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ABSTRACT

With the effects of climate change globally manifesting, all sectors
of the economy and society are aiming to reduce their carbon emis-
sions. Increasing attention is given to the carbon footprint of video
streaming. Innovation and optimisation of video codecs can affect
the energy consumption in all system parts. Previous work has iden-
tified opportunities to reduce electricity consumption, yet methods
to reliably estimate the carbon reduction potential from interventions
on video streaming systems are currently lacking. In particular, not
enough consideration is given to the complex interactions between
changes to a service and operational and structural effects at internet-
scale systems, and that manifest at varying time scales. This intro-
duces uncertainty. In this text, we review the state of knowledge
and propose a marginal approach for the assessment of short-term
decarbonisation potential of interventions. We illustrate this with a
simplified example intervention, in which we evaluate the temporary
reduction of the video resolution of user-generated content video
on demand from 1080p to 720p in a fixed ladder scenario over one
month in the UK. We find that the carbon reductions mainly come
from savings at user devices, but are overall negligible at 0.5gCO2e
per day per typical laptop-viewer.

Index Terms— video streaming, video codecs, carbon emis-
sions, sustainability, change-oriented LCA

1. INTRODUCTION

The electricity consumption and associated carbon footprint of video
streaming has received increasing attention from the research com-
munity [1], organisations providing these services [2], the general
public [3], and the regulator [4]. Electricity is consumed by all dig-
ital devices that constitute the service system and carbon emissions
arise, among others, during the generation of this electricity from
fossil fuels. Video is a central element of most online media services,
and the processing of video content has been a significant economic
driver for the evolution and growth of the Internet and associated
devices in datacentres and networks; and with users. Understand-
ing the decarbonisation potential of changes to video technologies
(here also referred to as “interventions”) is important to purposefully
direct the future development of the sector towards greater sustain-
ability. In this text we are evaluating changes to video encoding and
the effects on compression. The principles of this inquiry are trans-
ferable to other interventions that effect the energy consumption of
system parts end-to-end.

The co-evolution of video technology and the Internet and its re-
sulting carbon footprint are complicated and currently insufficiently
understood in detail. For example, increasing efficiency over succes-
sive generations of video codecs enabled streaming at higher quality,
which alongside increasing demand by users, compensated potential
reductions in data volume and energy consumption. Even at shorter

time scales (i.e. less than months), the energy and carbon effects
from optimisations are challenging to assess. For example, a choice
between modern codecs requires balancing energy consumption in
servers during (de-)compression with savings in data volume affect-
ing storage and network energy consumption. So far, it is unclear
how to assess the decarbonisation potential for Internet media ser-
vices from optimising video codecs. Such an assessment requires
a calibrated end-to-end model of the underlying service system that
includes the variables affected by codec choices. Building such a
model requires not only an understanding of the signal processing
part of encoding videos but also of the environmental assessment
principles to determine consequent electricity and carbon footprints
from servers, networks and user devices at internet scale.

Assessing interventions by comparing two alternatives contrast
to attributing part of the current impact to one specific service.
Firstly, the effect of background processes that are independent of
the intervention to be evaluated, should be accounted for. For exam-
ple, in the case of video streaming at least two major background,
medium-to-long-term processes need to be considered: i) efficiency
improvements in hardware (e.g. Moore’s law) and software (optimi-
sation), and ii) ongoing changes in average and peak data volumes
on networks change the utilisation, efficiency and deployment of
devices. And secondly, the structural effects of the intervention need
to be assessed (for example resulting behaviour change). This is
challenging, and existing assessments of video services treat this
inconsistently, not at least because estimating the change of the effi-
ciency of Internet infrastructure is a topic of ongoing debate [5]. Yet,
robust and meaningful assessment of the potential of interventions,
rather than the system as a whole, are urgently needed as media
companies are planning to reduce their carbon emissions.

In this text we aim to progress the development of change-
oriented assessments. Our approach is to reduce the complexity of
the effects by limiting the duration of the intervention. During the
short term, changes to an ICT service (e.g. a change to a video
codec) manifest as operational change to power consumption that
in turn affects the use-phase energy footprints (i.e. environmental
impact from electricity consumption). Beyond the short term, the
dynamics of structural changes (e.g. user behaviour adapting to
change, background efficient improvements, etc.) will invalidate
the steady-state assumptions. In Life Cycle Assessment (LCA)
methods, cut-off rules permit the reduction of system boundaries by
excluding demonstrably immaterial contributions (as long as there
are only a small number of these) [6]. In our case, we limit the
temporal system boundary by reducing the time frame of the as-
sessment. While cut-off thresholds are not universal, typical values
applied in LCA are in the order of 1 to 5% affect on environmental
flow relevant for the functional unit. Considering that the energy
intensity of networks so far has reduced around 20 to 30 percent per
year [7], a duration of up to three months would remain below a 5%
change of efficiency.



