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Abstract  12 

Contemporary rates of biodiversity decline emphasize the need for reliable ecological forecasting, but current 13 

methods vary in their ability to predict the declines of real-world populations. Acknowledging that stressors 14 

effects start at the individual level, and that it is the sum of these individual-level effects that drives populations 15 

to collapse, shifts the focus of predictive ecology away from using predominantly abundance data. Doing so 16 

opens new opportunities to develop predictive frameworks that utilize increasingly available multi-dimen-17 

sional data, which have previously been overlooked for ecological forecasting. Here, we propose that stressed 18 

populations will exhibit a predictable sequence of observable changes through time: changes in individuals’ 19 

behaviour will occur as the first sign of increasing stress, followed by changes in fitness related morphological 20 

traits, shifts in the dynamics (e.g. birth rates) of populations, and finally abundance declines. We discuss how 21 

monitoring the sequential appearance of these signals may allow us to discern whether a population is increas-22 

ingly at risk of collapse, or is adapting in the face of environmental change, providing a conceptual framework 23 

to develop new forecasting methods which combine multidimensional (e.g. behaviour, morphology, life his-24 

tory and abundance) data. 25 

   26 
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1. INTRODUCTION 27 

Extinction rates over the last century have been estimated to be higher than at any point in recent history, with 28 

human activity identified as the predominant driver of this “sixth mass extinction”1. In addition to its positive 29 

effects on human wellbeing and culture2, biodiversity underpins the stability and resilience of ecological sys-30 

tems on which humanity relies for food, fresh water, and clean air3. At the root of human-induced extinctions 31 

are a suite of stressors - stimuli creating a physiologically demanding or life-threatening situation for an or-32 

ganism - such as habitat loss, pollution, overharvesting, and climatic change4,5. Such stressors can drive de-33 

clines and erode a population’s ability to recover in the face of disturbances, increasing the probability of 34 

population collapse6. Indeed, multi-faceted pressures can be self-reinforcing, driving rapid collapses – the so-35 

called extinction vortex7,8. Consequently, we are at a critical point for ecosystem management where, to pre-36 

serve biodiversity and ecosystem services, we need to reliably detect not only what systems are being most 37 

impacted by anthropogenic stressors, but which are most at risk of collapse9.  38 

 39 

This need has driven the development of predictive methods that aim to infer the risk of population collapse, 40 

ranging from classical Population Viability Analyses (PVA10) to more recently developed Early Warning Sig-41 

nals (EWS9–11). However, the difficulty of surveying wild populations, together with economic limitations12, 42 

often results in noisy and short time series which can detrimentally affect the accuracy of such predictive 43 

tools13–15. Most importantly, these methods have neglected other potentially powerful diagnostic features that 44 

theory and evidence suggest should be impacted by increasing environmental pressures and thus could act as 45 

additional indicators of approaching collapse. Modern frameworks converge on the idea that to improve our 46 

ability of forecasting extinctions we need to take into account the role that phenotypic plasticity (and its inter-47 

action with adaptative evolution16) plays in buffering the current environmental changes. In fact, the final 48 

decline of a population to extinction is a manifestation of a host of changes that occur first at the individual 49 

level, encompassing their phenotypic plasticity, and then – when a high enough proportion of the population 50 

exhibit similar changes – affect the dynamics of that population. Recognising and understanding such connec-51 

tions between organization scales (e.g. individual, population, community) has led to significant breakthroughs 52 

in ecology17. For example the metabolic theory of ecology has shown how individual metabolism scales to 53 
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reproductive performance and population dynamics18,19. Such theoretical models have contributed to popula-54 

tion management and conservation20–22, but their suitability for applied ecological research is occasionally 55 

criticised23–25 and they are limited to the informative power of a few parameters (e.g. selected temperature and 56 

body mass data26). Moreover, current implementation of metabolic theory overlooks the power of actively 57 

monitoring the populations in a way to update predictions as new data become available. A more informative 58 

approach lies within the continuous measurements of multivariate indicators of change in conditions, to con-59 

sider how environmental pressure shapes different facets of individuals and populations through time.  60 

 61 

An individual’s physiology is the key mechanism through which it detects and respond to environmental 62 

change; for example, stress hormone production is the initial trigger of phenotypic change27. Whilst using such 63 

physiological measures as tools to identify at-risk populations certainly has merit28, collecting data to achieve 64 

this requires tracking physiological parameters across multiple individuals, often an intrusive and resource-65 

intensive task. Rather, focusing on the easily detectable downstream effects of these physiological changes 66 

provides individual-based data on the effects of stressors. These downstream effects could include changes in 67 

the behaviour of individuals29, their morphologies, and/or life history traits30, alongside traditional abundance-68 

based measures of extinction risk31. Gathering such multivariate information has historically been highly chal-69 

lenging in the natural world and multidimensional time series datasets for stressed populations are currently 70 

very rare. Nevertheless, recent technological advancements in data-collection methods now provide the op-71 

portunity to generate high throughput information on these multiple features of populations with a relatively 72 

low cost-benefit ratio32,33. However, what is still missing is a conceptual framework that explicitly shows how 73 

such multidimensional data are related to each other, and how they can be used to discern whether a population 74 

is increasingly at risk of collapse or is adapting in the face of environmental change. 75 

