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The rocking can: a reduced equation of motion and a matched asymptotic
solution∗

B. W. Collins , C. L. Hall , and S. J. Hogan†

Abstract. The rocking can problem [20] consists of a empty drinks can standing upright on a horizontal plane
which, when tipped back to a single contact point and released, rocks down towards the flat and
level state. At the bottom of the motion, the contact point moves quickly around the rim of the can.
The can then rises up again, having rotated through some finite angle of turn ∆ψ. We recast the
problem as a second order ODE and find a Frobenius solution. We then use this Frobenius solution
to derive a reduced equation of motion. The rocking can exhibits two distinct phenomena: behaviour
very similar to an inverted pendulum, and dynamics with the angle of turn. This distinction allows
us to use matched asymptotic expansions to derive a uniformly valid solution that is in excellent
agreement with numerical calculations of the reduced equation of motion. The solution of the inner
problem was used to investigate of the angle of turn phenomenon. We also examine the motion of
the contact locus xl and see a range of different trajectories, from circular to petaloid motion and
even cusp-like behaviour. Finally, we obtain an approximate lower bound for the required coefficient
of friction to avoid slip.

Key words. Rocking can, Frobenius solution, matched asymptotic expansion

1. Introduction. Take an empty drinks can, place it on a horizontal, hard surface, and
balance it about a point on its rim (Figure 1.1). When the can is released, with a gentle
push along the centre line, it rocks downwards like an inverted compound pendulum, rotating
about the contact point. When the can is almost flush with the surface, it appears to bounce
and then rocks back up again. During the “bounce” phase, the contact point moves rapidly
around the rim of the can. When the can rocks back up, the contact point is not diametrically
opposed to the starting direction.

Experiments by Srinivasan and Ruina [20] determined that the can rotates through an
angle of turn ∆ψ ≈ ±217◦ (Figure 1.1), where the sign is determined by initial conditions.
Employing small angle approximations and formal assumptions on the dynamics, they esti-
mated ∆ψ = ±202◦. Further analysis [19] showed that a small off-centre point mass results
in chaotic motion of the can.

In earlier work, Cushman and Duistermaat [6] had studied the nearly flat falling motions
of a thin disk and uncovered similar behaviour. Batista [2] considered a thick disk, inclined
at small angles. Collisions with the surface were shown to be dependent upon two constants
of integration, but the physical meanings of these constants were not explored.

In this paper we study the rocking can problem [20] from an asymptotic perspective.
We consider a rotationally symmetric can rolling and spinning on a horizontal plane with
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a) b) c)

top view

side view

∆ψ
push
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Figure 1.1. The angle of turn phenomenon. a) The can is tilted about a point on the rim given by the black
circle. On release, the can falls down. b) As the can approaches the flat state the contact point rapidly races
around the rim of the can. c) The can rises up again, pivoting about the contact point. The contact point has
moved through an angle ∆ψ around the rim of the can.

coefficient of friction µ. Particular attention is paid to the motion with small angular momenta.
In section 2 we rederive the equations of motion [20] and non-dimensionalise them. In

section 3 we determine the static equilibria and steady motions in the problem, along with
their stability properties. In section 4, we show that the governing equations can be reduced
to a single second order ODE (4.2). We exploit the presence of a regular singular point in (4.2)
to derive a Frobenius solution, which in turn can be used to reduce the equations of motion
to one singularly perturbed planar ODE (4.22). In section 5 we carry out an asymptotic
analysis of (4.22), gain a uniformly valid approximation for the dynamics and make rigorous
the formal assumptions of [20]. Section 6 contains analysis of some properties of the rocking
can phenomenon. We calculate the angle of turn and obtain the same expression as [20]. We
also find the condition for the can to fall either clockwise or anticlockwise, extending the work
of [6]. In addition, we find that the contact locus can move in a circle at variable speed, as
well as in cusp-like and petaloid patterns. Finally, we test the feasibility of the angle of turn
phenomenon by computing a lower bound for the coefficient of friction.

2. Derivation of equations of motion. The equations of motion for a can rolling on a
rough horizontal plane have been derived [4, 12, 14, 20]. In this section, we establish our
notation and rederive equations in the manner of Srinivasan and Ruina [20].

The can, shown in Figure 2.1, is a rigid, rotationally symmetric cylinder of mass m, with
height 2H, radius R and moment of inertia tensor I = diag{A,A,C}, where C is the moment
of inertia about the symmetry axis and A the moment of inertia about the non-symmetry axes.
The can moves on a rough horizontal plane with a coefficient of friction µ, that is assumed
large enough to ensure rolling motion. A normal reaction N and friction force F act at the
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Figure 2.1. The three reference frames; global G, intermediate I and body frame B, given by successive
rotations ψ and φ.

contact point P .
To describe the orientation of the cylinder, we require three reference frames: the global

frame G, an intermediate frame I, and the body frame B, see Figure 2.1. The frames are
defined by Euler angles. In G, axes are aligned with the horizontal plane. Rotation by the
precession angle, ψ, around the zG axis gives I. Subsequent rotation by the nutation angle,
φ, about the yI axis brings the can into B. We also require a final rotation θ, the rotation
angle, about the zB axis. But since this axis is aligned with the symmetry axis of the cylinder,
another frame is not required.

The 3× 3 rotation matrices converting frame i to frame j are given by Rij , where

RGI =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 , RIB =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 .(2.1)

The equations of motion are given by

maGG = −mgẑG +NG + F G ,(2.2)

IΩ̇
B

+ ωB × IΩB = GPB × RGB
(
NG + F G

)
,(2.3)

where the superscripts indicate the reference frame of the vector. Note that the force balance
(2.2) is expressed in the global frame, whereas the moment balance (2.3) is expressed in
the body frame, because the moment of inertia tensor I is aligned with the can. aGG is the
acceleration of the centre of mass in G. ẑG denotes the unit vector parallel to the zG axis.
GPB = (−R, 0,−H)ᵀ is the vector from the centre of mass G to the contact point P . ΩB =
(ψ̇ sinφ,−φ̇, ψ̇ cosφ + θ̇)ᵀ is the angular velocity vector in G. ωB = (ψ̇ sinφ,−φ̇, ψ̇ cosφ)ᵀ is
the angular velocity of B about G and RGB = RGIRIB.

If we assume that the can is rolling without slipping then vGP , the velocity of the contact
point P in G, is zero and so

vGP = vGG + RBG
(
ΩB ×GPB

)
= 0.(2.4)
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Hence the velocity of the centre of mass vGG is given by

vGG =

ẋGẏG
żG

G =

− cosψ(φ̇(R sinφ+H cosφ)− sinψ(ψ̇(R cosφ−H sinφ) +Rθ̇)

cosψ(ψ̇(R cosφ−H sinφ) +Rθ̇)− sin(ψ)(φ̇(R sinφ+H cosφ))

φ̇(R cosφ−H sinφ)

G .
(2.5)

Differentiating the velocities in (2.5) yields the acceleration of the centre of mass aGG =
(ẍGG, ÿ

G
G, z̈

G
G)ᵀ given by

ẍGG =L(φ, φ̇, φ̈, ψ̇, θ̇) cosψ +M(φ, φ̇, ψ̇, ψ̈, θ̈) sinψ,(2.6a)

ÿGG =M(φ, φ̇, ψ̇, ψ̈, θ̈) cosψ + L(φ, φ̇, φ̈, ψ̇, θ̇) sinψ,(2.6b)

z̈GG =φ̈(R cosφ−H sinφ)− φ̇2(R sinφ+H cosφ)(2.6c)

where

L(φ, φ̇, φ̈, ψ̇, θ̇) =− (R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)ψ̇2 −Rθ̇ψ̇(2.7a)

− (R cosφ−H sinφ)φ̇2(2.7b)

M(φ, φ̇, ψ̇, ψ̈, θ̈) =(R cosφ−H sinφ)ψ̈ +Rθ̈ − 2(R sinφ+H cosφ)φ̇ψ̇.(2.7c)

