wTxib)2. (2.39)

Finally we can define the n-dimensional vector Y by flattening the matrix (yib)ib, and the 3× n
matrix X by stacking the vectors xib and then flattening of the i,b indices. That done, we have
have a standard linear regression problem with design matrix X and parameters w. For fixed
θ, the global minimum of E is then attained at parameters

w∗(θ) = (XXT)−1XY (2.40)

where the dependence on the parameters θ is through Y and X as above. We thus have

α= w∗
1 ,β = w∗

2 ,γ = w∗
3/w

∗
2

and can plug these values back in to (2.37) to obtain an optimisation problem only over the
θ(i). There is no closed form solution for the optimal θ(i) for this problem, so we fit them using
gradient descent. The various settings and hyperparameters of this optimisation were tuned
by hand to give convergence and are detailed in appendix B.3. To address the real constraint
β > 0, we add a penalty term to the loss (2.37) which penalises values of θ(i) leading to negat-
ive values of β. The constraint θ(i) > θ(i+1) > 0 is implemented using a simple differentiable
transformation detailed in appendix B.2. Finally, the exponent υ is selected by fitting the para-
meters for each υ in {−0.1,−0.2, . . . ,−0.9} and taking the value with the minimum mean
squared error E.

The above process results in 12 fits for VGG and Resnet and ten for MLP (one per epoch).
For each of these, we have a theoretical fit for each of the 5 top outliers as a function of batch
size which can be compared graphically to the data, resulting in (2× 12+ 10)× 5= 170 plots.
Rather than try to display them all, we will select a small subset that illustrates the key features.
Figure 1 shows results for the Resnet at epochs 0 (initialisation), 25, 250 and 300 (end of
training) and outliers 1, 3 and 5. Between the three models, the Resnet shows consistently the
best agreement between the data and the parametric form (2.36). The agreement is excellent at
epoch 0 but quickly degrades to that seen in the second row of figure 1, which is representative
of the early and middle epochs for the Resnet. Towards the end of training the Resnet returns
to good agreement between theory and data, as demonstrated in the third and fourth rows of
figure 1 at epochs 250 and 300 respectively.

TheVGG16 also has excellent agreement between theory and data at epoch 0, and thereafter
is similar to the early epochs of the Resnet, i.e. reasonable, but not excellent, until around epoch
225 where the agreement starts to degrade significantly until the almost complete failure at
epoch 300 shown in the first row of figure 2. The MLP has the worst agreement between
theory and data, having again excellent agreement at epoch 0, but really quite poor agreement
even by epoch 1, as shown in the second row of figure 2.
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Figure 1. The batch-size scaling of the outliers in the spectra of the Hessians of the
Resnet loss on CIFAR100. Training epochs increase top-to-bottom from initialisation to
final trainedmodel. Left-to-right the outlier index varies (outlier 1 being the largest). Red
cross show results from Lanczos approximations over ten samples (different batches) for
each batch size. The blue lines are parametric power law fits of the form (2.36).

The experimental results show an ordering Resnet > VGG > MLP, in terms of how well
the random matrix theory loss surface predictions explain the Hessian outliers. We conjec-
ture that this relates to the difficulty of the loss surfaces. Resnets are generally believed to
have smoother, simpler loss surfaces [LXT+18] and be easier to train than other architec-
tures, indeed the residual connections were originally introduced for precisely this reason.
The VGG is generally more sensitive to training set-up, requiring well-tuned hyperparameters
to avoid unstable or unsuccessful training [GB22]. The MLP is perhaps too small to benefit
from high-dimensional highly over-parametrised effects.

The parameter values obtained for all models over all epochs are shown in figure 3, with a
column for each model. There are several interesting features to draw out of these plots, how-
ever note that we cannot meaningfully interpret the parameters for the MLP beyond epoch 0,
as the agreement with (2.36) is so poor. Firstly consider the parameter m(µ)

1 , which is inter-

preted as the first moment (i.e. mean) of the spectral density of the noise matrix X. m(µ)
1 = 0

is significant, as it is seen in the case of the a symmetric measure µ, such as the Wigner semi-
circle used by [GZR20]. For the VGG, m(µ)

1 starts close to 0 (figure 3(b)) and generally grows
with training epochs (note that the right hand side of this plot is not trustworthy, as we have
observed that the agreement with (2.36) does not survive to the end of training). For the Resnet,
we see a similar upwards trend (figure 3(a)), with the notable exception that of initialisation
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Figure 2. Left-to-right the outlier index varies (outlier 1 being the largest). Red cross
show results from Lanczos approximations over ten samples (different batches) for each
batch size. The blue lines are parametric power law fits of the form (2.36). This plot show
the final epoch (300) for the VGG16 on CIFAR100 and the first epoch for the MLP on
MNIST, both being examples of the parametric fit failing to match the data.

(epoch 0). These two observations together, suggest that training encourages a skew in the
spectrum of X away from symmetry around 0, however for some structural reason the Resnet
is highly skewed at initialisation.

Note that for all models this parameter starts close to 0 and generally grows with training
epochs, noting that the right hand side of figure 3(b) at the higher epochs should be ignored
owing to the bad fit discussed above.

It is interesting also to observe that εm(η)
1 remains small for all epochs particularly compared

to m(µ)
1 ,k(µ)2 . This is consistent with the derivation of (2.36), which relies on ε being small,

however we emphasise that this was not imposed as a numerical constraint but arises naturally
from the data. Recall that the magnitude of εm(η)

1 measures the extent of the deviation of A
from being exactly low rank, so its small but non-zero values suggest that it is indeed important
to allow for the true Hessian to have non-zero rank in the N→∞ limit. Finally, we comment
that the best exponent is generally not υ = 1/2. Again, the results from the Resnet are the most
reliable and they appear to show that the batch scaling, as characterised by υ, is not constant
throughout training, particularly comparing epoch 0 and epoch 300, say.

2.5. Justification and motivation of QUE

Work on random matrix universality has shown that a local law is the key ingredient in the
establishing universal local statistics of eigenvalues [EYY12, EY17] and universal delocalisa-
tion of eigenvectors [BY17]. There are several forms of local law, but all provide high prob-
ability control on the error between the (random) matrix Green’s function G(z) = (z−X)−1

and certain deterministic equivalents. In all cases we use the set

S=
{
E+ iη ∈ C | |E|⩽ ω−1, N−1+ω ⩽ η ⩽ ω−1

}
(2.41)

for ω ∈ (0,1) and the local law statements holds for all (large) D> 0 and (small) ξ > 0 and for
all large enough N. The averaged local law states:

sup
z∈S

P

(∣∣∣∣ 1NTrG(z)− gµ(z)

∣∣∣∣> Nξ

(
1
Nη

+

√
ℑgµ(z)
Nη

))
⩽ N−D. (2.42)
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Figure 3. The parameter values produced when fitting experimental neural network
Hessian outlier data to (2.36).

The isotropic local law states:

sup
∥u∥,∥v∥=1,z∈S

P

(
|uTG(z)v− gµ(z)|> Nξ

(
1
Nη

+

√
ℑgµ(z)
Nη

))
⩽ N−D. (2.43)
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The anisotropic local law states:

sup
∥u∥,∥v∥=1,z∈S

P

(
|uTG(z)v−uTΠ(z)v|> Nξ

(
1
Nη

+

√
ℑgµ(z)
Nη

))
⩽ N−D (2.44)

where Π(·) is an N×N deterministic matrix function on C. The entrywise local law states:

sup
z∈S,1⩽i, j⩽N

P

(
|Gi j(z)−Πi j(z)|> Nξ

(
1
Nη

+

√
ℑgµ(z)
Nη

))
⩽ N−D. (2.45)

The anisotropic local law is a stronger version of the entrywise local law. The anisotropic
local law is a more general version of the isotropic local law, which can be recovered in the
isotropic case by taking Π = gµI. The entrywise local law can also be applied in the isotropic
case by taking Π = gµI. The averaged local law is weaker than all of the other laws. General
Wigner matrices are known to obey isotropic local semi-circle laws [ES17]. Anisotropic local
laws are known for general deformations of Wigner matrices and general covariance matrices
[KY17] as well as quite general classes of correlated random matrices [EKS19].

As mentioned above, QUE was proved for general Wigner matrices in [BY17]. It appears
that the key ingredient in the proof of QUE (2.9) in [BY17] is the isotropic local semicircle
law (2.43) for general Wigner matrices. Indeed, all the intermediate results in Sections 4 of
[BY17] take only (2.43) and general facts about the Dyson Brownian Motion eigenvector flow
given by

dλk =
dBkk√
N

+

 1
N

∑
ℓ ̸=k

1
λk−λℓ

dt, (2.46)

duk =
1√
N

∑
ℓ̸=k

dBkl
λk−λℓ

uℓ −
1
2N

∑
ℓ ̸=k

dt
(λk−λℓ)2

uk. (2.47)

This can be generalised to

dλk =
dBkk√
N

+

−V(λi)+
1
N

∑
ℓ ̸=k

1
λk−λℓ

dt, (2.48)

duk =
1√
N

∑
ℓ̸=k

dBkl
λk−λℓ

uℓ −
1
2N

∑
ℓ ̸=k

dt
(λk−λℓ)2

uk. (2.49)

where V is a potential function. Note that the eigenvector dynamics are unaffected by the
presence of the potential V, so we expect to be able to generalise the proof of [KY17] to
any random matrix ensemble with an isotropic local law by defining the potential V so that
the invariant ensemble with distribution Z−1e−NTrV(X)dX has equilibrium measure µ (Z is a
normalisation constant). We show how to construct such a V from µ in appendix A.