 76 

The effect of increasing stressor intensity on a population propagates from the individual to the population 77 

level via a successive series of responses (here referred to as “signals of stress”). We refer to “stress” as the 78 

process whereby an organism reacts to stressors5. The individual-level responses necessarily take place (and 79 

are observable) over smaller time scales than population-level signals; individuals’ behaviour or morphology 80 
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can change during their lifespan, while the effect of stressors on the population abundance trends will be ob-81 

servable (except in face of an unpredictable extreme mortality event such as a wildfire) after one or more 82 

generations. This individual-to-population approach allows us to use individuals’ stress responses as early 83 

indicators of change in population conditions, and to measure the impacts of the stressors in multiple dimen-84 

sions simultaneously. Such an approach expands on recent work in the field of EWS, which consider abun-85 

dance based EWS and shifts in the mean body size of the population simultaneously, leading to an increase in 86 

the overall predictive power34,35. However, these approaches ignore the fact that such signals are not necessarily 87 

expected to change concurrently, but rather may occur sequentially as individuals’ plasticity buffers them 88 

against negative environmental conditions. Considering this temporal aspect in the occurrence of individual-89 

to-population level stress responses offers the opportunity to develop more effective forecasting tools which 90 

make use of increasingly available data.  91 

 92 

2. THE TIMELINE TO COLLAPSE 93 

We define the “timeline to collapse” as the temporal sequence of signals that can be observed by monitoring 94 

multiple facets of a population which is driven toward extinction by a continuously increasing pressure (Figure 95 

1). Individuals in a population, whilst experiencing similar unfavourable abiotic or biotic conditions (e.g. in-96 

creasing resource scarcity, pollution, etc; Figure 1a), can respond to these pressures in different ways, primarily 97 

through shifts in behaviour and/or morphological and life history traits. Behaviours, by their nature, are plastic 98 

and subject to rapid changes in the face of novel stimuli36. Regardless of whether highly plastic behaviours are 99 

sufficient to maintain fitness in the presence of stressors37 or prove maladaptive38, they represent the earliest 100 

easily observable individual-level responses to sub-optimal environmental conditions (Figure 1b, Box 1). If 101 

behavioural shifts cannot maintain optimal conditions for growth and reproduction, an individual will start to 102 

change morphologically as it loses condition (e.g. through decreases in body mass, Figure 1c) or as it expresses 103 

morphological adaptation/defences. Thus, morphological traits (e.g. mass, antipredatory features, symmetry, 104 

Box 2) provide a secondary response to environmental stressors via adaptative physiology-driven changes 105 

(both intra and inter-generational). As with behavioural changes, an individual can undergo such morpholog-106 

ical shifts for a given time as reaction to the environmental pressure, but it cannot do so indefinitely. 107 
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Continuously changing conditions can push individuals to a limit morphology status (e.g. a minimum body 108 

mass) needed for maintaining a minimal rate of metabolism39; if stressors keep growing over such threshold, 109 

basic processes necessary to survive can be impacted. Thus, such morphological shifts can be concurrent with 110 

or followed by decreases in reproduction (i.e. life history traits adjustments, Figure 1d) and/or increases in 111 

mortality rates.  112 

 113 

Declines in reproductive rates represent some of the last stages of adaptive plasticity in life history of long-114 

lived species40, where resources are reallocated from reproduction to maintain the survival of the individual 115 

whilst allowing for the possible exploitation of improved future conditions41. Conversely, short-lived organism 116 

might be adapted to prioritize reproduction at the cost of survival in presence of stressors42; in such cases, a 117 

growing environmental pressure would still put the next generation of offspring in unfavourable conditions 118 

resulting in lower survival. Such life history traits modifications, whilst not as readily measurable as morpho-119 

logical or behaviour change, will have significant and detectable effects on population abundances observable 120 

over longer (>1 generation) time frames. These may not necessarily lead to immediate population declines, 121 

but can manifest as a loss of resilience potentially triggering EWS. Indeed, decreases in reproductive success 122 

and increases in mortality may induce population abundance declines and subsequent rebounds (e.g. due to 123 

density dependant reproduction, Figure 1d, e). If these changes drive the system toward a tipping point43, this 124 

phase of the timeline may result in a significant temporal trend in one or more statistical moments of population 125 

abundance 31. Indicators such as variance, autocorrelation, density ratio, and skewness of the abundance time 126 

series can act as warning signals of collapse9. Such EWS have been criticised because of their high false pos-127 

itive rates44, but observing them in the context of the timeline to collapse – i.e. after having already detected 128 

changes in behaviours and traits – provides additional evidence to suggest such signals are true positives. In 129 

fact, the slowly occurring life history changes inducing EWS represents the ultimate signals a population may 130 

show before a continuous decline in abundance. If environmental stressors still increase after these signals – 131 

and if individuals cannot move or migrate – diminishing demographic performance will drive sustained large 132 

declines from the population abundance equilibrium state. (i.e. collapse, Figure 1e). At this point, a population 133 

may be “committed to extinction”, where genetic factors (e.g. inbreeding45) and demographic constraints (e.g. 134 