In this text we present an environmental assessment model built
on LCA principles to evaluate the short-term carbon impact of re-
ducing the volume of data and computation of a video streaming
service. Specifically, we analyse a use-case of computing the elec-
tricity and carbon savings from streaming User-Generated Content
(UGC) through a video streaming platform, such as YouTube, at a
lower resolution. For this use case, we assume streaming of High
Efficiency Video Coding (HEVC)/H.265 [8] encoded videos at re-
duced resolution, from Full High Definition (FHD) to High Defini-
tion (HD). The scale considered is the average UK consumption of
YouTube on smart devices (not including TVs) from statistics de-
rived from Barb [9]. For this analysis, we have collected a new em-
pirical dataset of the video decoding and display power consumption
of a subset of the YouTube-UGC dataset [10] on laptop PCs. To the
best of our knowledge, this is the first time, an end-to-end modelling
and evaluation of UGC video streaming at different resolutions con-
sistent with change-based LCA methods has been attempted.

This text is structured as follows. In Section 2, we review rele-
vant previous studies of the energy and carbon emissions related to
video media. Following this, in Section 3, we present a short-term
model to assess the carbon effects of changing the resolution of a
video stream service. We evaluate the model and show the result
in Section 4. We close with a discussion and identify directions for
future work in Section 5.

2. BACKGROUND

Attributional LCA Studies of Video Services. Existing end-to-
end assessments are either attributional or not consistently following
change-oriented methods. Among the first to study the carbon emis-
sions of streaming television were Chandaria et al. [11], who esti-
mated the carbon footprint of streaming BBC iPlayer video to TVs
in the UK of 86 gCO2e/viewer-hour in 2009. Schien et al. [12] up-
dated this to 93gCO2e/viewer-hour for the year 2016. Both works
provided a comparison of IP-based streaming with broadcast but do
not evaluate the impact of changing the video coding technology.
Shehabi et al. [13] compared the carbon emissions of US video con-
sumption between streaming and physical DVD shipping and find
that streaming is substantially less carbon intense. During their sen-
sitivity analysis they found the Network Energy Intensity (NEI) to
be a key assumption.

Research estimating the value of NEI for service assessments
with end-to-end scope dates back at least to 2008 [14]. Baliga et al.
provided an early analysis of the energy efficiency of networks that
included assumptions on real-world utilisation [15]. Recently, Aslan
et al. [7] reviewed estimates of the NEI and found that it decreases
at a rate of about 30% per year. Aslan et al. provided an estimate
of Average NEI (ANEI) and an estimate of an annual improvement
rate of ca. 30% p.a. Recently, the discourse has begun to consider
how changes of data-use have a marginal affect on the network as
a dynamic system. Malmodin [16] aimed to better represent the
poor energy proportionality (20%) of wired networks and proposed
a new model of the short-term energy intensity that includes a static
offset component and a short-run marginal component. The static
component is considered fixed and does not account for a change of
the allocated base power consumption over time. This model can
thus be considered a short-term Marginal NEI (MNEI).
Average, Short and Long-Term Emission Factors. Assessments
of carbon emissions of Internet services apply emissions factors to
estimates of electricity consumption. Recent work has found that
most short-run Marginal Emission factors (MEF) outperform Aver-
age Emission factor (AEF) [17]. These short-term MEF, however, do

not represent the “influence on the structural evolution of the grid”
that electricity consumption has [18]. Gagnon et al. [18] demon-
strated the benefits of a long-run marginal model to represent this
influence.
Evaluating Energy and Carbon Effects from Interventions on
Video. So far, only a small number of works evaluated the carbon
potential of interventions on video services. Preist et al. [19] pre-
sented a model of the world-wide carbon footprint of YouTube and
estimated the carbon savings from eliminating the video bitstream,
but keeping the audio data, for a portion of the YouTube videos that
are music videos. Assuming the energy consumption by user devices
to remain constant and applying ANEI and AEF, they found that such
a change could result in significant reduction of energy and carbon
emissions in wireless networks between 117 and 586 KtCO2e per
year.