The arguments so far suffice to justify a generalisation of the ‘dynamical step’ in the argu-
ments of [BY17], so it remains to consider the ‘comparison step’. The dynamical step estab-
lishes QUE for the matrix ensemble with a small Gaussian perturbation, but in the comparison
step one must establish that the perturbation can be removed without breaking QUE. To our
knowledge no such argument has been articulated beyond generalized Wigner matrices, with
the independence of entries and comparable scale of variances being critical to the arguments
given by [BY17]. Our guiding intuition is that QUE of the form (2.9) is a general property of
random matrices and can reasonably be expected to hold in most, if not all, cases in which
there is a local law and universal local eigenvalue statistics are observed. At present, we are
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not able to state a precise result establishing QUE in sufficient generality to be relevant for this
work, so we shall take it as an assumption.

Assumption 2.4. Let X be an ensemble of N×N real symmetric random matrices. Assume
that X admits a limiting spectral measure is µ with Stieljtes transform m. Suppose that the
isotropic local law (2.43) holds for X with µ. Then there is some set TN ⊂ [N]with |Tc

N|= o(N)
such that with |I|= n, for any polynomial P in n indeterminates, there exists some ε(P)> 0
such that for large enough N we have

sup
I⊂TN,|I|=n,

∥q∥=1

∣∣∣E(P((N(qTuk)2)k∈I))−E
(
P
((

|N j|2
)
k∈I

))∣∣∣⩽ N−ε. (2.50)

Note that the isotropic local law in assumption 2.4 can be obtained from the weaker entrywise
law (2.45) as in theorem 2.14 of [BEK+14] provided there exists a C > 0 such that E|Xi j|2˜⩽
CN−1 for all i, j and there exists Cp > 0 such that E|

√
NXi j|p ⩽ Cp for all i, j and integer p> 0.

Remark 2.5. In [BY17] the restriction I⊂ TN is given for the explicit set

TN = [N]\{(N1/4,N1−δ)∪ (N−N1−δ,N−N1/4)} (2.51)

for some 0< δ < 1. In the case of generalised Wigner matrices, this restriction on the indices
has since been shown to be unnecessary [BL22, Ben20, BL21]. In our context, we could simply
take as an assumption all results holds withTN = [N], however our results can in fact be proved
using only the above assumption that |Tc

N|= o(N), so we shall retain this weaker form of the
assumptions.

This section is not intended to prove QUE from explicit known properties of DNN Hessians,
but rather to provide justification for it as a reasonable modeling assumption in the noise model
for Hessians defined in section 2.1.We have shown howQUE can be obtained from an isotropic
(or entrywise) local law beyond the Wigner case. It is important to go beyond Wigner or any
other standard random matrix ensemble, as we have observed above that the standard macro-
scopic spectral densities of randommatrix theory such as the semicircle law are not observed in
practice. That said, we are not aware of any results establishing QUE in the more general case
of anistropic local laws, and this appears to be a very significant technical challenge. We must
finally address why a local law assumption, isotropic or otherwise, may be reasonable for the
noisematrixX in our Hessianmodel. Over the last decade or so, universal local statistics of ran-
dommatrices in the form of k-point correlation functions on the appropriate microscopic scale
have been established for a litany of random matrix ensembles. An immediate consequence of
such results is that, on the scale of unit mean eigenvalue spacing, Wigner’s surmise holds to a
very good approximation, depending only on the symmetry class (orthogonal, unitary or sym-
plecitic). Such universality results are rather older for invariant ensembles [Dei99, EY17] and
can be established with orthogonal polynomial techniques, however the recent progress focus-
ing on non-invariant ensembles, beginning with Wigner matrices [EYY12] and proceeding to
much more general ensembles [EKS19], is built on a very general ‘three step strategy’ (though
see [EY12] for connections between universality in invariant and non-invariant ensembles). As
with the QUE proof discussed above, the key ingredient in these proofs, as part of the three
step strategy [EY17], is establishing a local law. The theoretical picture that has emerged is
that, for very general random matrices, when universal local eigenvalue statistics are observed
in random matrices, it is due to the mechanism of short time scale relaxation of local statistics
under Dyson Brownian Motion made possible by a local law.

It has been observed that universal local eigenvalue statistics do indeed appear to be present
in the Hessian of real, albeit quite small, DNNs [BGK22]. Given all of this context, we propose
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that a local law assumption of some kind is reasonable for DNN Hessians and not particularly
restrictive. As we have shown, if we are willing to make the genuinely restrictive assumption of
an isotropic local law for the Hessian noise model, then QUE follows. However an anistropic
local law is arguably more plausible as we expect DNNs Hessians to contain a good deal of
dependence between entries, and such correlations are know to generically lead to anisotropic
local laws [EKS19].

2.6. Motivation of true Hessian structure

In this section we revisit and motivate the assumptions made about the Hessian in section 2.1.
Firstly note that one can always define A= EHbatch and it is natural then to associate Awith the
true HessianHtrue. In light of (2.1), it is natural to expect some fixed form of the law forHbatch −
A for any batch size, but with an overall scaling s(b), which must naturally be decreasing in
b as experimental results show that the overall spectral width of the batch Hessians of neural
networks decreases with increasing batch size. Next we address the assumptions made about
the spectrum of A. The first assumption one might think to make is that A has fixed rank relative
toN, with spectrum consisting only of the spikes θi,θ′j. Indeed, it has been repeatedly observed,
in our own experiments and others [Pap18, GZR20], that neural network Hessians contain a
number of spectral outliers separated from the spectral bulk. It is natural to conjecture that such
outliers arise from some outliers in an underlying structured deterministic matrix of which the
batch Hessian is a noisy version, as in the case of BBP style phase transitions in random
matrix theory. The outliers in neural network Hessians have been associated with inter-class
separation in the case of classification models [Pap19] and it can be observed that spectra lack
(or have smaller and fewer) outliers at the start of training, or if they are intentionally trained
to give poor (i.e. random) predictive performance. That being said, in almost any experiment
with sensibly trained neural networks, spectral outliers are observed, and over a range of batch
sizes (and hence noise levels) suggesting that some of the spike eigenvalues in the true Hessian
are above the phase transition threshold.

Behind such an assumption is the intuition that the data distribution does not depend on
N and so, in the over-parametrised limit N→∞, the overwhelming majority of directions in
weight space are unimportant. The form we take for A in the above is a strict generalisation of
the fixed rank assumption; A still has a fixed number of spiked directions, but the parameter ε
controls the rank of A. Since any experimental investigation is necessarily limited to N<∞,
the generalisation to ε> 0 is particularly important. Compact support of the measures µ and η
is consistent with experimental observations of DNN Hessian spectra.

2.7. The batch size scaling

Our experimental results considered s(b) = b−υ and υ = 1/2 is the value required to give
agreement with [GZR20], a choice which we now justify. From (2.1) we have

Hbatch =
1
b

b∑
i=1

(
Htrue +X(i)

)
(2.52)

where X(i) are i.i.d. samples from the law of X. Suppose that the entries Xij were Gaussian,

with Cov(Xi j,Xkl) = Σi j,kl. Then Z= X(p)
i j +X(q)

i j has

Cov(Zi j,Zkl) = EX(p)
i j X

(p)
kl +EX(q)

i j X
(q)
kl −EX(p)

i j EX(p)
kl −EX(q)

i j EX
(q)
kl = 2Σi j,kl. (2.53)
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In the case of centred X, one then obtains

1
b

b∑
i=1

X(i) d
= b−1/2X. (2.54)

Note that this does not quite match the case described in section 2.1, since we do not assume
there that EX= 0, however we take this a rough justification for s(b) = b−1/2 as an ansatz.
Moreover, numerical experimentation with s(b) = b−υ for values of υ > 0 shows that q=
1/2 gives a reasonable fit to the data (note that the values shown in figures 3(j)–(l) are those
producing the best fit, but υ = 1/2 was seen to be not much inferior).

3. Spectral free addition from QUE

3.1. Intermediate results on QUE

This section establishes some intermediate results that follow from assuming QUE for the
eigenvectors of a matrix. They will be crucial for our application in the following section.