Substituting (2.6) into the force balance (2.2) determines the normal and friction forces

Fx =m
(
L(φ, φ̇, φ̈, ψ̇, θ̇) cosψ +M(φ, φ̇, ψ̇, ψ̈, θ̈) sinψ

)
,(2.8)

Fy =m
(
M(φ, φ̇, ψ̇, ψ̈, θ̈) cosψ + L(φ, φ̇, φ̈, ψ̇, θ̇) sinψ

)
,(2.9)

N =mg +mφ̈(R cosφ−H sinφ)−mφ̇2(R sinφ+H cosφ),(2.10)

where Fx and Fy are the components of the friction force F along the xG and yG axes.
The scalar normal force N is given by N = NẑG . Hence (2.3) become [20]

(
(A+mH2) sinφ−mHR cosφ

)
ψ̈ −mHRθ̈ = (C − 2A− 2mH2)ψ̇φ̇ cosφ

(2.11a)

+ Cφ̇θ̇ − 2mHRψ̇φ̇ sinφ,

(
mR2 +mH2 +A

)
φ̈ =

(
(A+mH2 − C −mR2) sinφ cosφ−mRH cos(2φ)

)
ψ̇2

(2.11b)

−mg(R cosφ−H sinφ)− ((C +mR2) sinφ+mRH cosφ)θ̇ψ̇,

(
(C +mR2) cosφ−mRH sinφ)ψ̈ + (C +mR2

)
θ̈ = Cψ̇φ̇ sinφ+ 2mRψ̇φ̇(R sinφ+H cosφ).

(2.11c)

Equations (2.6) and (2.11) form the equations of motion for the can, with (2.6) being cyclic.
We rescale the lengths1 by R and the moments of inertia by mR2, introducing

1The choice of R, rather than H, to non-dimensionalise lengths avoids large quantities when considering
thin disks where 0 < H � R.
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h =
H

R
, x =

xG
R
, y =

yG
R
, z =

zG
R
, a =

A

mR2
, c =

C

mR2
.(2.12)

We scale t by
√
R/g and overload the notation so that the dot notation means differentiation

with respect to the scaled time.
Equation (2.11) then becomes

Ψ̇ sinφ =kcpΦΘ + ((kcp − 2) cosφ− hk sinφ)ΦΨ,

(2.13a)

Θ̇ sinφ =(−kcp cosφ+ hk sinφ)ΦΘ + (−kcp cos2 φ− kap sin2 φ+ hk sin 2φ+ 2)ΦΨ,

(2.13b)

Φ̇(ap + 1) =((ap − cp) sinφ cosφ− h cos 2φ)Ψ2 − (cp sinφ+ h cosφ)ΘΨ + (h sinφ− cosφ),

(2.13c)

ψ̇ =Ψ,(2.13d)

θ̇ =Θ,(2.13e)

φ̇ =Φ,(2.13f)

where the constants

ap = a+ h2, cp = c+ 1(2.14)

are the scaled moments of inertia a and c about the contact point P , and we set

k =
c

a+ cap
.(2.15)

Throughout this paper, we consider the can [20] to have mass m = 4.3× 10−2 kg, height H =
5.45× 10−2 m and radiusR = 3.7× 10−2 m. The moments of inertia2 areA = 6.97× 10−5 kg m2

and C = 5.89× 10−5 kg m2, and

a = 0.727, c = 0.615, ap = 2.897, cp = 1.6156, h = 1.473, k = 0.245.(2.16)

Numerical solutions of (2.13), performed in matlab using ode15s to cope with the stiff
ODEs, are shown in Figure 2.2; compare [20, Fig. 5]. Fast changes in the variables can be
observed when φ is small. The angle of turn ∆ψ is the step-like change in ψ. Unless otherwise
stated, throughout the paper we take initial conditions

(ψ, ψ̇, φ, φ̇, θ, θ̇) = (0, 0.1001, π/100, 0, 0,−0.1000).(2.17)

The rocking can phenomenon cannot be obtained by setting Ψ = Θ = 0, as we now
demonstrate. Let us assume Φ 6= 0. Equation (2.13) then yields an integrable subsystem,
where the can is pivoting about its rim, but not spinning or rolling. We find

Φ̇ = φ̈ =
h sinφ− cosφ

ap + 1
,(2.18)

2Our parameters differ to those used by Srinivasan and Ruina [20]
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t

t
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t

t

Figure 2.2. Numerical solution of the non-dimensionalised equations of motion (2.13). The material
parameters and initial conditions, used throughout this paper, are given in (2.16) and (2.17) respectively.

with solution [23]

φ(t) = arctan(1/h)±
∫ τ

(−2 cos s+ C1)−1/2ds+ C2,(2.19)

where τ =
√

h2+1
ap+1 t and C1, C2 are integration constants. This solution passes through φ = 0,

impacting the plane at all points on its rim simultaneously, something that is not observed in
experiments [20].

3. Equilibria and steady motions. In this section we locate the equilibria and steady
motions of (2.13) and determine their stability. Physically, we expect an equilibrium Sstatic

when the can is balanced on its rim and stationary

Sstatic := {(Ψ,Θ,Φ, φ) = (0, 0, 0, φ∗)} ,(3.1)

where the balancing angle3

(3.2) φ∗ := arctan (1/h) .

3For our can, φ∗ ≈ 34◦.
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a)

φ∗

b)

φ∗

Θe

Ψe

c)

φ

Θe
Ψe

Figure 3.1. a) Sstatic (3.1): the can is static and balanced on its rim at φ = φ∗ (3.2). b) Sbal (3.3): the can
is balanced on its rim, φ = φ∗, rolling with constant Θe,Ψe. c) Ssteady (3.6): the can is rolling with constant
Θe,Ψe, φ 6= φ∗

.

Here all the velocities are zero and the can is tilted at φ = φ∗, as in Figure 3.1a. Sstatic shares
similarities with a planar inverted compound pendulum. It is the only static equilibrium of
the system.

Now assume constant Ψ = Ψe,Θ = Θe, and keep Φ = 0, φ = φ∗ as before. Then the set of
all steady motions with the can balanced at φ = φ∗, as in Figure 3.1b, is Sbal where

Sstatic ⊂ Sbal := {(Ψ,Θ,Φ, φ) = (Ψe,Θe, 0, φ
∗)} ,(3.3)

and Ψe sinφ∗ ((a− c) cosφ∗Ψe − cΘe) = 0 from (2.13c).
If Ψe = 0,Θe 6= 0, then Sbal represents the balanced can rolling steadily in a straight line,

with two non-zero eigenvalues

λ± = ±

√√
h2 + 1−Θ2

ecphk(h+ cp)

ap + 1
,(3.4)

and two zero eigenvalues. For

Θ2
e > Θ2

crit :=

√
h2 + 1

hkcp(h+ cp)
,(3.5)

Sbal is centre-like, otherwise it is saddle-like. Therefore, for |Θe| > Θcrit, rolling motion will
persist (an unbounded solution). For a thin disk, this critical rolling has been previously been
explored [16, 17, 18].

If Ψe 6= 0,Θe 6= 0, then Sbal gives a 1-D manifold of spinning and rolling solutions with
Θe = (a− c) cosφ∗Ψe/c.
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Steady rolling can also occur for constant Ψe 6= 0,Θe 6= 0, with Φ = 0, φ = φ0 6= φ∗,
Figure 3.1c. Then the set of all equilibria of (2.13) is given by

Sbal ⊂ Ssteady =
{

(Ψ,Θ,Φ, φ) = (Ψe,Θe, 0, φ0)
}
,(3.6)

where

((ap − cp) sinφ0 cosφ0 − h cos 2φ0)Ψ2
e − (cp sinφ0 + h cosφ0)ΘeΨe + (h sinφ0 − cosφ0) = 0.