Allee effect46) may mutually reinforce one another to rapidly propel it to extinction7. 135 
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 136 

This temporal pattern of signals will necessarily develop at time scales relevant to the study organism and to 137 

the rate of stressors increase, i.e. lifespans and generations rather than absolute time periods. For small inver-138 

tebrates, behavioural shifts may be observable over hours (e.g., Daphnia depth shifts47), while changes in 139 

abundance may happen over days. For larger vertebrates, shifts in morphology may take place over months 140 

(e.g., Steller sea lions weight loss48) whilst EWS and subsequent abundance declines may occur over years. 141 

Regardless of the direction of the shifts and the stressor’s nature, we expect the temporal sequence in the 142 

typology of signals (behavioural, morphological, abundance; Figure 1) to remain broadly consistent. 143 

 144 

2.1. Framework details 145 

The timeline to collapse concept assumes continuously increasing stressor intensity – be that biotic or abiotic 146 

– taking place over one or multiple generations (Figure 1a) such that a population is able to respond, rather 147 

than sudden step-shifts in a stressor which may eradicate a population in the absence of any indicators9. More-148 

over, the framework assumes a stable initial phase of population dynamics (i.e. equilibrium population dynam-149 

ics49) against which signals of stress can be compared. When characterising the timeline, we identify the time 150 

points when the population’s average values of a given behaviour, trait and reproductive rate change signifi-151 

cantly from the values observed under stable conditions (TBs, TMs and TLs points, Figure 1), and the time points 152 

when the plastic limits of change in the behaviour and morphology are reached (TBe and TMe, Figure 1), or 153 

when the reproductive rate drops to zero (TLe). Although such points may visually resemble “tipping points”, 154 

applying EWS theory to anticipate them is inappropriate, as there is currently no theory which suggests that 155 

behavioural or trait metrics (which are not expected to pass through a tipping point) should show the critical 156 

slowing down phenomenon required for EWS to be present50.  157 

 158 

Nevertheless, a stress-induced increase in the variance of these metrics among individuals and through time 159 

may be expected, together with changes in the mean. When stressor intensity starts to increase, individuals’ 160 

responses will vary based on, for example, personality and past experience for behaviours51, or genetic pre-161 

disposition for more or less plasticity in morphological and life history traits (e.g. due to intrinsic inter-indi-162 

vidual variability52). Such differential personality-and-physiology-based stress responses would initially lead 163 
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to an increase in the variability around mean changes in behaviours, morphologies and reproductive output 164 

(Figure 1). However, selection will soon homogenize these around the new (optimum) behaviour/trait values 165 

that allow individuals to survive, or around the physiological limits (i.e. low variance around the new mean of 166 

individuals, Figure 1). Although such patterns in the variance provide additional metrics to monitor53, they are 167 

less likely to contain information about the risk of population collapse; rather, we propose such information 168 

lays in the temporal sequence of the different signals. 169 

 170 

Whilst the initiation time points of behavioural, morphological, life history and abundance shifts (TBs, TMs, TLs 171 

and TAs, Figure 1) are expected to be sequential, the time intervals over which such shifts occur (IB, IM, IL, and 172 

IA, Figure 1) may overlap. Indeed, changing a behaviour above a given threshold may require the use of energy 173 

reserves which triggers changes in morphological traits. For example, for a seabird population (Figure 1), 174 

increasing foraging distance may be the first response to decreasing food availability. Acquisition of additional 175 

resources derived from greater foraging effort may be sufficient to compensate for this additional effort outside 176 

the breeding season. However, if the food is needed to feed chicks54, the individual may either i) fail to fully 177 

replenish their energy stores (i.e. start to lose weight) or ii) decrease feeding rate to offspring to maintain their  178 

ability to forage54. This will result in observing flight distance increasing together with declines in the body 179 

weight of adults, offspring, or both (overlap among IB and IM, Figure 1). However, in other scenarios, we may 180 

observe a clear temporal distinction between signals time intervals (i.e. no overlap among IB and IM). For 181 

instance, in the presence of an invasive predator, a prey can go through an initial fast and discrete behavioural 182 

change (e.g., a shift in microhabitat use55), followed by a morphological shift (e.g., change in body size due to 183 

different conditions in the new microhabitat56), without any overlap between these two signals. 184 