Lemma 3.1. Consider a real orthogonal N×N matrix U with rows {uTi }Ni=1. Assume that
{ui}Ni=1 are the eigenvectors of a real random symmetric matrix with QUE. Let P be a fixed
N×N real orthogonal matrix. Let V=UP and denote the rows of V by {vTi }Ni=1. Then {vi}Ni=1
also satisfy QUE.

Proof. Take any unit vector q, then for any k= 1, . . . ,N

qTvk =
∑
j

q jVk j =
∑
j,l

q jUklPl j = (Pq)Tuk.

But ∥Pq∥2 = ∥q∥2 = 1 since P is orthogonal, so the statement of QUE for {ui}Ni=1 transfers
directly to {vi}Ni=1 thanks to the supremum of all unit q.

Lemma 3.2. Consider a real orthogonal N×N matrix U with rows {uTi }Ni=1. Assume that
{ui}Ni=1 are the eigenvectors of a real random symmetric matrix with QUE. Let ℓ0(q) =∑

i 1{qi ̸= 0} count the non-zero elements of a vector with respect to a fixed orthonormal
basis {ei}Ni=1. For any fixed integer s > 0, define the set

Vs =
{
q ∈ RN | ∥q∥= 1, ℓ0(q) = s, qi = 0 ∀i ∈ Tc

N

}
(3.1)

where, recall the definition

TN = [N]\{(N1/4,N1−δ)∪ (N−N1−δ,N−N1/4)}.

Then the columns {u′i}Ni=1 of U satisfy a weaker form of QUE (for any fixed n,s> 0):

sup
q∈Vs

sup
I⊂TN
|I|=n

∣∣∣EP((N|qTuk|2)k∈I)−EP
((

|N j|2
)m
j=1

)∣∣∣⩽ N−ε. (3.2)

We will denote this form of QUE as Q̂UE.

Proof. Take some q ∈ Vs. Then there exists some J⊂ TN with |J|= s and non-zero {qk}k∈J
such that

qTu′k =
∑
j∈J

q jeTju
′
k.
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Take {ei}Ni=1 to be a standard basis with (ei) j = δi j, then eTju
′
k = U jk = eTku j so

qTu′k =
∑
j∈J

q jeTku j

but then the coefficients qj can be absorbed into the definition of the general polynomial in
the statement (2.9) of QUE for {ui}Ni=1, which completes the proof, noting that the sum only
includes indices contained in TN owing to the definition of Vs.

Lemma 3.3. Fix some real numbers {yi}ri=1. Fix also a diagonal matrixΛ and an orthonormal

set of vectors {vi}Ni=1 that satisfies Q̂UE. Then there exists an ε>0 and ηi ∈ CN with

η2
i j ∈ [−1,1] ∀ j ∈ TN, (3.3)

η2
i j ∈ [−Nε,Nε] ∀ j ∈ Tc

N. (3.4)

such that for any integer l > 0

E

(
r∑

i=1

yi vTi Λvi

)l

−E

(
r∑

i=1

yi
1
N
gTi Λgi

)l

= N−(1+ε)l

(
r∑

i=1

yiη
T
i Ληi

)l

(3.5)

where the gi are i.i.d. Gaussians N(0, IN).

Proof. Let {ei}Ni=1 be the standard orthonormal basis from above. Then

E

(
r∑

i=1

yi vTi Λvi

)l

= E
r∑

i1,...,il=1

l∏
k=1

yikv
T
ikΛvik

= E
r∑

i1,...,il=1

N∑
j1,..., jl=1

l∏
k=1

yikλ jk(e
T
jkvik)

2 (3.6)

=⇒ E

(
r∑

i=1

yi vTi Λvi

)l

−E

(
r∑

i=1

yi
1
N
gTi Λgi

)l

= N−l
r∑

i1,...,il=1

N∑
j1,..., jl=1

l∏
k=1

yikλ jk

[
NE(eTjkvik)

2 −E(eTjkgik)
2
]

= N−l
r∑

i1,...,il=1

∑
j1,..., jl∈TN

l∏
k=1

yikλ jk

[
NE(eTjkvik)

2 −E(eTjkgik)
2
]

+N−l
r∑

i1,...,il=1

∑
j1∈TcN,

j2,..., jl∈TN

l∏
k=1

yikλ jk

[
NE(eTjkvik)

2 −E(eTjkgik)
2
]

+ . . . . (3.7)

The ellipsis represents the similar terms where further of the j1, . . . , jr are in Tc
N. For j ∈ Tc

N
the terms [

NE(eTjkvik)
2 −E(eTjkgik)

2
]

(3.8)
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are excluded from the statement of Q̂UE, however we can still bound them crudely. Indeed

∑
j∈TcN

N(eTjvi)
2 =

N∑
j=1

N(eTjvi)
2 −

∑
j∈TN

N(eTjvi)
2 = N−

∑
j∈TN

N(eTjvi)
2 (3.9)

but since the bound of Q̂UE applies for j ∈ TN

NE(eTjvi)2 = E(eTjg)2 + o(1) = 1+ o(1) ∀ j ∈ TN, (3.10)

then∑
j∈TcN

N(eTjvi)
2 = N−N(1+ o(1)) = o(N) =⇒ E(eTjvi)2 = o(1) ∀ j ∈ Tc

N. (3.11)

Note that this error term is surely far from optimal, but is sufficient here. Overall we can now
say ∣∣[NE(eTjvi)2 −E(eTjgi)2

]∣∣⩽ 1+ o(1)⩽ 2 ∀ j ∈ Tc
N. (3.12)

We can apply Q̂UE to the terms in square parentheses to give ε1, . . . ,εr > 0 such that

|NE(eTjkvik)
2 −E(eTjkgik)

2|⩽ N−εik ∀ jk ∈ TN ∀ik = 1, . . . ,r. (3.13)

We can obtain a single error bound by setting ε=mini εi, where clearly ε> 0 and then write

NE(eTjkvik)
2 −E(eTjkgik)

2 = η2
ik jkN

−ε (3.14)

where η2
ik jk ∈ [−1,1]. To further include the indices j ∈ Tc

N, we extended the expression (3.14)
to all jk by saying

η2
ik jk ∈ [−1,1] ∀ jk ∈ TN, (3.15)

η2
ik jk ∈ [−Nε,Nε] ∀ jk ∈ Tc

N. (3.16)

Overall we have

E

(
r∑

i=1

yi vTi Λvi

)l

−E

(
r∑

i=1

yi
1
N
gTi Λgi

)l

= N−l(1+ε)
r∑

i1,...,il=1

N∑
j1,..., jl=1

l∏
k=1

yikλ jkη
2
ik jk (3.17)

but by comparing with (3.6) we can rewrite as

E

(
r∑

i=1

yi vTi Λvi

)l

−E

(
r∑

i=1

yi
1
N
gTi Λgi

)l

=

(
r∑

i=1

N−(1+ε)yiη
T
i Ληi

)l

(3.18)

where ηTi = (ηi1, . . . ,ηiN).
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3.2. Main result

Theorem 3.4. Let X be an N×N real symmetric random matrix and let D be an N×N sym-
metric matrix (deterministic or random). Let µ̂X, µ̂D be the empirical spectral measures of the
sequence of matrices X,D and assume there exist deterministic limit measures µX,µD. Assume
that X has QUE, i.e. assumption 2.4. Assume also the µ̂X concentrates in the sense that

P(W1(µ̂X,µX)> δ)≲ e−Nτ f(δ) (3.19)

where τ >0 and f is some positive increasing function. Then H= X+D has a limiting spectral
measure and it is given by the free convolution µX⊞µD.

Remark 3.5. A condition like (3.19) is required so that the Laplace method can be applied
to the empirical measure µ̂X. There are of course other ways to formulate such a condition.
Consider for example the conditions used in theorems 2.1 and 4.1 of [ABM21]. There it is
assumed the existence of a sequence of deterministic measures (µN)N⩾1 and a constant κ> 0
such that for large enough N

W1(Eµ̂X,µN)⩽ N−κ, W1(µN,µX)⩽ N−κ, (3.20)

which is of course just a deterministic version of (3.19). [ABM21] introduce the extra condition
around concentration of Lipschitz traces:

P
(∣∣∣∣ 1NTr f(HN)−

1
N
ETr f(HN)

∣∣∣∣> δ

)
⩽ exp

(
− cζ
Nζ

min

{(
Nδ

∥ f∥Lip

)2

,

(
Nδ

∥ f∥Lip

)1+ε0
})

, (3.21)

for all δ > 0, Lipschitz f and N large enough, where ζ,cζ > 0 are some constants. As shown in
the proof of theorem 2.1, this condition is sufficient to obtain

P
(∣∣∣∣ˆ |λ|dµ̂X(λ)−

ˆ
|λ|dEµ̂X(λ)

∣∣∣∣⩽ t

)
⩽ exp

(
− cζ
Nζ

min
{
(2Ntη)2,(2Ntη)1+ε0

})
(3.22)

for any t > 0 and for large enough N. Note that [ABM21] prove this instead for integra-
tion against a regularised version of log |λ∥, but the proof relies only the integrand’s being
Lipschitz, so it goes through just the same here. (3.22) and (3.20) clearly combine to
give (3.19). The reader may ignore this remark if they are content to take (3.19) as an assump-
tion. Alternatively, as we have shown, (3.19) can be replaced by (3.20) and (3.21), conditions
which have already been used for quite general results in the random matrix theory literature.