(3.7)

In addition to steady motions at small φ, there exist equilibria for φ0 > φ∗ where the can
rolls with the symmetry axis almost horizontal4. An example of such steady motion is given
by φ0 = π/2, Ψe = Θe = ±

√
h/(cp − h).

We now show that the can rolls in a circle for all steady motions Ssteady [11, 13, 16, 17].
Applying scalings (2.12), we obtain from (2.5):

ẋ =− (Φ(sinφ0 + h cosφ0) cosψ − (Ψe(cosφ0 − h sinφ0) + Θe) sinψ,(3.8a)

ẏ =(Ψe(cosφ0 − h sinφ0) + Θe) cosψ − (Φ(sinφ0 + h cosφ0)) sinψ.(3.8b)

On Ssteady, Φ = 0 and so from (3.8)

x(t) =
Ψe(cosφ0 − h sinφ0) + Θe

Ψe
cos(Ψet),(3.9a)

y(t) =
Ψe(cosφ0 − h sinφ0) + Θe

Ψe
sin(Ψet),(3.9b)

corresponding to circular motion with radius

rcirc =

∣∣∣∣Ψe(cosφ0 − h sinφ0) + Θe

Ψe

∣∣∣∣ .(3.10)

If

(3.11) Ψe(cosφ0 − h sinφ0) + Θe = 0,

then x = y = 0 (3.9) and the centre of mass is at rest.

On Sbal, where φ0 = φ∗, rcirc =
∣∣∣Θe

Ψe

∣∣∣. In this case, if Θe = 0,Ψe 6= 0, the centre of mass is

at rest, with rcirc = 0. But if Ψe = 0,Θe 6= 0 the can rolls in a straight line.
Steady motions with the centre of mass at rest are called stationary motions [11, 15]. A

can undergoing stationary motion experiences no friction force, just as the frictionless µ = 0
case. Including (3.11) in (3.6) gives the 1-D set of frictionless orbits

Srest := {(Ψ,Θ,Φ, φ) = (Ψe,Θe, 0, φ0|Ψe(cosφ0 − h sinφ0) + Θe = 0)} ⊂ Ssteady,(3.12)

4These equilibria are central to the ‘mysterious spinning cylinder’ explored by Jackson et al. [10], which
consists of a slender cylinder undergoing a steady motion close to φ ≈ π/2. Upon spinning, symbols drawn on
the cylinder disappear or appear to remain stationary depending on their position.
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where

Ψ2
e =

cosφ0 − h sinφ0

a sinφ0 cosφ0 + ch sin2 φ0
, Θe = −Ψe(cosφ0 − h sinφ0).(3.13)

The set Srest only exists for φ0 < φ∗.
In the next section 4 we consider the dynamics of the (non-cyclic) equations (2.13).

4. Frobenius solution and a reduced equation of motion. There is structure in the
equations of motion (2.13) that has been exploited to give an exact solution [1]. Our derivation
is slightly different. Divide (2.13a) and (2.13b) by Φ to get

dΨ

dφ
sinφ = kcpΘ + ((kcp − 2) cosφ− hk sinφ) Ψ,(4.1a)

dΘ

dφ
sinφ = (−kcp cosφ+ hk sinφ)Θ + (−kcp cos2 φ− kap sin2 φ+ hk sin 2φ+ 2)Ψ,(4.1b)

Now divide both sides of (4.1a) by sinφ and differentiate with respect to φ. Then eliminate
Θ using (4.1a) and dΘ

dφ using (4.1b) to find

Ψ′′ + 3 cotφΨ′ − (γ + β cotφ)Ψ = 0,(4.2)

where5 γ = 2 + k, β = kh and ′ denotes differentiation with respect to φ. Equation (4.2) is a
regular, singular ODE with exact solution [1, eq. (21)]

Ψ(φ) =
C3

sin(φ)3/2
(cot(φ) + i)−

√
ρ̄(cot(φ)− i)

√
ρ×(4.3)

2F1

(
√
ρ− 1

2
−
√
ρ̄,
√
ρ+

3

2
−
√
ρ̄; 1− 2

√
ρ̄,

1

2
− i

2
cotφ

)
+

C4

sin(φ)3/2
(cot(φ) + i)

√
ρ̄(cot(φ)− i)

√
ρ×

2F1

(
√
ρ+

3

2
+
√
ρ̄,
√
ρ− 1

2
+
√
ρ̄; 1 + 2

√
ρ̄,

1

2
− i

2
cotφ

)
.

where ρ = 1
16 (9 + 4γ + 4iβ), ρ̄ is the complex conjugate, 2F1 is the hypergeometric function

and C3, C4 are integration constants. We can find Θ(φ) from (4.1a) and (4.3). The exact
solution (4.3) and numerical solution of the full system (2.13) are shown in Figure 4.1 and
suggest a strong dependence on 1/φ2 at small φ. Numeric evaluation of the hypergeometric
function in (4.3) with complex parameters and arguments is non-trivial [7]. We evaluate (4.3)
with the Matlab function hypergeom().

4.1. Frobenius series solution. Equation (4.3) is cumbersome to work with. Since we are
most interested in the behaviour of the can for small φ, we can solve (4.2) using a Frobenius

5For our can, γ = 2.245, β = 0.361 from (2.16).
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log(Ψ)

log(φ)

Figure 4.1. Comparison of the analytic solution (4.3) with the numerical solution of the equations of
motion (2.13). The solutions agree and show a clear Ψ ∝ 1/φ2 dependency at small φ. The Ψ′ initial condition
for (4.2) is computed from (4.1a).

series [3], since the singular point φ = 0 is regular; both φ cotφ and φ2(γ+β cotφ) have valid
Taylor series expansions. Hence we assume

Ψ(φ) =

∞∑
n=0

anφ
n+r,(4.4)

with a0 6= 0, valid near φ = 0. Differentiating the series and substituting into (4.2) gives

∑
an(n+ r)(n+ r − 1)φn+r−2 + 3 cotφ

∑
an(n+ r)φn+r−1 − (γ + β cotφ)

∑
anφ

n+r = 0.

(4.5)

Using the series expansion of cotφ, the indicial equation of (4.5) is given by

r(r + 2) = 0.(4.6)

Therefore r = r1 = 0 and r = r2 = −2 and two series solutions Ψ0,Ψ−2 exist for (4.2). When
r = r1 = 0, the solution takes the form

Ψ0(φ) =

∞∑
n=0

pnφ
n,(4.7)

where pn are constants. Using (4.5), we find

Ψ0(φ) = p0

(
1 +

β

3
φ+

β2 + 3γ

24
φ2 +

β(β2 + 11γ)

360
φ3

)
+O

(
φ4
)
.(4.8)
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Since r1 and r2 differ by an integer, there will be log terms [3] in the r = r2 = −2 solution,
which then takes the form

Ψ−2(φ) = CΨ0(φ) log(φ) +
∞∑
n=0

qnφ
n−2.(4.9)

where C, qn are constants. Inserting (4.9) into (4.2) and simplifying gives[
2CΨ′0
φ
− CΨ0

φ2
+
∑

qn(n− 2)(n− 3)φn−4

]
(4.10)

+ 3 cotφ

[
CΨ0

φ
+
∑

qn(n− 2)φn−3

]
− (γ + β cotφ)

[∑
qnφ

n−2
]

= 0.

Using the series expansion of cotφ, equating orders and setting the arbitrary constant q2 = 0,
we find

Ψ−2(φ) =
−q0(β2 − γ + 2)

2p0
Ψ0(φ) log φ+ q0

(
1

φ2
− β

φ
− 1

9
β
(
−2β2 + 5γ − 6

)
φ

)
+O

(
φ2
)
.