 185 

2.2. Framework boundaries and scope 186 

 187 

The timeline to collapse concept builds upon work in different research areas, including behavioural ecology, 188 

physiology and predictive ecology, and the recent suite of work on EWS30,34. However, whilst EWS are a 189 

feature of the framework, we do not propose to apply critical slowing down theory to all signals of stress in 190 

the timeline, nor to try predicting when shifts in behaviour, traits, or measures of population variability will 191 
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occur. Rather, our focus is on describing the succession in time of different responses and how together these 192 

might be used to infer approaching population collapse. The framework aims to holistically consider multiple, 193 

often overlooked, types of data as tools for predictive ecology, and discriminate populations tending toward 194 

extinction from those simply adapting in the face of change. 195 

 196 

For instance, if whilst monitoring a bird population (e.g. with GPS tags) we observe the average flight distance 197 

increasing and then plateauing at a given value (Figure 1B), we could misinterpret that value as the new be-198 

havioural optimum16 reached by the individuals that are responding to the stressor level, whilst it could simply 199 

represent the physiological plastic limit of that behaviour. Focus on a single measurement would lead to the 200 

successive signals of stress – e.g. reduction in the body condition of the individuals triggered by the increasing 201 

environmental pressure not sufficiently countered by the first response (Figure 1) – to be overlooked. In this 202 

case, the multidimensional perspective reduces the risk of wrongly considering the population as adapting to 203 

the new environmental conditions. Thus, successive signals act as increasing evidence that the behavioural, 204 

morphological, or demographic changes are failing to ameliorate negative effects of increasing stressors as 205 

each change is in turn more costly for an individual to implement.  206 

 207 

Additionally, the time scale over which we observe the signals sequence can be a discriminant tool for dis-208 

cerning a collapsing population from one undergoing plastic or evolutionary adaptation16,57. Stressors changing 209 

rapidly (i.e. within a generation) might create unsustainable conditions for individuals survival over one or a 210 

few generations. When a population is under such critical rate of change16, there will not be enough time for 211 

adaptive evolution and thus evolutionary rescue58 to happen. In such situations the individuals of the first 212 

generation that encounter the stressor rely solely on the a priori (not shaped by selection) behavioural and 213 

phenotypic plasticity to counter the growing environmental pressure (see Figure 1). The first two signals of 214 

the timeline would thus be visible during the lifetime of the monitored individuals (e.g. intra-generation), 215 

alerting practitioners that the plasticity of the current phenotypes is not enough to cope with the stressors 216 

increase rate, and collapse is likely to happen. This “fast ramping stressor” scenario is the best suited for the 217 

timeline application, and arguably represent the most pressing situation that many endangered species popula-218 

tions are currently facing59,60.  219 
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 220 

Conversely, if environmental pressure changes slowly over multiple generations, traits may change continu-221 

ously in response due to adaptative evolution and phenotypic plasticity16,61, and considering such slow changes 222 

as early signals of collapse is misleading. The slowly increasing pressure can select phenotypic optima without 223 

the population having to go necessarily through decline phases, and thus an intra-generational timeline should 224 

not be observed. Nevertheless, with time a slow ramping stressor can push the optimum phenotype into a non-225 

viable space over which a catastrophic shift of the population to extinction and the related early warning signals 226 

can be expected62. Thus, it is conceivable that the individuals of the generation encountering such a trait bound-227 

ary, induced by the stressor levels, may still display an intra-generational timeline to collapse. More theoretical 228 

work is needed to resolve the predictions of this framework in such long time scales scenarios, by potentially 229 

incorporating phenotypic plasticity and hereditability over multiple traits and evolutionary rescue theory16,62. 230 

 231 

3. ECOLOGICAL INSIGHTS  232 

Whilst the temporal order of signals provides information on a population’s future, post hoc analysis of be-233 

havioural and morphological shifts offers a means to characterise the stress responses of populations. We sug-234 

gest that the change in the mean values of behaviours or morphological traits between pre-stress (stable) con-235 

ditions and the onset of the next signal of stress (e.g. from when behaviours start to change to when body traits 236 

begin to change) represents an “intrinsic stressor buffering capacity”: a measure of the ability of a behaviour 237 

or trait’s plasticity to ameliorate stressors’ pressure. Defining Bs and Ms as the mean values of a monitored 238 

behavioural metric and morphological trait during stable conditions, and Bx and Mx their respective values at 239 

the onset of the next buffering signal/level (Figure 1, Point 1 and 2), we can extract quantifiable ranges of 240 

variation (ΔB for behaviour and ΔM for morphological trait, Figure 1).  241 

 242 

From this framework, ΔB and ΔM could be calculated for traits that can undergo continuous shifts and com-243 

pared among different species and populations. For instance, nematodes and rotifers show extreme plasticity 244 

in morphology (reductions of up to one-third of original body size63) to cope with long periods of environmen-245 

tal pressure (e.g. exsiccation of habitat). The resulting high value of ΔM would reflect the large amount of 246 

pressure they can buffer by changing morphology before the eventual occurrence of demographic signals in 247 
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the population. In contrast, e.g. amphibian species with limited drought resistance would display much lower 248 