Proof. We shall denote use the notation

GH(z) =
1
N
Tr(z−H)−1. (3.23)

Recall the supersymmetric approach to calculating the expected trace of the resolvent of a
random matrix ensemble:

EHGH(z) =
1
N

∂

∂ j

∣∣∣∣∣
j=0

EHZH( j) (3.24)

where

ZH( j) =
det(z+ j−H)
det(z−H)

=

ˆ
dΨe−iTrAHeiTrΨΨ†J, (3.25)

A= ϕϕ† +χχ†, (3.26)
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J= IN⊗
(

z 0
0 j+ z

)
, (3.27)

dΨ =
dϕdϕ∗dχdχ∗

−(2π)Ni
, (3.28)

Ψ =

(
ϕ
χ

)
(3.29)

with ϕ ∈ CN and χ,χ∗ being N-long vectors of anti-commuting variables. Independence of X
and D gives

EHZH( j) =
ˆ

dΨeiTrΨΨ†JEX,De
−iTrA(X+D)

=

ˆ
dΨeiTrΨΨ†JEDe

−iTrADEXe
−iTrAX. (3.30)

ED simply means integration against a delta-function density if D is deterministic.
Let us introduce some notation: for N×N matrices K, ΦX(K) = EXe−iTrXK, and similarly

ΦD. We also define a new matrix ensemble X̄
d
= OTΛO, where Λ = diag(λ1, . . . ,λN) are equal

in distribution to the eigenvalues of X andO is an entirely independent Haar-distributed ortho-
gonal matrix.

Now

EHZH( j) =
ˆ

dΨeiTrΨΨ†JΦX̄(K)ΦD(K)+
ˆ

dΨeiTrΨΨ†J(ΦX(A)−ΦX̄(A))ΦD(A)

=⇒ EGD+X(z) = EGD+X̄(z)+
1
N

∂

∂ j

∣∣∣∣∣
j=0

ˆ
dΨeiTrΨΨ†J(ΦX(A)−ΦX̄(A))ΦD(A)

≡ EGD+X̄(z)+E(z) (3.31)

and so we need to analyse the error term E(z).
Now consider X= UTΛU where the rows of U are the eigenvectors {ui}i of X. Say also

that K= QTYQ for diagonal Y= (y1, . . . ,yr,0, . . . ,0), where we note that K has fixed rank, by
construction. Then

TrXK= Y(UQT)TΛ(UQT)

but lemma 3.1 establishes that the rows of UQT obey QUE, since the rows of U do. Further,
lemma 3.2 then establishes that the columns of UQT obey Q̂UE as required by lemma 3.3. Let
{vi} be those columns, then we have

TrXK=
r∑

i=1

yi vTi Λvi. (3.32)

The expectation over X can be split into eigenvalues and conditional eigenvectors

ΦX(K) = EΛEU|Λ

∞∑
l=0

1
l!
(−i)l

(
TrUTΛUK

)l
. (3.33)

We can simply bound∣∣∣∣∣
n∑
l=0

1
l!
(−i)l

(
TrUTΛU

)l∣∣∣∣∣⩽ e|TrU
TΛUK| (3.34)
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for any n, but clearly

EU|Λe
|TrUTΛUK| <∞ (3.35)

since, whatever the distribution of U | Λ, the integral is over a compact group (the orthogonal
group O(N)) and the integrand has no singularities. Therefore, by the dominated convergence
theorem

ΦX(K) = EΛ

∞∑
l=0

1
l!
(−i)lEU|Λ

(
TrUTΛUK

)l
(3.36)

and in precisely the same way

ΦX(K) = EΛ

∞∑
l=0

1
l!
(−i)lEO∼µHaar

(
TrOTΛOK

)l
. (3.37)

Recalling (3.32) we now have

ΦX(K) = EΛ

∞∑
l=0

1
l!
(−i)lEU|Λ

(
r∑

i=1

yi vTi Λvi

)l

(3.38)

and similarly

ΦX̄(K) = EΛ

∞∑
l=0

1
l!
(−i)lEU|Λ

(
r∑

i=1

yi v̄Ti Λv̄i

)l

(3.39)

where the v̄i are defined in the obvious way from X̄. We would now apply Q̂UE, but to do so we
must insist that EΛ is taken over the ordered eigenvalues of X. Having fixed that convention,
lemma 3.3 can be applied to the terms

EU|Λ

(
r∑

i=1

yi vTi Λvi

)l

(3.40)

in (3.38). The terms in ΦX̄ can be treated similarly. This results in

ΦX(K)−ΦX̄(K) = EΛ

[ ∞∑
l=0

il

l!

E{gi}ri=1

(
r∑

i=1

yi
1
N
gTi Λgi

)l

+

(
r∑

i=1

N−(1+ε)yiη
T
i Ληi

)l


−
∞∑
l=0

il

l!

E{gi}ri=1

(
r∑

i=1

yi
1
N
gTi Λgi

)l

+

(
r∑

i=1

N−(1+ε)yi η̄
T
i Λη̄i

)l

]
.

(3.41)

The exponential has infinite radius of convergence, so we may re-order the terms in the sums
to give cancellation

ΦX(K)−ΦX̄(K) = EΛ

∞∑
l=1

1
l!
N−(1+ε)l(−i)l

(
r∑

i=1

yiη
T
i Ληi

)l

−EΛ

∞∑
l=1

1
l!
N−(1+ε)l(−i)l

(
r∑

i=1

yi η̄
T
i Λη̄i

)l

.

Here ε> 0 and ηi, η̃i ∈ CN with

− 1⩽ [(ηi) j]
2, [(η̄i) j]

2 ⩽ 1 ∀i= 1, . . . ,r, ∀ j ∈ TN, (3.42)
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−Nε ⩽ [(ηi) j]
2, [(η̄i) j]

2 ⩽ Nε ∀i= 1, . . . ,r, ∀ j ∈ TN. (3.43)

Simplifying, we obtain

ΦX(K)−ΦX̄(K) = EΛ exp

(
−iN−(1+ε)

r∑
i=1

yiη
T
i Ληi

)

−EΛ exp

(
−iN−(1+ε)

r∑
i=1

yi η̃
T
i Λη̃i

)
. (3.44)

Since |Tc
N|⩽ 2˜N1−δ we have∑

j∈TcN

|λ j|⩽O(N1−dN−1)Tr|Λ| (3.45)

and so

|ηTi Ληi|⩽ Tr|Λ|
(
1+O(Nε−δ)

)
. (3.46)

For any fixed δ > 0, ε can be reduced if necessary so that ε < δ and then for sufficiently large
N we obtain, say,

|ηTi Ληi|⩽ 2Tr|Λ|. (3.47)

Thence we can write ηTi Ληi = Tr|Λ|ξi for ξi ∈ [−2,2], and similarly η̃Ti Λη̃i = Tr|Λ|ξ̃i. Now

EΛ exp

(
−iN−(1+ε)

r∑
i=1

ξiyiTr|Λ|

)
= EΛ exp

(
−iN−ε

r∑
i=1

ξiyi

ˆ
dµ̂X(λ)|λ|

)
so we can apply Laplace’s method to the empirical spectral measure µ̂X to obtain

EΛ exp

(
−iN−(1+ε)

r∑
i=1

ξiyiTr|Λ|

)
= exp

(
−iN−ε(q+ o(1))

r∑
i=1

ξiyi

)
+ o(1) (3.48)

where the o(1) terms do not depend on the yi and where we have defined

q=
ˆ

dµX(λ)|λ|. (3.49)

Further, we can write
∑r

i=1 ξi yi = ζTrK, where ζ ∈ [mini{ξi},maxi{ξi}]⊂ [−1,1], and sim-
ilarly

∑r
i=1 ξ̃i yi = ζ̃TrK. Then

ΦX(K)−ΦX̄(K) = e−iN−εζ(q+o(1))TrK− e−iN−εζ̃(q+o(1))TrK+ o(1) (3.50)

but

1
N

∂

∂ j

∣∣∣∣∣
j=0

ˆ
dΨeiTrΨΨ†Je−iN−εζ(q+o(1))TrKΦD(A) = EGD+N−εζ(q+o(1))I(z) = EGD(z+O(N−ε))

=⇒ E(z) = EGD(z+O(N−ε))+ o(1)−EGD(z+O(N−ε))− o(1) = o(1). (3.51)

We have thus established that

EGD+X(z) = EGD+X̄(z)+ o(1) (3.52)

from which one deduces that µD+X = µD+X̄ = µD⊞µX̄ = µD⊞µX.
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Remark 3.6. We have also constructed a non-rigorous argument for theorem 3.4 where the
supersymmetric approach is replaced by the replica method. This approach simplifies some of
the analysis but at the expense of being not at all rigorous (indeed there are integral expressions
in this argument that are manifestly infinite). The supersymmetric methods used here are not
fully rigorous (like most of their applications) but we note that recent work is beginning to
elevate supersymmetric random matrix calculations to full rigour [SS17, Shc20].