(4.11)

Hence the solution to (4.2) for small φ, using the original parameters β = kh and γ = 2 + k,
is given by

Ψ(φ) =B0

(
1 +

kh

3
φ

)
− B−2((kh)2 − k)

2

(
1 +

kh

3
φ+

(kh)2 + 6 + 3k

24
φ2

)
log φ(4.12)

+B−2

(
1

φ2
− kh

φ
− 1

9
kh
(
−2(kh)2 + 4 + 5k

)
φ

)
+O

(
φ2
)
,

where we have now replaced p0 and q0 by B0 and B−2. We observe that Ψ has a φ−2

dependence at leading order, as shown numerically in Figure 4.1.
Recall that Θ(φ) and Ψ(φ) are related through (4.1a). By substituting the series solution

for Ψ (4.12) and its derivative, expanding the trigonometric functions and rearranging, we
find from (4.1a) that

Θ(φ) =− B−2

φ2
+
B−2kh

φ
+
−9B−2h

2k2 + ((4cp + 3)B−2 − 6B0cp)k + 12B0 − 4B−2

6kcp
(4.13)

+B−2
h2k − 1

2cp

(
(cpk − 2) +

kh(cpk − 6)

3
φ

)
log φ+O (φ) ,

Thus to leading order, the series solutions6 for Ψ and Θ are

Θ(φ) =
−B−2

φ2
+
B−2kh

φ
+ Θ00 + (Θl0 + Θl1φ) log φ,(4.14a)

Ψ(φ) =
B−2

φ2
+
−B−2kh

φ
+ Ψ00 + (Ψl0 + Ψl1φ) log φ(4.14b)

The two expansions suggest that Θ + Ψ = O (1). The coefficients Θ00,Ψ00,Θl0,Θl1,Ψl0,Ψl1,
which involve B0, B−2, are given in Appendix A. Equation (4.14) represents an improvement
on the relations found by Srinivasan and Ruina [20, eqs. (7) and (9)].

6The subscript notation l0, l1 is used to denote coefficients of log terms.
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4.2. Coefficients B0 and B−2. To determine B0 and B−2, we need conditions for (4.2).
But we are given Ψt=0, Θt=0, φt=0 and Φt=0. To determine Ψ′t=0 we expand (4.1a) in small φ
and evaluate at t = 0

Ψ′t=0 =
kcp(Ψt=0 + Θt=0)− 2Ψt=0

φt=0
− hkΨt=0 +

kcp(Θt=0 − 2Ψt=0) + 4Ψt=0

6
φt=0 +O

(
φ3
)
.

(4.15)

We take (4.12) for Ψ, differentiate it with respect to φ to get a series solution for Ψ′, evaluate
both at t = 0. We obtain two simultaneous equations in B0 and B−2.

Ψt=0 = B0Ψ0(φt=0) +B−2Ψ2(φt=0),(4.16a)

Ψ′t=0 = B0Ψ′0(φt=0) +B−2Ψ′2(φt=0).(4.16b)

We solve for B0, B−2 to find the series solution

B0 =
kcp
2

(Θt=0 + Ψt=0)− hk2cp
2

(Θt=0 + Ψt=0)φt=0

(4.17)

− h2k2 − k
4

(kcp(Θt=0 + Ψt=0)− 2Ψt=0)φ2
t=0 log(φt=0)+

+
1

12

(
−kcp(5Ψt=0 + 2Θt=0) + (4− 3k + 9h2k2)Ψt=0

)
φ2
t=0 +O

(
φ3
t=0 log(φt=0)

)
,

B−2 =

(
−kcp

2
(Θt=0 + Ψt=0) + Ψt=0

)
φ2
t=0 +O

(
φ3
t=0 log(φt=0)

)
.

(4.18)

where we have taken terms up to leading order in B−2. Numerically solving the equations
of motion (2.13) in Figure 4.2, we see that the expansions for B0 and B−2 remain roughly
constant7. In the frictionless case, given in Appendix B, the two conserved quantities emerge
naturally from the Lagrangian formulation of the equations of motion and correspond to
components of the can’s angular momentum. In the presence of friction this is no longer
exactly the case, but similarities are explored in Appendix C.

4.3. Reduced equation of motion. If we substitute (4.14) into (2.13c), we obtain a second
order nonlinear ODE in φ

φ̈ =
a3

φ3
+
al2 log φ

φ2
+
a2

φ2
+
al1 log φ

φ
+
a1

φ
+ all(log φ)2 + al0 log φ+ a0 − 1 +O (φ(log φ))

(4.19)

where trigonometric terms have been expanded in φ. The coefficients aij contain only terms in
B2

0 , B2
−2 and B0B−2 and depend on material parameters h, k, ap and cp. We have also rescaled

time by
√
ap + 1 and overloaded the notation. The leading order coefficient a3 = B2

−2ap is
positive. All coefficients are given in Appendix D.

7The can is rolling without slipping and hence energy is conserved.
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Figure 4.2. The conserved quantities B0 and B−2 computed from the non-dimensionalised equations of
motion (2.13). Small oscillations are visible, due to the truncation of (4.17) and (4.18).

In Figure 4.2, B0 and B−2 are small and of approximately the same order. Therefore, we
assume

|B−2| = ε1/2,(4.20)

B0 = ζε1/2(4.21)

where ζ = O (1) and 0 < ε� 1. Then we truncate (4.19) to find

φ̈ =ε

(
a3

φ3
+
al2 log φ

φ2
+
a2

φ2
+
al1 log φ

φ
+
a1

φ
+ all(log φ)2 + al0 log φ+ a0

)
− 1,(4.22)

where we have extracted a factor of ε from each relabelled coefficient. Equation (4.22) can be
written in Hamiltonian form; see Appendix E.

In Figure 4.3, we compare the numerical solutions of the exact equations (2.13) and
the reduced equation (4.22). The initial conditions (2.17) and the scalings fix the values
of ε = 1.43×10−10 and ζ = 0.40. The reduced equation (4.22) shows some drift in the period,
because the truncation removes the equilibrium φ = φ∗, so the can is unable to overturn.
These errors are unimportant for the angle of turn phenomenon, which occurs when φ� φ∗.

Figure 4.4 shows solutions of the reduced equation (4.22) for different values of ε, where
we have used (4.14b) to find Ψ(φ). As ε decreases, the nutation angle φ exhibits the expected
bouncing behaviour, ψ shows step-like increases that correspond to the angle of turn, and the
phase portrait shows clearly the repulsion from the singular line φ = 0 due to the φ−3 term.
Thus ε mediates the angle of turn phenomenon.



14 B. W. COLLINS, C. L. HALL, AND S. J. HOGAN

t t

t t

Ψ

φ

Θ

Φ

Figure 4.3. Numerical comparison of exact equations (2.13) (solid green) and reduced equation (4.22).

5. Asymptotic analysis. In this section we study the reduced equation (4.22) using
matched asymptotic expansions [8]. When ε is small, Figure 4.4 shows two regions of be-
haviour: when φ � 1, the can acts like a compound pendulum (the outer region), and when
φ � 1, the bounce phenomenon occurs (the inner region). Matching the two solutions will
yield a uniformly valid solution for one half period of the motion.

5.1. The outer solution. When φ� 1, we assume a regular perturbation in ε

φ(t) ∼ φ0(t) + εφ1(t) +O
(
ε2
)
.(5.1)

Upon substitution into the reduced equation (4.22), the leading order problem is φ̈0 = −1,
which describes the can falling under gravity. If we take initial conditions φ(0) = I/2 >
0, φ̇(0) = 0, we find

φ0(t) =
I − t2

2
,(5.2)
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φ t

Ψ

Φ

ψ

φ

Figure 4.4. Time series and trajectories for (4.22) with ε = 10−8 (green solid), 6.4× 10−7(orange dashed)
and 4× 10−6(blue dotted) and ζ = 1.

which gives the expected quadratic form. So, in the absence of angular momentum in the zB

and zG directions (ε = 0), the can falls flat at t =
√
I.