ΔM in comparison. Such plasticity proxies may be compared among different species to indicate which bio-249 

logical/ecological traits (group living vs solitary animals, bigger vs smaller dimensions, specialist vs generalist 250 

etc.) are associated with stress resistance. Additionally, average ΔB and ΔM may vary among populations of 251 

the same species, due to differences in biogeographic history and genetic structure (e.g. allelic heterozy-252 

gosity64), which may provide information on how such factors shape capacity to cope with stress. Such changes 253 

will likely occur in multiple behaviours or traits simultaneously in order to cope with increasingly stressful 254 

conditions, and thus measuring behaviours or traits in multiple dimensions (e.g. social interactions, distance 255 

foraging occurs over, time spent inside burrow, etc.) would allow plasticity in multi-dimensions to be quanti-256 

fied, and tools such as those employed in the analysis of functional diversity could be readily applied to these 257 

data65. 258 

 259 

4. KEY QUESTIONS  260 

The timeline to collapse provides a conceptual framework to synthesize multiple types of data to help infer the 261 

future dynamics of ecological systems. However, applying this to real-world populations requires identifying 262 

appropriate data to monitor (behaviours, traits, abundances), measuring baselines against which change can be 263 

quantified, and developing statistical tools to holistically consider these data simultaneously to provide robust 264 

detections of increasing stress and possible forecasting techniques. Below we consider some of the key ques-265 

tions that must be answered to turn the conceptual timeline framework into an appliable pipeline for monitoring 266 

and conservation management. 267 

 268 

4.1. How to select and acquire the data that are more indicative of stress? 269 

Some behaviours and morphological signals may provide general indicators of increasing stressor intensity 270 

(e.g. increased dispersal for vagile species), but selecting signals that are relevant to the taxa of interest remains 271 

key66. Expert knowledge can aid in this67, identifying behaviours and traits that are most likely to change given 272 

the nature of the stressor or, when the identity of the stressors is unknown, can provide general indicators of 273 

an individual’s condition. Ideally, behaviours and morphology measures that are easily collectable through 274 

automated and non-invasive means are to be preferable. Many cutting-edge data collection tools can get 275 
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frequent measures of such multivariate data needed to build accurate time series. For example, GPS tracking, 276 

biologging, acoustic monitoring, and photographic analysis are now able to extract data on behaviours and 277 

morphological traits, providing invaluable information even from a subset of the population8,68–70 (Supplemen-278 

tary Material Table S1). 279 

 280 

4.2.  How can we define baselines? 281 

A quantitative and/or qualitative definition of “normal” values for the identified behavioural, morphological, 282 

and abundance indicators is needed to pinpoint the moment in time when stress responses start (TBs, TMs, TLs, 283 

TAs, Figure 1). Defining such values in wild populations ideally requires long term monitoring data71 on the 284 

multiple facets of a population under non-stressed conditions. In cases where the monitored populations have 285 

been already exposed to stressors for a period a time (i.e. no data in non-stressed conditions), one would need 286 

to select an arbitrary time gap from where to compare change, ideally a period when stressors levels were not 287 

changing. Such data will become progressively more available as remote sensing and technological advance-288 

ments continue to automate data collection at large scale72–74. With these data on non-stressed/stable-stress 289 

condition populations, one can characterize the range of variation in the selected behaviours and morphological 290 

traits that, together with the abundance fluctuations, can be analysed to obtain means and upper and lower 291 

confidence intervals. In absence of such long term monitoring data, a comparative approach between popula-292 

tions experiencing different levels of stressors intensity could provide baseline values such as along a stress 293 

gradient75 – a space-for-time substitution54,76.  294 

 295 

4.3. How can we handle the multivariate data to better forecast a population's future? 296 

Regardless of how a baseline is defined, the big challenge ahead in the timeline application is understanding 297 

how to compare multivariate baseline data to observed changes in behaviours, traits, and abundances and how 298 

to use these signals to improve population collapse forecasting. Using normalisation and summation of multi-299 

ple signals to improve predictive power has previously been done (e.g. combining morphology data with abun-300 

dance EWS34,77), but this approach is not applicable to sequential signals. Keeping in mind the timeline se-301 

quence of signals, a possible partial approach may come from Metabolic Scaling Theory and derived mecha-302 

nistic trait-driver models. One could monitor the trait distribution characteristics of a population under 303 
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pressure, whereby a sudden variation in such quantities (e.g. individuals starting to lose biomass, the morpho-304 

logical signal) could be used to predict individual performance and how this will scale up to influence demog-305 

raphy of populations (i.e. pre-emptively forecast the decrease in reproductive and survival potential78).  306 

Other new approaches may lie within multivariate time series models79 that account for the inter-dependencies 307 

between behaviour, traits, and abundance (e.g. how behaviour can influence morphology and vice versa). For 308 

instance, Multivariate Autoregressive State Space models80 can use information on historical trajectories of 309 

multiple variables to forecast future values while accounting for multiple sources of uncertainty81. Alterna-310 

tively, deep learning networks such as recurrent neural and temporal convolutional neural networks82–84 could 311 

provide an obvious but more powerful approach to forecast future trends or changes in such variables85, though 312 

these tools will require large amounts of data to train the models, which are only feasibly collected through 313 

automated means73. Once a suitable algorithm has been selected and trained on baseline data, the resulting 314 

model can be used to detect rare or anomalous dynamics in the multivariate space. Moreover, one could aim 315 

to generalize the prediction of collapse for new cases by training the models with the multidimensional data 316 

on past collapses of multiple populations from different species.  317 

 318 

5. CAVEATS 319 

The timeline to collapse concept necessarily makes assumptions about how stressors will impact populations. 320 