3.3. Experimental validation

Let U(a,b) denote the uniform distribution on the interval (a, b), and Γ(a) the Gamma-
distribution with scale parameter a. We consider the following matrix ensembles:

M∼ GOEn : Var(Mi j) =
1+ δi j
2n

,

M∼ UWign :
√
nMi j

i.i.d∼ U(0,
√
6) up to symmetry,

M∼ ΓWign : 2
√
nMi j

i.i.d∼ Γ(2) up to symmetry,

M∼ UWishn : M
d
=

1
m
XXT, Xi j

i.i.d∼ U(0,
√
12) for Xof size n×m,

n
m

n,m→∞→ α,

M∼Wishn :M
d
=

1
m
XXT, Xi j

i.i.d∼ N (0,1) for Xof size n×m,
n
m

n,m→∞→ α.

All of the GOEn,UWign,ΓWign have the same limiting spectral measure, namely µSC, the
semi-circle of radius

√
2. UWishn,Wishn have a Marcenko–Pastur limiting spectral measure

µMP, and the constant
√
12 is chosen so that the parameters of the MP measure match those

of a Gaussian Wishart matrixWishn. GOEn,Wishn are the only ensembles whose eigenvectors
are Haar distributed, but all ensembles obey a local law in the sense above. It is known that
the sum of GOEn and any of the other ensembles will have limiting spectral measure given by
the free additive convolution of µSC and the other ensemble’s measure (so either µSC ⊞µMP or
µSC ⊞µSC), indeed this free addition property holds for any invariant ensemble [AGZ10]. Our
result implies that the same holds for addition of the non-invariant ensembles. Sampling from
the above ensembles is simple, so we can easily generate spectral histograms from multiple
independent matrix samples for large n. µSC ⊞µSC is just another semi-circle measure but with
radius 2. µSC ⊞µMP can be computed in the usual manner with R-transforms and is given by
the solution to the polynomial

α

2
t3 −

(
1
2
+αz

)
t2 +(z+α− 1)t− 1= 0.

i.e. Say the cubic has roots {r1,r2 + is2,r2 − is2} for s2 ⩾ 0, then the density of µSC ⊞µMP at z
is s2/π. This can all be solved numerically. The resulting plots are in figure 4 and clearly show
agreement between the free convolutions and sampled spectral histograms.

We can also test the result in another more complicated case. Consider the case of random
d-regular graphs on N vertices. Say M∼ RegN,d is the distribution of the adjacency matrix of
such random graphs. The limiting spectral density ofM∼ RegN,d is known in closed form, as
is its Stieljtes transform [BHY19] and [BHY19] established a local law of the kind required
for our results. Moreover, there are known efficient algorithms for sampling random d-regular
graphs [KV03, SW99] along with implementations [HSS08]. Let µ(d)

KM be the Kesten–McKay
law, the limiting spectral measure of d-regular graphs. We could find an explicit degree-6
polynomial for the Stieljtes transform of µ(d)

KM ⊞µSC and compare to spectral histograms as

above. Alternatively we can investigate agreement with µ(d)
KM ⊞µSC indirectly by sampling and
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Figure 4. Comparison of theoretical spectral density and empirical from sampled
matrices all of size 500× 500. We combine 50 independent matrix samples per plot.

Figure 5. q-q plot comparing the spectrum of samples from RegN,d+UWigN (y-axis)
to samples from RegN,d+GOEN (x-axis).

comparing spectra from say RegN,d+UWigN and also from RegN,d+GOEN. The latter case
will certainly yield the distribution µ(d)

KM ⊞µSC since the GOE matrices are freely independent
from the adjacency matrices. Figure 5 shows a q-q plot6 for samples of the spectra from these
two matrix distributions and demonstrates near-perfect agreement, thus showing that indeed
the spectrum of RegN,d+UWigN is indeed described by µ

(d)
KM ⊞µSC. We reached the same

conclusion when repeating the above experiment with UWishN+RegN,d andWishn+RegN,d.

4. Universal complexity of loss surfaces

4.1. Extension of a key result and prevalence of minima

Let’s recall theorem 4.5 from [ABM21]. HN(u) is our random matrix ensemble with some
parametrisation u ∈ Rm and its limiting spectral measure is µ∞(u).

Define

G−ε = {u ∈ Rm | µ∞(u)((−∞,0))⩽ ε}. (4.1)

6 Recall that a q-q plot shows the quantiles of one distribution on the x axis and another on the y axis. Given two
cumulative density functions FX,FY and their percent point functions F−1

X ,F−1
Y , the q-q plot is a plot of the parametric

curve (F−1
X (q),F−1

Y (q)) for q ∈ [0,1]. Given only finite samples from the random variables X and Y, the empirical
percent point functions can be estimated and used in the q-q plot.
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So G−ε is the event that µ∞(u) is close to being supported only on (0,∞). Let l(u),r(u) be
the left and right edges respectively of the support of µ∞(u).

Theorem 4.1 ([ABM21] theorem 4.5). Fix someD ⊂ Rm and suppose thatD and the matrices
HN(u) satisfy the following.

• For every R> 0 and every ε>0, we have

lim
N→∞

1
N logN

log

[
sup
u∈BR

P
(
dBL(µ̂HN(u),µ∞(u)

)
> ε

]
=−∞. (4.2)

• Several other assumptions detailed in [ABM21].

Then for any α>0 and any fixed p ∈ N, we have

lim
N→∞

1
N

log
ˆ
D
e−(N+p)αu2E [|det(HN(u))|1{i(HN(u)) = 0}]du

= sup
u∈D∩G

{ˆ
R
log |λ|dµ∞(u)(λ)−αu2

}
. (4.3)

We claim the following extension

Corollary 4.2. Under the same assumptions as the above theorem and for any integer sequence
k(N)> 0 such that k/N→ 0 as N→∞, we have

lim
N→∞

1
N

log
ˆ
D
e−(N+p)αu2E [|det(HN(u))|1{i(HN(u))⩽ k}]du

= sup
u∈D∩G

{ˆ
R
log |λ|dµ∞(u)(λ)−αu2

}
. (4.4)

Proof. Firstly note that

1
N

log
ˆ
D
e−(N+p)αu2E [|det(HN(u))|1{i(HN(u))⩽ k}]du

⩾ 1
N

log
ˆ
D
e−(N+p)αu2E [|det(HN(u))|1{i(HN(u)) = 0}]du, (4.5)

so it suffices to establish a complementary upper bound. The proof in of theorem 4.5 in
[ABM21] establishes an upper bound using

lim
N→∞

1
N

log
ˆ
(G−ε)

c
e−Nαu2E [|det(HN(u)|1{i(HN(u)) = 0}]du=−∞ (4.6)

which holds for all ε> 0. Indeed, D = (D∩G−ε)∪ (D∩ (G−ε)
c), so

ˆ
D
e−(N+p)αu2E [|det(HN(u))|1{i(HN(u))⩽ k}]du

⩽
ˆ
D∩G−ε

e−(N+p)αu2E [|det(HN(u))|1{i(HN(u))⩽ k}]du

+

ˆ
(G−ε)c

e−(N+p)αu2E [|det(HN(u))|1{i(HN(u))⩽ k}]du, (4.7)
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so our proof is complete if we can prove the analogous result

lim
N→∞

1
N

log
ˆ
(G−ε)

c
e−Nαu2E [|det(HN(u)|1{i(HN(u))⩽ k}]du=−∞. (4.8)

As in [ABM21], let f ε be some 1
2 -Lipschitz function satisfying ε

21x⩽−ε ⩽ fε(x)⩽ ε
21x⩽0.

Suppose u ∈ (G−ε)
c and also i(HN(u))⩽ k. Then we have

0⩽
ˆ

dµ̂HN(u)(x) fε(x)⩽
kε
2N

(4.9)

and also

ε2

2
⩽
ˆ

dµ∞(u)(x) fε(x)⩽
ε

2
. (4.10)

We have

dBL(µ̂HN(u),µ∞(u))⩾
∣∣∣∣ˆ dµ̂HN(u)(x) fε(x)−

ˆ
dµ∞(u)(x) fε(x)

∣∣∣∣
⩾
∣∣∣∣∣∣∣∣ˆ dµ̂HN(u)(x) fε(x)

∣∣∣∣− ∣∣∣∣ˆ dµ∞(u)(x) fε(x)

∣∣∣∣∣∣∣∣ , (4.11)

so if we can choose

kε
2N

⩽ ε2

2
− η (4.12)

for some η > 0, then we obtain dBL(µ̂HN(u),µ∞(u))⩾ η. Then applying (4.2) yields the res-
ult (4.8). (4.12) can be satisfied if

ε⩾ k
2N

+
1
2

√
k2

N2
+ 8η. (4.13)

So, given ε> 0, we can take N large enough such that, say, k(N)
N < ε

4 . By taking η < ε2

128 we
obtain

k
2N

+
1
2

√
k2

N2
+ 8η <

ε

8
+

1√
2
max

(√
8η,

ε

4

)
<

1+
√
2

8
ε < ε (4.14)

and so (4.13) is satisfied. Now finally (4.2) can be applied (with η in place of ε) and so we
conclude (4.8).