The CarbonTrust applied ANEI models in a carbon assessment
of video streaming based on models developed by DIMPACT [20]
and Netflix [2]. Using an updated value for the ANEI metric by
Aslan they estimated the typical carbon footprint per hour streaming
for a typical mix of user devices and electricity carbon intensity in
the EU to be 55 gCO2e/viewer-hour in 2021. Ignoring effects on
user devices and servers, they also compared the effect of bitrate
changes, using Malmodin’s MNEI and found a negligible effect on
wired networks and a substantial effect on wireless networks.

A greater number of works investigated the effects on system
parts in isolation, meaning either only the decoding and/or encoding
or transmission process [21, 1, 22, 23, 24]. Among them, Ejembi et
al. [21] analysed the difference in client device power consumption
between Netflix quality settings in 2015 and found an average differ-
ence of 3.7 Watts between the lowest and highest levels. A growing
number of works modeled the energy consumption of video encod-
ing and decoding. For example, Ramasumbu et al. [1] presented
a model to estimate the energy consumption of x265 based on the
encoder processing time and proposed a linear model calibrated on
the ultrafast preset. Herglotz et al. [22] developed a detailed power
consumption model for device decoding and calibrated this on a mo-
bile device. Kraenzler et al. [23] further built on this model to ex-
plore optimisation strategies of video encoders to improve its energy
consumption. Finally, Katsenou et al. [24] conducted a comparative
study of the energy-quality-rate tradeoffs of state-of-the-art video
codecs on simulations run on a server without however considering
the energy consumed by the display.

3. END-TO-END ASSESSMENT OF SHORT TERM
EFFECTS

Here we present an assessment of relevant environmentally impact to
demonstrate the evaluation of a short-term effect. We reference LCA
terminology but do not go into the full detail of a complete LCA
assessment. The goal of our LCA is to evaluate the short-term im-
pact of changing the resolution of video streaming of user-generated
from 1080p to 720p for laptop PCs. We assume a quality-driven
fixed bitrate ladder scenario of streaming at relatively low bitrates
following the Google recommendation for VoD [25]. As this recom-
mendation was created for VP9 codec, we match the VMAF quality
levels of VP9 encodes at two target bitrates (1024kbps for 720p and
1800kbps for 1080p at 25fps), with H.265 encodes in order to evalu-
ate a comparable quality of service. Thus, we expect a varying range
of bitrates around these targets depending on the video content. The
video codec implementation used is the optimised software version
of H.265 from ffmpeg, libx265 [26], at the medium preset. As for
the time and regional scope, we chose 1.3.2020 to 31.3.2020 for the



UK audience of ”Social Video on Demand” [27].
Generic End-to-End Model. A generic model of a streaming ser-
vice system can be seen in Fig. 1. It is similar to those used in pre-
vious assessments of social and Subscription/Broadcaster VoD ser-
vices [19, 2].

Core 
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Content 
Delivery 
Networks

Access 
Networks + 
CPE
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Encoding

Storage

User 
Devices

Storage

Decoding

DisplayTransport Transport

Fig. 1. Simplified generic model of a video streaming service archi-
tecture.

The full life cycle of the devices included in the architecture
includes the impact from raw material extraction, manufacturing,
transport, the use phase, and the end of life phase. Given that we
are only considering the short-term impact of the intervention, we as-
sume that the effect is entirely operational and not structural. Specif-
ically, this implies that: i) consumers do not change their behaviour
(e.g. change the viewing device, and do not purchase different de-
vices as the consequence of this change), ii) the media provider(s) do
not change their encoding strategy (plausible, because this change is
limited to a specific region), and thus the required storage space on
origin servers does not change.

As we are comparing the impact before and after the change, all
LCA phases, except for the use phase, factor out from the assess-
ment. The use phase impact is the sum of the electricity footprint for
the five components of the streaming architecture.
Origin Datacentre. The electricity consumption of the origin dat-
acentre that scales with demand for video streaming can be mod-
elled as the sum of the component business functions: encoding
EODC

encoding , storage EODC
storage, serving EODC

Tx , and additional func-
tionality EODC

meta (e.g. analytics and recommendation).

EODC = EODC
encoding + EODC

storage + EODC
Tx + EODC

meta (1)

The energy consumption for transmission can be defined as
EODC

Tx = vOC · IODC
Tx , with vOC the data volume of content that

is sent from the origin datacentre to the global network of CDNs,
and IODC

Tx the transmission energy intensity of origin servers. We
assume that analytics and recommendation workloads are relatively
independent on bitrate. In our short-term analysis, encoding and
thus storage also remain identical.
Content Delivery Network. Similarly, CDN electricity consump-
tion, ECDN , is the sum of receiving videos from the origin datacen-
tre, storage, and serving.