The first assumption is that stressors will increase over time (Figure 1), allowing populations to respond grad-321 

ually to increases in environmental pressure. However, as with EWS and PVA, sudden and/or catastrophic 322 

“pulse” disturbances (drought, storms, fires etc.) may lead to significant changes in the abundance or distribu-323 

tion of a population without any warning. Moreover, even in cases of the assumed ramped disturbance, the 324 

mutable nature of biological systems may create situations where the sequence of signals may be different (e.g. 325 

body traits shift occurs first, triggering then behavioural shift35). Secondarily, we assume equilibrium dynamics 326 

for the abundance time series before collapse (i.e. assumption behind the EWSs), in addition to a stable opti-327 

mum of behavioural and traits measurement (Figure 1). Although many vertebrate populations shows stability 328 

through time49, chaotic trends are not uncommon among other groups (e.g. insects86). For such species, whose 329 

population dynamics can naturally undergo irregular boom and bust cycles, the definition of collapse is often 330 

problematic, and the application of the timeline concept in its current form might not be feasible. Furthermore, 331 
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fully applying the framework requires studying species that show plastic and quantifiable behaviours and mor-332 

phological traits, where gathering data is easy at the individuals’ level, and thus it may not be readily applicable 333 

to sessile organisms, obligate parasite species, or plants and fungi without defining more clearly what consti-334 

tutes a behaviour likely to change in such systems. Focusing on group level responses (e.g. bleaching of An-335 

thozoa colonies) might help in those cases where assessing change would be hard in single individuals (e.g. 336 

continuously monitoring behaviours of single polyps). Additionally, in limit cases where behavioural re-337 

sponses are hard to define, we believe that a partial application of the timeline concept (e.g., monitoring mor-338 

phological, life history traits and abundance data) will improve the predictive horizon of eventual collapses 339 

compared to considering only abundance. Finally, although in this piece we decided to focus on more imme-340 

diately measurable traits shifts, we acknowledge that for taxa in seasonal environments, changes in phenology 341 

can be considered as other potential signals to include in the timeline framework. Phenological shifts are well 342 

known to be induced by e.g. climate change87,88 but are often observed over long time periods (e.g. birds’ 343 

earlier arrival to breeding sites occurred over 20 years89).  344 

 345 

6. CONCLUSION and Future directions 346 

Considering how anthropogenic stressors impact populations via changes in individual-level features provides 347 

a key step forward in predicting population extinction. Doing so has allowed us to develop a conceptual frame-348 

work where the temporal aspect of stress signals can act as a corroborative tool to infer risk of population 349 

collapse. The next steps to assessing the potential of this framework is to obtain complete and accurate datasets 350 

covering the full suite of timeline components (see Box 3) for populations driven to collapse by increasing 351 

stress. A post hoc analysis of the multivariate dynamics of such collapses would guide in understanding the 352 

best approaches to use to forecast future ones. Experimental data from study models (e.g. micro-mesocosms 353 

populations90–92) would be of invaluable help in this, whereby one could implement different disturbance sce-354 

narios93 while accurately collecting the multidimensional data73. Future research should aim at relaxing some 355 

of the current framework assumptions: e.g. investigating whether behavioural and trait changes might still 356 

precede a collapse even if the system does not show equilibrium, but shifts toward alternative state of extinc-357 

tion. Nevertheless, the literature groundings of the timeline idea already provide a conceptual model for the 358 

development of monitoring programs covering a broader spectrum of data than is typically considered by 359 
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resource managers. Such a holistic view of how the behaviours, morphological features, and dynamics of pop-360 

ulations change as they become increasingly stressed offers hope of a step-shift in the accuracy of methods to 361 

predict population declines, helping in the urgent fight against biodiversity loss. 362 
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Figure captions: 678 

Figure 1. Theoretical example of a timeline to collapse. We posit a population of seabirds inhabiting an area 679 

where prey resources begin a continuous decline (a). The curves in panels b, c and d represent respectively the 680 

average values of a behavioural and morphological trait, and the reproductive rate, calculated from a pool of 681 

individuals in the population through time; the coloured shaded areas show the variance around the mean. The 682 

red curve in panel e shows the abundance of the population. First a shift is observed in the behaviour (time 683 

point TBs), where the average foraging distance increases (together with the variance) compared to the average 684 

measured during stable conditions Bs (b). The foraging distance increase until it reaches a physiological limit 685 

(time point TBe), defining the time interval IB where a continuous change is observable. After, or during IB, we 686 

observe a decrease in average body size (with increase in the variance) compared to that measured during 687 

stable conditions Ms (c), at time TMs. The body size will change until its physiological limit (TMe), defining the 688 

time interval IM. After or during IM, the mean reproductive rate starts to show a declining trend and increase in 689 

variance (time point TLs, d). The large fluctuations in the reproductive rate line want to represent possible 690 

density dependence of the rate. The reproductive rate of the population will drop to zero at time point TLe, 691 

defining the time interval IL (d). During IL, the abundance trend of population will show fluctuations, possibly 692 

driving alterations in the pre-decline indicators such as Early Warning Signals that will start to be observable 693 

from time point TAs, and will last until TAe, defining the time interval IA. The dashed line separating panel d 694 

and e exemplifies the direct effect that the first measure has on the latter. Subsequently, the continuous de-695 

creases in abundance (e) will begin at time point TEs, and will end with the extinction of the population at time 696 