Overall we see that the superexponential BL condition (4.2) is actually strong enough to deal
with any o(N) index not just index-0. This matches the GOE (or generally invariant ensemble)
case, in which the terms with 1{i(HN(u)) = k} are suppressed compared to the exact minima
terms 1{i(HN(u)) = 0}.

Remark 4.3. Note that corollary 4.2 establishes that, on the exponential scale, the number of
critical points of any index k(N) = o(N) is no more than the number of exact local minima.
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4.2. The dichotomy of rough and smooth regions

Recall the batch loss from section 2.1:

1
b

b∑
i=1

L( fw(xi),yi), (xi,yi)
i.i.d.∼ Pdata. (4.15)

As with the Hessian in section 2.1, we use the model L≡ Lbatch(w) = Ltrue(w)+ s(b)V(w),
where V is a random function RN → R.

Now let us define the complexity for sets B ⊂ RN

CN(B) = |{w ∈ B | ∇L(w) = 0}|. (4.16)

This is simply the number of stationary points of the training loss in the region B of weight
space. A Kac-Rice formula applied to ∇L gives

ECN =

ˆ
B

dw ϕw(−s(b)−1∇Ltrue)E|det(A+ s(b)X)| (4.17)

where ϕw is the density of ∇V at w. A rigorous justification of this integral formula would,
for example, have to satisfy the conditions of the results of [AT+07]. This is likely to be
extremely difficult in any generality, though is much simplified in the case of Gaussian V (and
X) - see [AT+07] theorem 12.1.1 or [BKMN21] theorem 4.4. Hereafter, we shall take (4.17) as
assumed. The next step is to make use of strong self-averaging of the random matrix determ-
inants. Again, we are unable to establish this rigorously at present, but note that this property
has been proved in some generality by [ABM21], although we are unable to satisfy all the
conditions of those results in any generality here. Self-averaging and using the addition results
above gives

1
N

logE|det(A+ s(b)X)|=
ˆ
d(µb⊞ ν)(λ) log |λ|+ o(1)

where µb,ν depend in principle on w. We are concerned with N−1 logECN, and in particular
its sign, which determines the complexity of the loss surface in B: positive ↔ exponentially
many (in N) critical points, negative ↔ exponentially few (i.e. none). The natural next step is
to apply the Laplace method with large parameter N to determine the leading order term in
ECN, however the integral is clearly not of the right form. Extra assumptions on ϕw and∇Ltrue

could be introduced, e.g. that they can be expressed as functions of only a finite number of
combinations of coordinates of w.

Suppose that ϕw has its mode at 0, for anyw, which is arguably a natural property, reflecting
in a sense that the gradient noise has no preferred direction inRN. The sharp spike at the origin
in the spectral density of DNN Hessians suggests that genericallyˆ

d(µb⊞ ν)(λ) log |λ|< 0. (4.18)

We claim it is reasonable to expect the gradient (and Hessian) variance to be increasing in
∥w∥2. Indeed, consider the general form of the simplest DNN, a multi-layer perceptron:

fw(x) = σ(b(L) +W(L)σ(b(L−1) +W(L−1) . . .σ(b(1) +W(1)x) . . .)) (4.19)

where all of the weight matricesW(l) and bias vectors b(l) combine to give the weight vectorw.
Viewing x as a random variable, making f a random function of w, we expect from the above
that the variance in fw is generally increasing in ∥w∥2, and so therefore similarly with Lbatch.

Overall it follows that ϕw(−s(b)−1∇Ltrue) is generally decreasing in ∥∇Ltrue∥, but the max-
imum value at ϕw(0) is decreasing in ∥w∥2. The picture is therefore that the loss surface is
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simple and without critical points in regions for which∇Ltrue is far from 0. In neighbourhoods
of∇Ltrue = 0, the loss surface may become complex, with exponentially many critical points,
however if ∥w∥2 is too large then the loss surface may still be without critical points. In addi-
tion, the effect of larger batch size (and hence larger s(b)−1) is to simplify the surface. These
considerations indicate that DNN loss surfaces are simplified by over-parametrisation, lead-
ing to the spike in the Hessian spectrum and thus (4.18). The simple fact that neural networks’
construction leads gradient noise variance to increase with ∥w∥2 has the effect of simplifying
the loss landscape far from the origin of weight space, and even precluding the existence of
any critical points of the batch loss.

5. Implications for curvature from local laws

Consider a general stochastic gradient update rule with curvature-adjusted preconditioning:

wt+1 = wt−αB−1
t ∇L(wt) (5.1)

where recall that L(w) is the batch loss, viewed as a random function on weight space. Bt
is some preconditioning matrix which in practice would be chosen to somehow approximate
the curvature of L. Such methods are discussed at length in [Mar16] and also describe some
of the most successful optimisation algorithms used in practice, such as Adam [KB14]. The
most natural choice for Bt is Bt =∇2L(wt), namely the Hessian of the loss surface. In practice,
it is standard to include a damping parameter δ > 0 in Bt, avoid divergences when inverting.
Moreover, typically Bt will be constructed to be some positive semi-definite approximation to
the curvature such as the generalised Gauss Newton matrix [Mar16], or the diagonal gradient
variance form used in Adam [KB14]. Let us now suppose that Bt = Bt(δ) = Ĥt+ δ, where Ĥt

is some chosen positive semi-definite curvature approximation and δ > 0. We can now identify
Bt(δ)−1 as in fact the Green’s function of Ĥt, i.e.

Bt(δ)
−1 =−(−δ− Ĥt)

−1 =−Gt(−δ). (5.2)

But Gt is precisely the object used in the statement of a local law on for Ĥt. Note that ∇L(wt)
is a random vector and however Ĥt is constructed, it will generally be a random matrix and
dependent on ∇L(wt) in some manner that is far too complicated to handle analytically. As
we have discussed at length hitherto, we conjecture that a local law is reasonable assumption
to make on random matrices arising in DNNs. In particular [BGK22] demonstrated univer-
sal local random matrix theory statistics not just for Hessians of deep networks but also for
Generalised Gauss-Newtonmatrices. Our aim here is to demonstrate how a local law on Ĥt dra-
matically simplifies the statistics of (5.1). Note that some recent work [WHS22] has also made
use of random matrix local laws to simplify the calculation of test loss for neural networks.

A local law on Ĥt takes the precise form (for any ξ,D> 0

sup
∥u∥,∥v∥=1,z∈S

P

(
|uTG(z)v−uTΠ(z)v|> Nξ

(
1
Nη

+

√
ℑgµ(z)
Nη

))
⩽ N−D (5.3)

where

S=
{
E+ iη ∈ C | |E|⩽ ω−1, N−1+ω ⩽ η ⩽ ω−1

}
(5.4)

µ is the limiting spectral measure of Ĥt and, crucially,Π is a deterministicmatrix. We will use
the following standard notation to re-express (5.3)

|uTG(z)v−uTΠ(z)v| ≺ΨN(z), ∥u∥,∥v∥= 1,z ∈ S, (5.5)
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whereΨN(z) = 1
Nη +

√
ℑgµ(z)
Nη and the probabilistic statement, valid for all ξ,D> 0 is implicit

in the symbol≺. In fact, wewill need the local law outside the spectral support, i.e. at z= x+ iη
where x ∈ R\supp(µ). In that case ΨN(z) is replaced by 1

N(η+κ) where κ is the distance of x
from supp(µ) on the real axis, i.e.

|uTG(z)v−uTΠ(z)v| ≺ 1
N(η+κ)

, ∥u∥,∥v∥= 1, x ∈ R\supp(µ). (5.6)

For δ > 0 this becomes

|uTG(−δ)v−uTΠ(−δ)v| ≺ 1
Nδ

∥u∥2∥v∥2 (5.7)

for δ > 0 and now any u,v. Applying this to (5.1) gives

|uTB−1
t ∇L(wt)−uTΠt(−δ)∇L(wt)| ≺

1
Nδ

∥u∥2∥∇L(wt)∥2. (5.8)

Consider any u with ∥u∥2 = α, then we obtain

|uTB−1
t ∇L(wt)−uTΠt(−δ)∇L(wt)| ≺

α∥∇L(wt)∥2
Nδ

. (5.9)

Thus with high probability, for large N, we can replace (5.1) by

wt+1 = wt−αΠt(−δ)∇L(wt) (5.10)

incurring only a small error, provided that

δ >>
∥∇L(wt)∥2

N
α. (5.11)

Note that the only random variable in (5.10) is∇L(wt). If we now consider the case∇L(wt) =
∇L̄(wt)+ g(wt) for deterministic L̄, then

wt+1 = wt−αΠt(−δ)∇L̄(wt)−αΠt(−δ)g(wt) (5.12)

and so the noise in the parameter update is entirely determined by the gradient noise. Moreover
note the linear dependence on g in (5.12). For example, a Gaussian model for g immediately
yields a Gaussian form in (5.12), and e.g. if Eg= 0, then

E(wt+1 −wt) =−αΠt(−δ)E∇L(wt). (5.13)

A common choice in practice for Ĥ is a diagonal matrix, e.g. the diagonal positive definite
curvature approximation employed by Adam [KB14]. In such cases, Ĥ is best viewed as an
approximation to the eigenvalues of some positive definite curvature approximation. The next
result establishes that a local law assumption on a general curvature approximation matrix can
be expected to transfer to an analogous result on a diagonal matrix of its eigenvalues.