ECDN = ECDN
Rx + ECDN

storage + ECDN
Tx (2)

Transmission energy is proportional to data volume and energy in-
tensity: ECDN

Tx = vUC · ICDN
Tx . We assume transmission and

receiving energy intensity to be similar. The origin traffic is the
hitrate-proportion (ĥ) of user traffic that misses the CDN cache:
vOC = ĥ · vUC .
Networks. We consider core and access networks (here subsum-
ing customer premise equipment - CPE). Malmodin [16] provides a
marginal model for the short-term change of electricity consumption
by the network.

Enet = Pnet
sub · t+ v · Inet (3)

As we are only considering a short-term intervention, the
baseload power per subscriber remains constant and thus factors

Variable Value Reference
ITx 13.5 J/Gb [28] We estimate marginal energy in-

tensity, by assuming 40% base power
and PUE of 1.5. We apply the least en-
ergy efficient appliance.

ICore 0.03 J/Mb [16]
IAcc 0.02 J/Mb [16]
cachemiss rate 0.3 [29]
daily audience 50.7m [9] Viewing time remained similar since

pandemic [27]
viewing time 42 min Social VoD [27]
bitrate 1.688 Mbps Own measurements
Pdec 6.6 W Own measurements

Table 1. Main model parameter values. The full dataset and EAM
[5] model can be found at [30]

out in our comparison. From the model remain, v the data volume
transferred, and Inet the dynamic energy intensity of data transfer.
While the structure of the model is identical for the core and access
network component, the parameter values for the intensity does vary
between core and access network (see Table 1).

User Devices For an evaluation of short-term system changes, the
energy consumption of the user device can be modelled as the sum
of the energy required for receiving and playing (decoding and dis-
playing).

EUD = EUD
Rx + EUD

playing (4)

Carbon Emissions. While MEF are most appropriate to estimate
carbon emissions in short-term contexts there are many ways to es-
timate short-run marginal intensities [17]. MEFs change quickly in
response to changes in renewable generation and demand and are in-
herently stochastic at the margins. In the UK this uncertainty is par-
ticularly high in the middle of the day. Fine grained Location-based
MEF have the potential to reduce this uncertainty. For our current
post-hoc evaluation at population-level behaviour over 30 days, this
is not an option. And so, for this analysis we evaluate the interven-
tion with a Simplified Thermal MEF (STMEF) (assumed constant
from Combined Cycle Gas, ≈394gCO2e/kWh). For the UK, at na-
tional level, gas is an adequate proxy for the marginal impact [31].
This STMEF is about 100% higher than the UK AEF.

Bitrate Reduction. As our intervention, we are evaluating limit-
ing the maximum bitrates delivered to viewers for a video streaming
service in a fixed ladder use case. This means that specific spatial
resolutions can be streamed at different ladder rungs (bitrates). To
this end, we have collected new primary data for the decoding and
display energy consumption under varying bitrates, as explained in
Section 3. Specifically, we measured the average energy consump-
tion for decoding and display on a laptop (Dell XPS 15 bn95209sb;
i7-12700H CPU; 32GB Memory, Nvidia 3050 Ti GPU; UHD screen,
Fedora 37 Linux) for the YouTube UGC dataset [10] with a R&S
HMC8015 power analyzer.

We first computed the VMAF scores of the VP9 version of each
source video when encoded at the YouTube target bitrates, and then
encoded this with H.265 (libx265) at a QP value to match the deliv-
ered quality of service. We selected H.265 video codec, as it is one
of the state-of-the-art codecs in terms of compression efficiency used
currently for streaming. The selected configuration of the experi-
ment serves the purpose of proof of concept. The experimentation
will be further extended in future work.



4. RESULTS

Given our model and the video codec configurations explained in
Section 3 we measure a reduction of power consumption on our ref-
erence laptop, and estimate the end-to-end carbon footprint reduc-
tion from a bitrate change in Figs. 2 and 3, respectively. As antici-
pated, Fig. 2 shows that in our fixed ladder scenario where different
resolutions are streamed at different bandwidths, the power required
for decoding 720p is lower than what is required for 1080p. On av-
erage the difference of power consumed when decoding on a single
laptop is small (∼ 2W).