TEe, lasting the time interval IE. The first occurrence of the signals projected on the lower Time axis shows the 697 

sequence in the category of observable signals of stress starting at the individuals’ level (b, c, d) and propagat-698 

ing to the population level (e), defining the timeline to collapse. The small black dotted lines project the starting 699 

point of the shifts in morphological traits and reproductive dynamics on the behavioural (point 1) and morpho-700 

logical trait (point 2) curves. Projected on the vertical axis, those points identify Bx and Mx: the values of 701 

behavioural and morphological metrics at the time of the onset of the next signal along the timeline. The 702 

interval of change (brackets) from the average values defines the intrinsic stress buffering capacities of that 703 

behaviour (ΔB) and morphological trait (ΔM).  704 
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 705 

 706 

Boxes. 707 

BOX 1. Overview of behavioural signals  708 

Behavioural changes are amongst the most rapid changes that individuals can perform to cope with sub-optimal 709 

conditions94. Broadly, behaviours comprise movement and habitat use, foraging activities, reproductive and 710 
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social behaviours29. All these categories of behaviour can be modified by stressors; many studies on vagile 711 

species show variation in e.g. foraging activity and dispersal of individuals in response to declining resource 712 

availability54,95, climatic change96–98, and invasive species99. For instance, on Svalbard (Norway), a population 713 

of ringed seals suffered a major reduction in sea-ice level resulting in fewer areas where the seals could feed 714 

intensively. Subsequent monitoring of movement patterns showed that seals swam greater distances and dived 715 

for longer periods (Box 1 Figure a, bars indicate standard error; data adapted from96). Among the different 716 

responses, spatial movement constitutes perhaps the most easily observed and measurable signal of increasing 717 

stress for vagile species, as data can often be captured remotely e.g. via GPS tracking or remote camera mon-718 

itoring, techniques which bridge taxa (vertebrate and invertebrates100,101) and realms (marine and terrestrial70).  719 

 720 

In addition to movement patterns, individuals may react to stressors by altering rates of feeding activity and 721 

typology (e.g. autotrophic vs heterotrophic), and rates of intra - and - interspecific interactions, including ef-722 

fects observed in social and communicative behaviours102. For example, temperature change is known to al-723 

ter filtering activities and valve opening periods in bivalves103, as well as acting on in corals polyps expan-724 

sion104. Additionally, photosynthetic activity of corals can be affected by pollution105. Resource scarcity may 725 

lead individuals to allocate energy to essential activities (e.g. foraging), decreasing actions not linked to sur-726 

vival, such as the engagement in territorial defence. Such a response was seen in multiple species of central 727 

Indo-Pacific corallivorous butterfly fishes (Chetodon spp.) in the aftermath of a bleaching event in 2016 728 

which led to a reduction in corals76. Observations suggested that the probability of both heterospecific and 729 

conspecific aggressive encounters decreased significantly (Box 1 Figure b, Bars are 95% confidence inter-730 

vals; data adapted from76) as nutritional deficits increased the relative energetic cost of resource defence be-731 

haviour. Similarly, acoustically active insects and amphibians may change the acoustic properties of the mat-732 

ing signals in response to temperature change106. Moreover, anthropogenic noise can induce reductions in 733 

whistles and echolocation click rates of social cetaceans107.  734 

The direction of change in behavioural metrics will vary depending on a species’ environmental tolerance, 735 

trophic level, and stressor type. Whilst a lack of resources may trigger increases in movement, the arrival of 736 

an invasive predator may induce a prey species to reduce movement (to reduce encounter rates) or to shift 737 

microhabitat use toward a more shelter-oriented strategy108. Environmental stressors may also increase the 738 



 

31 
 

variance in behavioural metrics, e.g. poor environmental conditions enhanced the variability of foraging trip 739 

duration in young albatrosses53. 740 

When trying to identify and quantify significant behavioural change as response to stressors, a population’s 741 

ecological and biogeographical history must be considered. In fact, previous experience may play a critical 742 

role in determining an individual’s response to stressors. For instance, compared to naïve individuals, fishes 743 

with previous experience of predation events showed stronger antipredator behaviours (e.g. decreasing swim-744 

ming activity) when they were represented with the chemical cues of the predator109. Likewise, the evolution-745 

ary history of a population can shape an individual’s capacity to react to environmental pressure; lizard species 746 

performed antipredatory behaviours in response to a new predatory snake if the lizards evolved with other 747 

snake species which share similar predatory features (shape, chemical cues etc.) with the introduced preda-748 

tor110. 749 

 750 

  751 
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 BOX 2. Overview of morphological signals  752 