Proposition 5.1. Suppose that Ĥ obeys a local law of the form (5.6). Define the diagonalmatrix

D such that Di
d
= λi where {λi}i are the sorted eigenvalues of Ĥ. Let GD(z) = (z−D)−1 be

the resolvent of D. Let q j[µ] be the jth quantile of µ, the limiting spectral density of Ĥ, i.e.
ˆ q j[µ]

−∞
dµ(λ) =

j
N
. (5.14)

Then D obeys the local law

|(GD)i j− δi j(z− q j[µ])
−1| ≺ 1

N2/3(κ+ η)2
, z= x+ iη, x ∈ R\supp(µ), (5.15)
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where κ is the distance of x from supp(µ). Naturally, we can redefine Di = λσi for any per-
mutation σ ∈ SN and the analogous statement replacing q j[µ] with qσ( j) will hold.

Proof. As in [EY17], the local law (5.5), (5.6) is sufficient to obtain rigidity of the eigenvalues
in the bulk, i.e. for any ε,D> 0

P
(
∃ j | |λ j− q j[µ]|⩾ Nε [min( j,N− j+ 1)]−1/3N−2/3

)
⩽ N−D. (5.16)

Then we have ∣∣∣∣ 1
z−λ j

− 1
z− q j[µ]

∣∣∣∣= ∣∣∣∣ λ j− q j[µ]

(z−λ j)(z− q j[µ])

∣∣∣∣ . (5.17)

For z= x+ iη and x at a distance κ> 0 from supp(µ)

|z− q j[µ]|2 ⩾ η2 +κ2 ⩾ 1
2
(η+κ)2, (5.18)

and the same can be said for |z− q j[µ]|2 with high probability, by applying the rigidity (5.16).
A second application of rigidity to |λ j− q j[µ]| gives∣∣∣∣ 1

z−λ j
− 1
z− q j[µ]

∣∣∣∣≺ 1
N2/3min( j,N− j+ 1)1/3(κ+ η)2

(5.19)

which yields the result.

With this result in hand, we get the generic update rule akin to (5.12), with high probability

wt+1 = wt−α diag

(
1

π j+ δ

)
∇L̄(wt)−α diag

(
1

π j+ δ

)
g(wt) (5.20)

where {π j}Nj=1 are the eigenvalues of Πt(0) and we emphasise again that the πj are determin-
istic; the only stochastic term is the gradient noise g(wt).

5.1. Implications for preconditioned stochastic gradient descent

The key insight from this section is that generic random matrix theory effects present in
preconditioning matrices of large neural networks can be expected to drastically simplify
the optimisation dynamics due to high-probability concentration of the pre-conditioning
matrices around deterministic equivalents, nullifying the statistical interaction between the
pre-conditioning matrices and gradient noise. Moreover, with this interpretation, the damp-
ing constant typically added to curvature estimate matrices is more than a simple numerical
convenience: it is essential to yield the aforementioned concentration results.

As an example of the kind of analysis that the above makes possible, consider the res-
ults of [GBW+21]. The authors consider a Gaussian process model for the noise in the loss
surface, resulting in tractable analysis for convergence of stochastic gradient descent in the
presence of statistical dependence between gradient noise in different iterations. Such a model
implies a specific form of the loss surface Hessian and its statistical dependence on the gradi-
ent noise. This situation is a generalisation of the spin glass model exploited in various works
[CHM+15, BKMN21, BKMN22], except that in those cases the Hessian can be shown to be
independent of the gradients. Absent the very special conditions that lead to independence,
one expects the analysis to be intractable, hence why the authors in [GBW+21] restrict to
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stochastic gradient descent without preconditioning, or simply assume a high probability con-
centration on a deterministic equivalent. To make this discussion more concrete, consider a
model L= Ltrue +V where V is a Gaussian process with mean 0 and covariance function

K(x,x ′) = k

(
1
2
∥x− x ′∥22

)
q

(
1
2
(∥x∥22 + ∥x ′∥22)

)
, (5.21)

where k is some decreasing function and q some increasing function. The discussion at the
end of the previous section suggests that the covariance function for loss noise should not be
modelled as stationary, hence the inclusion of the function q in (5.21). For convenience define
∆= 1

2 (∥x− x′∥22) and S= 1
2 (∥x∥

2
2 + ∥x′∥22). Then it is a short exercise in differentiation to

obtain

Cov(∂iV(w),∂ jV(w)) = Cov(∂iV(w),∂ jV(w ′))

∣∣∣∣∣
w=w ′

=
∂2

∂wi∂w ′
j
K(w,w ′)

∣∣∣∣∣
w=w ′

=−k ′(0)q(∥w∥2)δi j+ k(0)q ′ ′(∥w∥22)wiw j. (5.22)

and moreover

Cov(∂ilV(w),∂ jV(w)) = Cov
(
∂ilV(w),∂ jV(w

′)
)∣∣∣∣∣

w=w ′

=
∂3

∂wi∂wl∂w ′
j
K(w,w ′)

∣∣∣∣∣
w=w ′

=−k ′(0)q ′(∥w∥22)wlδi j+ q ′ ′ ′(∥w∥22)k(0)wiwlw ′
j − k ′(0)q ′(∥x∥2)wiδ jl.

(5.23)

Hence we see that the gradients of L and its Hessian are statistically dependent by virtue
of the non-stationary structure of V. Putting aside issues of positive definite pre-conditioning
matrices, and taking δ such that (∇2L+ δ)−1 exists (almost surely) for large N, it is clear
that the distribution of (∇2L+ δ)−1∂V will be complicated and non-Gaussian. This example
concretely illustrates our point: even in almost the simplest case, where the gradient noise is
Gaussian, the pre-conditioned gradients are generically considerably more complicated and
non-Gaussian. Moreover, centred Gaussian noise on gradient is transformed into generically
non-centred noise by pre-conditioning. Continuing the differentiation above, it is elementary to
obtain the covariance structure of the Hessian∇2V, though the expressions are not instructive.
Crucially, however, the Hessian is Gaussian and the covariance of any of its entries isO(1) (in
large N), so the conditions in Example 2.12 of [EKS19] apply to yield an optimal local law
on the Hessian, which in turn yields the above high-probability concentration of (∇2L+ δ)−1

provided that δ is large enough.

6. Conclusion

In this paper we have considered several aspects of so-called universal random matrix theory
behaviour in DNNs. Motivated by prior experimental results, we have introduced a model for
the Hessians of DNNs that is more general than any previously considered and, we argue,
actually flexible enough to capture the Hessians observed in real-world DNNs. Our model
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is built using random matrix theory assumptions that are more general than those previously
considered and may be expected to hold in quite some generality. By proving a new result for
the addition of random matrices, using a novel combination of QUE and the supersymmetric
method, we have derived expressions for the spectral outliers of our model. Using Lanczos
approximation to the outliers of large, practical DNNs, we have compared our expressions
for spectral outliers to data and demonstrated strong agreement for some DNNs. As well
as corroborating our model, this analysis presents indirect evidence of the presence of uni-
versal local random matrix statistics in DNNs, extending earlier experimental results. Our
analysis also highlights a possibly interesting distinction between some DNN architectures,
as Resnet architectures appear to better agree with our theory than other architectures and
Resnets have been previously observed to have better-behaved loss surfaces than many other
architectures.

We also presented quite general arguments regarding the number of local optima of DNN
loss surfaces and how ‘rough’ or ‘smooth’ such surfaces are. Our arguments build on a rich his-
tory of complexity calculations in the statistical physics and mathematics literature but, rather
than performing detailed calculations in some specific, highly simplified toy model, we instead
present general insights based on minimal assumptions. Finally we highlight an important area
where randommatrix local laws, an essential aspect of universality, may very directly influence
the performance of certain popular optimisation algorithms for DNNs. Indeed, we explain how
numerical damping, combined with random matrix local laws, can act to drastically simplify
the training dynamics of large DNNs.