At O (ε), using (5.2), we obtain

φ̈1 =
b3

(1− τ2)3
+
bl2 log(1− τ2)

(1− τ2)2
+

b2
(1− τ2)2

+
bl1 log(1− τ2)

1− τ2
+

b1
(1− τ2)

(5.3)

+ bll log2(1− τ2) + bl0 log(1− τ2) + b0,

with initial conditions φ1(0) = φ̇1(0) = 0, and we have rescaled time t =
√
Iτ . The coefficients

in (5.3) are given in Appendix F.
Equation (5.3) has the explicit solution

φ1(τ) =

3∑
i=0

biJi(τ) +

2∑
n=0

bliJli(τ) + bllJll(τ),(5.4)
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where

Ji(τ) =

∫ ∫
1

(1− τ2)i
dτdτ, (i = 0 . . . 3),(5.5a)

Jli(τ) =

∫ ∫
log(1− τ2)

(1− τ2)i
dτdτ, (i = 0 . . . 2),(5.5b)

Jll(τ) =

∫ ∫
log2(1− τ2)dτdτ.(5.5c)

Each double integral is evaluated in Appendix G. Therefore the outer solution up to and
including O (ε) terms is given by

φ(t) ∼ I − t2

2
+ ε

(
3∑

n=0

biJi

(
t√
I

)
+

2∑
n=0

bliJli

(
t√
I

)
+ bllJll

(
t√
I

))
+O

(
ε2
)
.(5.6)

As t→
√
I, terms in J1( t√

I
), J3( t√

I
) become singular, so the outer solution is not valid as the

can falls flat.

5.2. The inner solution. Since the outer solution (5.1) is not valid over the whole time
domain, we require an inner solution. Let us define inner variables ϕ, T as

φ = ε1/2ϕ, t =
√
I + ε1/2T.(5.7)

Substituting (5.7) into the reduced equation (4.22) and simplifying gives the inner problem

ϕ′′ =
ap
ϕ3

+ ε1/2
al2 log ε1/2ϕ

ϕ2
+ ε1/2

a2

ϕ2
+ ε

al1 log ε1/2ϕ

ϕ
+ ε

a1

ϕ
+ ε3/2all

(
log ε1/2ϕ

)2
(5.8)

+ ε3/2al0 log ε1/2ϕ+ ε3/2a0 − ε1/2.

where ′ now denotes differentiation with respect the T . Taking ϕ ∼ ϕ0 + ε1/2ϕ1 + O (ε), we
find to leading order

ϕ′′0 =
ap
ϕ3

0

.(5.9)

Equation (5.9) is equivalent to [20, eq. (13)] and has solution

ϕ(T ) =

√
P 2 +

(√
apT −Q

)2
P 2

+O
(
ε1/2 log ε

)
,(5.10)

where P and Q are integration constants. Since both initial conditions have been used to find
the integration constants for the outer solution, P and Q must be determined by matching.



ROCKING CAN 17

5.3. Matching. In this section we match the outer and inner solutions to obtain a uni-
formly valid solution, using Van Dyke’s matching rule [8]. The inner solution (5.10) written
in the outer variable t becomes

√
ap(
√
I − t)

P
+ ε1/2

Q

P
+O (ε) .(5.11)

The outer solution (5.6) written in the inner variable T (5.7) becomes

−
√
I(t−

√
I)− ε ap

2I5/2(t−
√
I)

+O
(
ε3/2

)
.(5.12)

Matching gives P =
√
ap/I, Q = 0. Therefore the one term, matched inner solution is

ϕ(T ) =

√
ap
I

+ IT 2.(5.13)

Hence the uniformly valid solution to the reduced equation (4.22) can be written in the
form

φ(t) =−

(√
I − t

)2

2
+

√
εap
I

+ I(t−
√
I)2 +O (ε) .(5.14)

The inner, outer and matched solutions are shown in Figure 5.1, together with the numerical
solution of the reduced equation (4.22) for ε = 1.43× 10−10. The initial condition φ(0)
determines I. The matched solution is in excellent agreement with the numerical solution
over the entire range of φ, with the inner and outer solutions agreeing tangentially in their
regions of applicability.

5.4. Reconstructing the state variables. In the previous section we obtained a matched
solution for the nutation angle φ(t) (5.14). In this section, we reconstruct the remaining state
variables of the can in the inner region, where the bounce takes place.

We compute the inner solution for Ψ, using (4.14b). Recall that we had scaled time by a
factor of

√
ap + 1 to obtain our reduced equation (4.22). We then shift to the inner variables

φ = ε1/2ϕ, T = ε−1/2(t−
√
I) and note that |B−2| = ε1/2 to find

1√
ap + 1

dψ

dT
=

sign(B−2)

ϕ2
− ε1/2 sign(B−2)kh

ϕ
+O (log ε) ,(5.15)

Then, to leading order using (5.13),

dψ

dT
=

√
ap + 1 sign(B−2)(

a3
I + IT 2

) .(5.16)

The maximum value of (5.16) occurs at T = 0. Hence, reverting to the scalings in (4.22)

dψ

dt

∣∣∣∣
max

=
I
√
ap + 1 sign(B−2)

ε1/2ap
.(5.17)
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t t

φ φ

Figure 5.1. Comparison of inner (5.10), outer (5.6), matched (5.14) and numerical solution of the reduced
equation (4.22). Left: the time series for 0 < t <

√
I = 0.2507. The matched and numeric solutions lie on top

of one another. Right: the time series for 0.247 < t < 0.2507 showing the divergence of the outer solution from
the matched and numeric solutions. We take ε = 1.43× 10−10 and I = π/50.

The presence of ε1/2 causes the large spikes visible in Figure 4.3, where dψ
dt

∣∣
max

= 3575.

Equation (5.17) gives dψ
dt

∣∣
max

= 3449, an error of 3.5%. The same procedure is applied to the
Θ expression (4.14a) to give

dθ

dT
= −

√
ap + 1 sign(B−2)(

a3
I + IT 2

) = −dψ

dT
.(5.18)

From (5.16), we find

ψ(T ) =

∫ √
ap + 1 sign(B−2)

a3
I + IT 2

dT =

√
ap + 1 sign(B−2)

ap
arctan

(
IT
√
ap

)
+ Cψ,(5.19)
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and from (5.18)

θ(T ) = −
√
ap + 1 sign(B−2)

ap
arctan

(
IT
√
ap

)
+ Cθ,(5.20)

where Cψ and Cθ are integration constants. From (5.10)

dϕ

dT
=

IT√
a3
I + IT 2

,(5.21)

thus completing the description of the motion of the can during the bounce. Angles ψ and θ
exhibit a fast change over the bounce, corresponding to smoothed step functions, with the size
of the step equal to the angle of turn ∆ψ. The scaled angle ϕ evolves according to a smoothed
modulus function, avoiding ϕ = 0. In unscaled variables the minimum angle reached by φ is
φmin =

√
εap/I.

6. Physical Phenomena. In this section we use the expressions for the state variables
in the inner region to understand the angle of turn phenomenon and its sign, the motion of
the contact point and the coefficient of friction required for rolling without slipping to be
sustained.

6.1. Angle of turn. We compute ∆ψ by looking at the change of the inner solution for
ψ (5.19). This solution is only valid for T < 0, but we can appeal to the symmetry of (5.16)
to find

∆ψ = 2(ψ(0)− ψ(−∞)) = π

√
ap + 1

ap
sign(B−2).(6.1)

Reverting to unscaled units, the size of the angle of turn is

|∆ψ| = π

√
A+mH2 +mR2

A+mH2
,(6.2)

agreeing with [20], which used formal assumptions on ψ, θ and φ. For our can, we calculate
|∆ψ| = 209◦. The step-like behaviour of ψ in the numerical solution, visible in Figure 2.2,
corresponds to multiple bounces, each with an angle of turn |∆ψ| = 209◦. The difference with
respect to Srinivasan and Ruina is attributed to our choice of parameter values.