Fig. 2. Comparison of the bitrates of H.265 videos from the YouTube
UGC dataset and power draw by a laptop PC during decoding and
displaying. Videos are encoded to match the VMAF scores of VP9
encodes at the YouTube target bitrates for 720p and 1080p.

Across the the end-to-end system, the avoided emissions, ap-
plying a simplified thermal MEF for viewing on laptops in the
month of March 2020 are (all kgCO2e): 287 (Origin Datacentre),
1,248 (CDN), 1,593 (Core Networks), 1,019 (Access Networks),
and 119,137 (User Devices). This equates to 0.5gCO2e saved per
person per day. Figure 3 shows how these reductions vary over the
course of the day. In order to illustrate the effect of the choice of
MEF, we compare the savings with a statistical MEF [32] based
on historical generation and carbon emissions data and taking the
regression slope of the change in carbon intensity against change in
generation (delta-kgCO2e/delta-kWh) from the UK National Grid
[33] for each half hour of generation, over March 2020; labeled
monthly average MEF (MAMEF). The MAMEF is significantly
lower than the STMEF: between 2.9% at peak viewing times to 74%
at 9 a.m (blue bar chart).

Fig. 3. Short-Term Avoided Carbon Emissions from per Time of
Day, over 1 Month (stacked area chart), for social VoD on lap-
top viewing in the UK using Simplified Thermal MEF. The bar
chart shows the difference in emissions between STMEF and Hourly
Month-Average MEF.

5. DISCUSSION AND CONCLUSIONS

We evaluate a reduction of the video resolution on UGC video in
the UK over one month, with a short-term marginal. Previous work
mixed attributional and marginal methods. Our findings are plausi-
ble when compared to specific elements of previous studies. Our re-
sults show that user devices are most affected by the chosen interven-
tion, which is consistent with existing assessments, e.g. [2, 12, 19].
While, Preist et al. estimate the reduction potential of their interven-
tion to be 2 orders of magnitude higher, they take an attributional
approach at global scope over a whole year, including wireless net-
works and the full range of user devices, using global AEF.

At 0.5gCO2e per person per day, the absolute reduction potential
is negligible and highlights the need for more research to support the
decarbonisation of digital media. While video streaming constitutes
the majority of data traffic in the Internet, and the energy consump-
tion of user devices is substantial (in particular TVs), an attributional
approach overestimates the potential reductions of interventions.

Importantly, our short-term perspective does not consider the
long-term effects. It is thus not directly applicable to evaluate in-
terventions in a decarbonisation strategy, which must take a long-
term marginal view. Our analysis demonstrates a consistent use of
marginal indicators, and highlights the discrepancy with an findings
from an attributional approach.

The result depends strongly on the chosen MEF, time frames,
location, effect size on service resource use (data volume, decod-
ing complexity). Determining the longer-term marginal effects on
datacentres, CDNs, networks and user devices requires further re-
search. For example, in our assessment we ignored potential effects
from user behaviour change (e.g. viewing time and device choice).
This simplifying assumption is a structural effect that needs to be
considered. Similarly, the assumed Marginal NEI from Malmodin
neglects the structural effects of data transfer on the network in-
frastructure. More research is required to provide NEI that can be
applied in change-oriented assessments. For CDNs, we neglect the
effect of reduced storage space requirements from lower bandwidth.
Given that attributional assessments show that user devices consti-
tute the majority of the impact, effort For example, in our assess-
ment we ignored potential effects from user behaviour change (e.g.
viewing time and device choice). This simplifying assumption is a
structural effect that needs to be considered. Similarly, the assumed
Marginal NEI from Malmodin neglects the structural effects of data
transfer on the network infrastructure. More research is required
to provide NEI that can be applied in change-oriented assessments.
For CDNs, we neglect the effect of reduced storage space require-
ments from lower bandwidth. Given that attributional assessments
show that user devices constitute the majority of the impact from
video streaming, long-term reductions must prioritise them. While
bitrate changes will only be able to affect a small part of the overall
footprint, more work is necessary to understand the effect of video
coding choices on the power consumption of TVs. Our chosen high-
end laptop has a particularly high base power consumption. The
reduction of power consumption is likely lower on average-spec lap-
tops, tablets and smartphones. We only considered H.265 and UGC.
We aim to investigate the saving potential from other codecs, high-
quality source, adaptive encoding and VBR. In our assessment we
assume all content converts from 1080P to 720P transmission. In
practice, UGC is provided in a mix of resolutions. Finally, different
MEF exist (see Background); varying by scale, shape, between re-
gions, and over time. Choosing the most appropriate EF is a topic of
ongoing research.
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