Overall it is our hope that this paper demonstrates the relevance of random matrix theory to
DNNs beyond highly simplified toy models. Moreover, we have shown how quite general and
universal properties of randommatrices can be fruitfully employed to derive practical, observ-
able properties of DNN spectra. This work leaves several challenges for future research. All
of our work relies on either local laws for e.g. DNN Hessians, or on matrix determinant self-
averaging results. Despite the considerable progress towards establishing local laws for ran-
dom matrices over the last decade or-so, it appears that establishing any such laws for, say, the
Hessians of any DNNs is quite out of reach. We expect that the first progress in this direction
will come from considering DNNs with random i.i.d. weights and perhaps simple activation
functions. Based on the success of recent works on random DNNs [PS20], we conjecture that
the Gram matrices of random DNN Jacobians may be the simplest place to establish a local
law, adding to the nascent strand of nonlinear random matrix theory [PW17, BP19, PS20].
We also believe that there is more to be gained in further studies of forms of random matrix
universality in DNNs. For example, our ideas may lead to tractable analysis of popular optim-
isation algorithms such as Adam [KB14] as the problem is essentially reduced to deriving a
local law for the gradient pre-conditioning matrix and dealing with the gradient noise.
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Appendix A. Invariant equivalent ensembles

For an invariant ensemble [Dei99] with potential V we have the following integro-differential
equation relating the equilibrium measure µ to the potential V [Unt19]:

β

2

ˆ
− 1
x− y

dµ(y) = V ′(x). (A.1)

So in the case of real symmetric matrices we have

1
2
ḡµ(x) = V ′(x) (A.2)

where gµ is the Stieljtes transform of µ and the bar over ḡµ indicates that the principal value
has been taken.

Given a sufficiently nice µ (A.1) defines V up-to a constant of integration on supp(µ), but
V is not determined on R\supp(µ), as is made clear by the following lemma, which we prove
for completeness but which has appeared before in various works (e.g. [Dei99]).

Lemma A.1. For compactly supported probability measure µ onR and real potential V, define

SV[µ](y) = V(y)−
ˆ

dµ(x) log |y− x|. (A.3)

Suppose SV[µ](y) = c, a constant, for all y ∈ supp(µ) and SV[µ](y)⩾ c for all y ∈ R. Then µ
is a minimiser amongst all probability measures on R of the energy

EV[µ] =
ˆ

dµ(x)V(x)−
¨

x<y
dµ(x)dµ(y) log |x− y|. (A.4)

Proof. Consider a probability measure that is close to µ in the sense of W1 distance, say.
For any such measure, one can find an arbitrarily close probability measure µ′ of the form

µ ′ = µ+
r∑

i=1

ai1[yi−δi,yi+δi] −
s∑

i=1

bi1[zi−ηi,zi+ηi] (A.5)

where all ai,bi > 0 and δi,ηi,ai,bi ⩽ ε for some small ε> 0. To ensure that µ′ is again a prob-
ability measure we must impose

∑
i ai =

∑
j b j. The strategy now is to expand EV[µ′] about µ

to first order in ε, but first note the symmetrisation¨
x<y

dµ(x)dµ(y) log |x− y|= 1
2

¨
x ̸=y

dµ(x)dµ(y) log |x− y|. (A.6)

Then

EV[µ ′]−EV[µ] =
r∑

i=1

aiV(yi)−
s∑

i=1

biV(zi)−
r∑

i=1

ai

ˆ
dµ(x) log |x− yi|

+
r∑

i=1

bi

ˆ
dµ(x) log |x− zi|+O(ε2)

=
r∑

i=1

ai SV[µ](yi)−
r∑

i=1

bi SV[µ](zi)+O(ε2). (A.7)
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Observe that if all yi,zi ∈ supp(µ) then SV[µ](yi) = SV[µ](yi) = c and so EV[µ′] = EV[µ].
Without loss of generality therefore, we take yi /∈ supp(µ) and zi ∈ supp(µ), whence

EV[µ ′]−EV[µ]⩾ c
r∑

i=1

ai − c
s∑

i=1

bi = 0. (A.8)

The next lemma establishes that, while not unique, a potential V can always be constructed
given a measure µ.

Lemma A.2. Consider a probability measure µ on R with compact support, absolutely con-
tinuous with respect to the Lebesgue measure. Then there exists a potential V : R→ R which
yields a well-defined invariant distribution on real symmetric matrices for which the equilib-
rium measure is µ.

Proof. (A.2) can be integrated to obtain V and the condition SV[µ] = c (a constant) on supp(µ)
determines V uniquely on supp(µ). Next observe that, for y ∈ R\supp(µ) there exists some
constant R> 0 such that |x− y|⩽ R+ |y|, since µ is compactly supported, and so log |x− y|⩽
|y|+R. Therefore

SV[µ](y)⩾ V(y)− |y| −R. (A.9)

V must be chosen on R\supp(µ) to satisfy SV[µ](y)⩾ c, which can be achieved by ensuring

V(y)⩾ |y|+R+ c. (A.10)

Additionally, V must be defined for large y such that it defines an legitimate invariant ensemble
on symmetric real matrices, i.e. V must decay sufficiently quickly at infinity to give an integ-
rable probability density. Finally, V must be sufficiently smooth, and certainly continuous, so
there are boundary conditions at the boundary of supp(µ). Suppose supp(µ) is composed of K
disjoint intervals, then there are 2K boundary conditions on V, and the bound (A.10) imposes
one further condition. Sufficiently fast decay at infinity can be satisfied by any even degree
polynomial V of degree at least 2, therefore a degree 2K+ 2 polynomial can be found with
sufficiently fast decay at infinity, satisfying all the boundary conditions and (A.10).

Appendix B. Experimental details

This section gives full details of the experimental set-up and analysis for the outlier
experiments.

B.1. Architectures and training of models

We use the GPU powered Lanczos quadrature algorithm [GPW+18, MS06], with the
Pearlmutter trick [Pea94] for Hessian vector products, using the PyTorch [PGC+17] imple-
mentation of both Stochastic Lanczos Quadrature and the Pearlmutter.We then train a 16 Layer
VGG CNN [SZ14] with P= 15291300 parameters and the 28 Layer Wide Residual Network
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[ZK16, HZRS16] architectures on the CIFAR-100 dataset [KH+09] (45 000 training samples
and 5000 validation samples) using SGD. We use the following learning rate schedule:

αt =


α0, if t

T ⩽ 0.5

α0[1−
(1−r)( t

T−0.5)
0.4 ] if 0.5< t

T ⩽ 0.9

α0r, otherwise.

(B.1)

We use a learning rate ratio r= 0.01 and a total number of epochs budgeted T = 300.We further
use momentum set to ρ= 0.9, a weight decay coefficient of 0.0005 and data-augmentation on
PyTorch (paszke2017automatic).

B.2. Implementation of constraints

As mentioned in the main text, one of the three weights of the linear model fit in the outlier
analysis, β, is constrained to be positive, as it corresponds to a second cumulant, i.e. a vari-
ance, of a probability measure. Recall that the linear model’s parameters are solved exactly
as functions of the unknown θ(i), and these parameters are in turn optimised using gradient
descent. β is unconstrained during the linear solve, but its value is determined by the θ(i), so
to impose the constraint β > 0 we add to the mean squared error loss the term

β = 1000max(0,−β) (B.2)

which penalises negative β values and is minimised at any non-negative value. The factor 1000
was roughly tuned by hand to give consistently positive values for β.

There is also the constraint that θ(i) > θ(i+1) > 0 for all i. This is imposed simply using a
re-parametrisation. We introduce unconstrained raw value t(i) taking values in R and define

θ(i) =
i∑
j=1

log(1+ exp(t( j))),

then the gradient descent optimisation is simply performed over the t(i).

B.3. Fitting of outlier model

We optimise the mean squared error with respect to the raw parameters t(i) using 200 itera-
tions of Adam [KB14] with a learning rate of 0.2. The learning rate was chosen heuristically
by increasing in steps until training became unstable. The number of iterations was chosen
heuristically as being comfortably sufficient to obtain convergence of Adam. The raw para-
meters t(i) were initialised by drawing independently from a standard Gaussian. The t(i) were
initialised and trained using the above method 20 times and the values with the lowest mean
squared error were chosen.

Appendix C. Spectral plots

This appendix contains some plots of the approximate empirical spectral densities of the Hes-
sians of the DNNs considered in our experiments. Figure C.6 shows the spectra for the VGG16
network trained on CIFAR100 at various stages from initialisation to the end of training. Note
the clear presence of large outliers present already at epoch 25. These are not intended to be
exhaustive and we recommend references such as [Pap18] for detailed discussion of spectral
densities like these.
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Figure C.6. Approximate empirical spectral densities of the Hessian of the VGG16 net-
work trained on MNIST.
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[EY12] Erdős L and Yau H-T 2012 Universality of local spectral statistics of randommatrices Bull.
Am. Math. Soc. 49 377–414
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