From (6.1), limap→∞ |∆ψ| → π, so rotation by any can is at least π before rising back up,
regardless of the material parameters. Conversely, limap→0 |∆ψ| → ∞, suggesting that the
can completes many revolutions before rising back up. The feasibility of such a large angle of
turn is discussed in subsection 6.3.

Equation (6.1) also contains information about the direction of the angle of turn deter-
mined by sign(B−2) [6]. We rewrite the expression for B−2 (4.18) as

B−2 =

(
−kcp

2
Θt=0 + Ψt=0(1− kcp

2
)

)
φ2
t=0 +O

(
φ3
t=0

)
(6.3)
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θ̇

ψ̇

Figure 6.1. Numerical simulations of the can with unscaled initial conditions (ψ̇, φ, φ̇, θ̇) =
(ψ̇t=0, π/100, 0, θ̇t=0). A square is coloured blue if ∆ψ < 0 and cream if ∆ψ > 0. The lighter blue line is
given by (6.4).

To leading order, the sign of B−2 is determined by whether the initial conditions lie to the
left or the right of the line

Θt=0 =

(
2

cpk
− 1

)
Ψt=0.(6.4)

In Figure 6.1, we show excellent agreement between (6.4) and the numerical solutions of
(2.13), for different initial conditions Ψt=0 and Θt=0.

6.2. Contact point motion. As the can enters the bounce phase, the instantaneous con-
tact point races quickly around the rim of the can. In [6], paths traced out by the contact point
are found by numerical integration of the equations of motion. In this section, we investigate
these paths analytically, using the inner solutions in subsection 5.4.

We introduce the contact locus xl, the point of contact between the can and the plane
(Figure 6.2) located at GPB (Figure 2.1). xl is not fixed to the can, but rotating with it. It
moves in the plane with velocity vGl given by

vGl = vGG + RBG
(
(ΩB −ΘẑB)×GPB

)
,(6.5)

The centre of mass velocity vGG is given in (2.5). Applying scalings (2.12) and disregarding
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Θ

Θ

Θ

Figure 6.2. The path that the instantaneous contact point traces out as the can moves over the plane is
called the contact locus, xl.

the zero z component, we find

vGl =
dxl
dt

= Θ

(
− sinψ.
cosψ

)
,(6.6)

If we now convert to inner variables, noting that dψ
dT = − dθ

dT from (5.18), we have

dxl
dT

= −dψ

dT

(
− sinψ
cosψ

)
,(6.7)

which is integrable. Hence, to leading order, the inner solution for the contact locus describing
the path traced out by the can is

xl(T ) = − cos

(√
ap + 1 sign(B−2)

ap
arctan

(
IT
√
ap

)
+ Cψ

)
+ Cxl,(6.8a)

yl(T ) = sin

(√
ap + 1 sign(B−2)

ap
arctan

(
IT
√
ap

)
+ Cψ

)
+ Cyl,(6.8b)

where Cxl and Cyl are constants of integration. Therefore, during the bounce phase the contact
locus moves in a circular arc, of size |∆ψ|, with the same radius as the can.

To understand how the contact locus changes in the outer region we recall the series
solutions for Θ and Ψ, (4.14a) and (4.14b). Rescaling time by

√
ap + 1, inserting the outer

solution for φ (5.6), and discarding the O (ε) terms we obtain

dψ

dt
=

4ε1/2 sign(B−2)
√
ap + 1

(I − t2)2
= −dθ

dt
.(6.9)
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Integrating (6.9) gives the outer solution for ψ:

ψ(t) = 2ε1/2 sign(B−2)
√
ap + 1

(
t

I(I − t2)
+ arctanh

(
t√
I

))
+ Cψ,(6.10)

and hence from (6.6)

xl(t) = − cos

(
2ε1/2 sign(B−2)

√
ap + 1

(
t

I(I − t2)
+ arctanh

(
t√
I

))
+ Cψ

)
+ Cxl,(6.11a)

yl(t) = sin

(
2ε1/2 sign(B−2)

√
ap + 1

(
t

I(I − t2)
+ arctanh

(
t√
I

))
+ Cψ

)
+ Cyl.(6.11b)

The presence of ε1/2 in (6.11) shows that xl barely changes in the outer solution until8 t→
√
I.

To avoid multiple points of contact, φ ∈ (0, π/2). Both solutions (6.8) and (6.11) rotate
clockwise if sign(B−2) > 0 and anticlockwise if sign(B−2) < 0.

Figure 6.3 shows the contact locus trajectory for different sets of initial conditions. The
trajectories are calculated numerically using (2.13). In a), with small φ and small ε, the
contact locus trajectories are circular with large arcs in the inner solution and small arcs in
the outer solution. Panel b) shows motion with initial conditions just off the balancing angle
φ∗ = arctan(1/h) with a large θ̇. The can rolls in a straight line before falling almost flat,
turning around and repeating, producing a petaloid pattern. Such a pattern cannot be seen
in the reduced system (4.22), because it requires the presence of the saddle equilibrium at
φ∗ which is destroyed by discarding O (φ) terms. In c), we have small φ, large ε. We see a
roughly circular trajectory, but with wobbles caused by the large vertical angular momentum
ε. In d), the initial conditions are small φ with large θ̇ and ε. Close to the boundary defined
by (6.4), we see circular movement, but along the top we see small cusp-like projections from
the circle where the can reverses its direction.

These trajectories have some striking patterns. Our analysis only applies to the circular
trajectory in a). Panel d) raises another question: for what initial conditions does the can’s
position remain bounded? If the initial conditions belong to the steady motion Sbal (3.6), with
Ψ = 0, then the can rolls in a straight line with velocity RΘ and the position is unbounded.
In Figure 6.2 d), the contact locus appear to be proscribe a larger circle, but it is unclear if
the position remains bounded. In the case of the thin disk, Borisov et al. [5] show that the
contact locus is bounded for almost all initial conditions.

6.3. Coefficient of friction. To be valid, the equations of motion (2.13) require that the
coefficient of friction µ > |F (t)|/N(t) for all time. Srinivasan and Ruina [20] found that
the maximum value of |F (t)|/N(t) remains finite. In this section we investigate how |F |/N
depends on the material characteristics of the can.

The contact forces Fx, Fy and N are computed in (2.8)–(2.10) and

|F |
N

=

√
F 2
x + F 2

y

N
.(6.12)

8In [6], the contact locus of a thin disk (H = 0) rotates clockwise at small φ. After overturning, the disk
rotates anticlockwise (or vice versa). This change of rotation direction is not visible in the inner and outer
solutions (6.8) and (6.11) because the thick disk cannot overturn.
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xp
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a) b)

c) d)

Figure 6.3. Contact locus trajectories for different initial conditions. Portions of a trajectory where
φ is small compared to the initial condition are coloured blue (φ < φ0/10). To obtain the trajectories the
contact point velocity (6.6) is integrated numerically using solutions of (2.13). The unscaled initial conditions
are: a) as in(2.17), b) (ψ̇, φ0, φ̇, θ̇) = (0, φ∗ − 1× 10−5, 0, 2), c) (ψ̇, φ, φ̇, θ̇) = (0.72667, π/100, 0, 7) and d)
(ψ̇, φ, φ̇, θ̇) = (1.7267, π/100, 0, 7).

In Figure 6.4, we plot the friction ratio (6.12) for a typical rocking can motion. The peak of
the ratio |F |/N in Figure 6.4 is 0.508, suggesting that if µ > 0.508 the can will roll without
slipping. In this case, the outer region (in red, where φ = O (1)) requires less friction than
the inner region (in blue, where φ� 1)9.

To look at the ratio of |F |N over the bounce (inner region) we write (6.12) in inner variables
and use (5.13), (5.16), and (5.18) along with their derivatives. Expanding and keeping only
the leading order terms in ε gives an approximate lower bound on the required coefficient of
friction, given by

|F |
N
≈ h

ap
=

mRH

A+mH2
.(6.13)

Unlike in Figure 6.4, (6.13) has no dependence on time or initial conditions, which appear at
higher order. Equation (6.13) predicts a required coefficient of friction of 0.508, agreeing with
the numerical value.

9This is not true for all initial conditions and parameter values. The outer region may require a higher
coefficient of friction than the inner, particularly if the initial conditions have large Φ.
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t

|F |/N

Figure 6.4. The ratio (6.12) versus time. The plot is coloured blue if φ < φ0/10 (the inner region), and
red otherwise (the outer region).

.

In (6.1), the angle of turn |∆ψ| can be arbitrarily large if ap is small. However, from (6.13),
a small ap results in a large coefficient of friction, rendering large angles of turn infeasible.
This explains why large angles of turn are not seen in practice: the can will slip instead.

For a uniform density cylinder, the required coefficient of friction is simply

|F |
N
≈ RH

1
12(3R2 +H2) +H2

=
12h

3 + 13h2
.(6.14)

This has a maximum value of µ = 0.96, when h =
√

39/13 ≈ 0.48, which is not often achieved
in tabletop experiments.

7. Conclusion. We have considered the problem of a can rolling on a rough horizontal
plane, with nutation angle φ. We reduced the problem to a second order ODE (4.2), which
has a regular singularity at φ = 0. We then found a Frobenius solution (4.12) involving two
coefficients B0 and B−2, which are related to angular momenta about the global vertical and
symmetry axes, justifying the formal assumptions made by Srinivasan et al. [20]. Setting
B0 = B−2 = 0 leads to a singular perturbation problem10, prompting the introduction of ε, a
small parameter describing a combination of the angular momenta.

10The singular limit (ε = 0) yields a flat falling solution, which is studied by Cushman and Duistermaat [6]
for the thin disk.
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The rocking can exhibits two distinct phenomena: for φ = O (1), behaviour very similar
to an inverted pendulum, and for φ� 1, dynamics with the angle of turn.

This distinction allows us to use matched asymptotic expansions, with an outer region
φ = O (1) and an inner region φ � 1, to derive a uniformly valid solution (5.14) that is in
excellent agreement with numerical calculations of the reduced system (4.22). The solution of
the inner problem was used to investigate of the angle of turn phenomenon. We computed the
minimum angle φmin achieved by the can and the maximum angular velocity ψ̇max attained
over the bounce. We recomputed the angle of turn |∆ψ| derived by [20] and gained more
information about the direction of the angle of turn. These key characteristics of the dynamics
are backed up by numerical solutions of the full nonlinear equations (2.13) in matlab. We
also examine the motion of the contact locus xl and see a range of different trajectories, from
circular to petaloid motion and even cusp-like behaviour.

Finally, we used the solution to the inner problem to obtain an approximate lower bound
for the required coefficient of friction to avoid slip. To leading order, the lower bound is
independent of the initial conditions and dependent only on the material characteristics of the
can. For a typical can, a coefficient of friction µ ≈ 0.51 is required to avoid slipping.

An interesting extension to the rocking can problem is the addition of a forced horizontal
plane. In the planar case, Hogan [9] explored the dynamics of a rigid rectangular block rocking
and impacting with a sinusoidally-forced horizontal plane. The system contains a range of
dynamical behaviour including period-doubling cascades. Rigid cylinders in three dimensions,
such as classical columns or grain silos, may experience the same types of behaviour and have
been explored in the structural engineering literature [21, 22]. Such work may benefit from
the approach taken in this paper.
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Appendix A. Coefficients in (4.12) and (4.13).

Ψ00 = B0,

Ψl0 =
B−2((kh)2 − k)

2
,

Ψl1 =
B−2kh((kh)2 − k)

6
,

Θ00 =
2− kcp
kcp

B0 +
3k(cp + 1)− 4− 9h2k2

6kcp
B−2

Θl0 =
B−2(h2k − 1)

2cp
(cpk − 2),

Θl1 =
B−2(h2k − 1)

2cp

kh(cpk − 6)

3
.

Appendix B. The frictionless case.
In the frictionless case, a Lagrangian approach is more appropriate due to the absence of

the non-holonomic constraint on the contact velocity. With no lateral force we can assume
that the horizontal component of the velocity of the centre of mass is zero. The Lagrangian,
L = T − V is

L =
IΩ · Ω

2
+
mż2

2
−mg(R sinφ+H cosφ)

=
A

2
(ψ̇2 sin2 φ+ φ̇2) +

C

2
(ψ̇ cosφ+ θ̇)2(B.1)

+
m

2
(φ̇(R cosφ−H sinφ))2 −mg(R sinφ+H cosφ)(B.2)

The equations of motion are found using the Lagrangian equations for the generalised coor-
dinates q ∈ {φ, ψ, θ}

d

dt

∂L
∂q̇
− ∂L
∂q

= 0.(B.3)

Since both ψ and θ do not appear in the Lagrangian, we have

d

dt

(
C(ψ̇ cosφ+ θ̇)

)
= 0.(B.4)

d

dt

(
Aψ̇ sin2 φ+ C cosφ(ψ̇ cosφ+ θ̇)

)
= 0(B.5)

Integration yields the two conserved quantities HBz (C.1) and HGz (C.2). HBz corresponds to
angular momentum about the symmetry axis of the can, and HGz corresponds to a combination
of the angular momenta about the symmetry and vertical axes.

The equation of motion for φ is

(A+m(R cosφ−H sinφ)2)φ̈ = mφ̇2(R sinφ+H cosφ)(R cosφ−H sinφ)(B.6)

+ψ̇(A− C) sinφ cosφ−Cθ̇ψ̇ sinφ−mg(R cosφ−H sinφ).
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Applying the scalings from (2.12), and eliminating ψ̇, θ̇ through (C.1) and (C.2), gives a planar
ODE. Introducing, as in (4.21), HBz = ε1/2 � 1, HGz = ζε1/2 where ζ = O (1), and expanding
in ε gives, on truncation

φ̈ = ε

(
α3

φ3
+
α2

φ2
+
α1

φ
+ α0

)
+
hφ̇2 − 1

a+ 1
,(B.7)

with

α3 =
(ζ − 1)2

a(a+ 1)
.(B.8)

Equation (B.7) is the slipping equivalent of the reduced equation (4.22).

Appendix C. Physical justification for B0 and B−2.
Here we give a physical understanding of B0 and B−2 in (4.17) and (4.18). Consider the

angular momenta about the zB and zG axes, given respectively by

HBz = c(Θ + Ψ cosφ) ≈ c(Θ + Φ)− cΨφ2

2
+O

(
φ4
)
,

(C.1)

HGz = aΨ sin2 φ+ c cosφ(Ψ cosφ+ Θ) ≈ c(Θ + Ψ) +
(
− c

2
(Θ + 2Ψ) + aΨ

)
φ2 +O

(
φ4
)
.

(C.2)

For small φ, B0 − kcp
2c H

B
z = O (φt=0), suggesting that B0 is approximately proportional

to the angular momentum about the body symmetry axis. Correspondence with angular
momentum is less clear for B−2, it bears similarities to the quantity HBz −HGz . We suggest
that the conserved quantities B0 and B−2 correspond to angular momenta.

In the frictionless case, HBz and HGz emerge naturally as conserved quantities from the
Lagrangian formulation of the equations of motion (see Appendix B). Consider Figure C.1:
without friction the only contact force is the normal force N , acting in the same plane as HBz
and HGz . Angular momentum must, therefore, be conserved in this case.

In the presence of friction, angular momentum is not conserved. Figure C.1 shows the
component F Iy 6= 0, which acts in the tangential direction, affecting angular momentum, and
given by

F Iy = (RGIF
G) · ŷI = mgkΦ(aΨ sinφ+ ch(Ψ cosφ+ Θ)).(C.3)

For small φ, |F Iy | ∝ (Θ + Ψ), which is in turn proportional to B0, to leading order. If B0 is
also small, then the effects of the tangential force on the angular momenta are small.

Appendix D. Coefficients in (4.19).
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F Iy

F Ix

N

G

Ψ Θ

zBzG

Figure C.1. The contact forces on the can. The lines of action of both N and F Ix intersect with the axes
zG and zB and, therefore, cannot affect the angular momenta about those axes. Only the tangential component
of friction F Iy can affect the angular momenta and this is small (C.3).

a3 =B2
−2ap,

a2 =− 2
h
((
−1/3 +

(
−3/4h2 + ap cp

)
k2 + (−cp/2 + 1/4) k

)
B−2 +B0

)
B−2

kcp
,

a1 =
2

kcp

[(((
1/3 + 1/2h2k3ap − 1/4 k2h2 + (−ap/3− 1/4)k

)
B−2

+B0(ap k − 1)
)
cp −B−2h

2k2(h2k − 1)

)
B−2

]
,

a0 =
1

2880 kcp

[ (
−125 cp k

5 + 1440 k4
)
B−2

2h5

− 120 k2B

((
34− 32 cp k

2

3

(
ap +

11

128

)
+

(
293 cp

12
+ 36

)
k

)
B−2 +B0 (kcp − 84)

)
h3

+
([
−960 +

(
135− 3200 ap

)
cp k

3 + (5850 + 1280 ap) cp k
2 + (720− 1032 cp) k

]
B2
−2

− 3840

[
−5/4 + cp

(
ap +

3

32

)
k2 +

(
−27 cp

16
+ 3/8

)
k

]
B0B−2 − 5760B0

2
)
h

]
,

al2 =
hB−2

2
(
h2k − 1

)
cp

,

al1 =−
(
h2k − 1

)
B−2

2 (ap k − 1) ,

al0 =2
h
(
h2k − 1

)
B−2

cp

((
− 5

12
+
(
−3/4h2 + 1/3 ap cp

)
k2 + (−cp/2 + 1/4) k

)
B−2 +B0

)
,

all =−
hk
(
h2k − 1

)2
B−2

2

2 cp
.
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Appendix E. Hamiltonian system. Equation (4.22) can be written as a planar Hamil-
tonian system with generalised coordinate φ and generalised momentum Φ. Let H(Φ, φ) be
the Hamiltonian

H(Φ, φ) =
Φ2

2
+ φ− ε

(
ln2(φ)(

all
2

+ allφ) + (al0 − 2all −
al2
φ

) ln(φ)(E.1)

+ (a0 − 2all − al0)φ− a2 − al2
φ

− a3

2φ2

)
.

Then we recover (4.22) by taking

dΦ

dt
=− ∂H

∂φ
= ε

(
a3

φ3
+
al2 log φ

φ2
+
a2

φ2
+
al1 log φ

φ
+
a1

φ
+ all(log φ)2 + al0 log φ+ a0

)
− 1

(E.2)

dφ

dt
=
∂H
∂Φ

= Φ.

(E.3)

The Hamiltonian surface H(Φ, φ) is shown in Figure E.1. Closed contours of the Hamiltonian
indicate periodic orbits, seen in Figure E.2. An equilibrium point exists in the centre of the
phase portrait, corresponding to the steady motion Ssteady (3.6). The symmetries in H(Φ, φ),
clearly visible in Figure E.2, mean we can restrict our study to the upper half plane Φ > 0.

The period of one oscillation is given by

T = 2

∫ φ1

φ0

1

Φ
dφ,(E.4)

where φ0 and φ1 are the intersections of the contour with the line Φ = 0. These intersections
can be found from solutions of the Hamiltonian at Φ = 0 with a particular energy E

H(0, φ) = E(E.5)

From Figures E.1 and E.2 we expect either two positive solutions for φ, a single positive
solution corresponding to the equilibrum or no solutions, depending on the value of E. In the
case of ε = 0,

T |ε=0 =
√

2

∫ φ1

φ0

1√
h− φ

dφ.(E.6)

If ε = 0, the can falls flat and φ0 = 0. If the can is released from rest at φ = φ1, then φ1 is
the highest angle attained by the can and H = φ1. The period for such a motion is

T |ε=0 = 2
√

2φ1.(E.7)

which agrees with the calculation for φ̈ = −1 given by (4.22) with ε = 0. In unscaled time

T |ε=0 = 2

√
2φ1(A+mH2 +mR2)

mgR
.(E.8)
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Figure E.1. The Hamiltonian surface (E.5).
The sharp increase in H near φ = 0 is due to the
repulsive singularity.
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Figure E.2. Contour plot of
the Hamiltonian (E.5), for E =
7.5× 10−4, 1× 10−3, 2× 10−3, 3× 10−3, 4× 10−3, 5× 10−3.
Solutions of (4.22) follow the contours in a clock-
wise direction.

As expected, cans with larger H take a longer time to fall. While it is simpler to compute
this leading order estimate of the oscillation period using (4.22), the Hamiltonian method of
this section suggests a way to compute the period with non-zero ε.

Appendix F. Coefficients in (5.3).

b3 =
8a3

I2

bl2 =
4al2
I

b2 =
4a2

I
+

4al2 log(I/2)

I
bl1 = 2al1

b1 = 2a1 + 2al1 log(I/2)

bll = allI

bl0 = al0I + 2allI log(I/2)

b0 = a0I + al0I log(I/2) + allI log2(I/2)

Appendix G. Integrals in (5.5). The polynomial integrals

J3 =

∫ ∫
1

(1− T 2)3
dTdT =

T 2

8T 2 − 8
+

3T

8
arctanhT(G.1)

J2 =

∫ ∫
1

(1− T 2)2
dTdT =

T

2
arctanh(T )(G.2)

J1 =

∫ ∫
1

(1− T 2)
dTdT = T arctanh(T ) +

1

2
ln(1− T 2)(G.3)
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and the logarithmic integrals, computed in Mathematica,

Jl2 =

∫ ∫
log
(
1− T 2

)
(1− T 2)2 dT dT

(G.4)

=
1

8

[
2(T + 1)Li2

(
1− T

2

)
− 2(T − 1)Li2

(
T + 1

2

)
− T log2(1− T ) + T log2(T + 1)

− 4
(
log(8) log(1− T ) + log(T + 1) + log(8− 8T )− 3 + 2 log2(2)

)
+ 4 log(4) log(1− T )

+ 2 log(T + 1) log(1− T ) + (T (log(16)− 4)− 2 log(4)) tanh−1(T )

]

Jl1 =

∫ ∫
log
(
1− T 2

)
1− T 2

dT dT

(G.5)

=
1

4

[
2(T − 1)Li2

(
1− T

2

)
− 2(T + 1)Li2

(
T + 1

2

)
− 2(T − 1) log2(1− T ) + log2(1− T )

+ (T + 1) log2(T + 1) + (2(T − 1) log(1− T ) + log(4)) log(1− T )

− T log(1− T ) log(4(1− T )) + (T + 1) log(4) log(T + 1) + 8− 2 log(4)

]

Jl0 =

∫ ∫
log
(
1− T 2

)
dT dT

(G.6)

=
1

2

(
−3T 2 +

(
T 2 + 1

)
log
(
1− T 2

)
+ 4T tanh−1(T )

)
Jll =

∫ ∫
log2

(
1− T 2

)
dT dT

(G.7)

=
1

2

[
4(T − 1)Li2

(
1− T

2

)
− 4(T + 1)Li2

(
T + 1

2

)
+ 14T 2

+ log(1− T )
(
−6T 2 + 2

(
T 2 − 1

)
log(T + 1) + 4(T − 1) log(1− T )− 2 + log(16)

)
+ (T − 3)(T − 1) log2(1− T )− 2(T − 1) log2(1− T ) + (T + 1)2 log2(T + 1)

− 4T (log(2)− 2) log(1− T )− 2(T + 1)(3T + 1− log(4)) log(T + 1) + 16− 8 log(2)

]

where Li2 is the dilogarithm.
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