 753 

To mitigate the effects of increasing stressors intensity individuals can respond to maximize survival and re-754 

productive output through changes in morphological and fitness-related life history traits111. Such changes are 755 

driven by hormone responses, metabolic adjustments and resource re-allocation, and can include reductions in 756 

body mass, decreases in growth, shifts in reproductive schedules, and antipredatory morphological trait ex-757 

pression. Here we focus on morphological shifts as they are more easily observable and measurable compared 758 

to fitness related life history traits. For example, morphological features can be measured remotely through 759 

photographic analysis, while measuring reproductive outputs or patterns of sexual maturity requires strict mon-760 

itoring with particular time periods (e.g. breeding seasons). 761 

Environmental stressors substantially affect morphological trait distributions, both prior to or concurrent with 762 

shifts in the demography and dynamics of a population30,112. The reduction in body size due to sub-optimal 763 

food consumption is a general response to resources scarcity48. In numerous taxa, body size reduction is also 764 

directly and indirectly induced by climatic change and habitat fragmentation113–116. For instance, a population 765 

of polar bears from the Western Hudson Bay (Canada) was monitored between 1979-2004, a period where 766 

sea-ice cover showed a trend toward earlier sea-ice breakup induced by climate change117. The study found 767 

significant declines in mean adult female polar bear mass during this period (Box 2 Figure A, bars indicate 768 

standard deviation, dashed line indicates fit of linear regression [r=-0.549, p<0.01]; data adapted from117) 769 

which strongly correlated with the progressively earlier dates of sea ice breakup.  770 

Body size is a key trait that directly affects thermoregulation and rates of energy intake and utilization114, and 771 

has recently been suggested as a possible measure of population stability92. In fact, changes in body size of 772 

diatoms algae preceded a regime shift in a lake ecosystem118, and experimental populations exhibit the same 773 

pattern, showing that – when resources decrease – declines in average body size precede declines in population 774 

size30. In situations where longitudinal measures of body size/mass are available, change in individuals’ growth 775 

rates could be used as a potentially more accurate stress signal, since growth rate will respond more rapidly 776 

compared to measures of mean body size. Indeed,119reported a decrease in the growth rate of individuals of 777 

three sea turtle species in response to climatic stressors and anthropogenic degradation of their foraging areas.  778 
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Reductions in size is the most likely outcome of stress, although some stressors may lead to other patterns of 779 

change. For instance, environmental pressures can lead to a decrease in defensive morphological traits: UV 780 

light exposure in pregnant individuals of a freshwater cladoceran induced the reduction of antipredator spines 781 

in their offspring, and subsequently increased predation risk for new-borns120. Conversely, the novel pressure 782 

that an invasive predator puts on a native population can trigger increases in predator induced-defences121. 783 

Chemical pollutants can affect body symmetry, with pesticides used in hazelnut orchards leading to increased 784 

fluctuating asymmetry in morphological traits linked to intraspecific interactions in lacertids (i.e. femoral 785 

pores, Box 2 Figure B, bars indicate standard error, data adapted from122). Moreover, increasing fluctuating 786 

asymmetry has been suggested as an indicator of loss of genetic variation prior to extinction123.  787 

This suite of responses, including (but not limited to) declining body mass/size, expression of chemical induced 788 

antipredatory features, and asymmetry in meristic features will generally occur over (relative to the organism’s 789 

lifespan) longer time periods than rapid behavioural changes, but may still occur within the life span of an 790 

individual (i.e. ≤1 generation), or across multiple sequential generations (e.g.34).  791 

 792 

  793 
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BOX 3. Timeline fragments 794 

Whilst there are still no quantitatively documented examples of a complete timeline to collapse, we can find 795 

partial examples that lend empirical support in the literature (Box 3 Figure). For instance, a study on the Gulf 796 

of St. Lawrence’s (Québec, Canada) humpback whale population found a shift in diet (i.e. behavioural change, 797 

Box 3 Figure A) caused by a decrease in resources124; years later, another study on the same population showed 798 

a subsequent decline in calving rates (e.g. life history adjustment, Box 3 Figure A). The authors postulated that 799 

this signal could indicate that the population trends can be affected in the near future by the environmental 800 

change125, i.e. possibly entering the EWS phase of the timeline. Similarly, climatic change has impacted many 801 

polar bear populations through reductions in the extent of sea-ice. A study in a population in the southern 802 

Beaufort Sea of Alaska found first a body condition reduction (i.e. a morphological signal) and subsequently 803 

a decrease of reproductive rates and cubs survival126 (Box 3 Figure B). The authors hypothesized that the short 804 

duration of the sea-ice platforms used for hunting induced a change in the feeding activity of the bears that 805 

triggered the loss of condition. Such a change in behaviour, although postulated, was not monitored for this 806 

population, otherwise this could have represented an almost complete example of the timeline to collapse 807 

concept. In fact, the abundance of the same population was monitored in a more recent paper that found a 808 

slight decrease compared to previous years estimates127. Such decrease indicate that the population might un-809 

dergo an increasing abundance variability phase, and could be prone to show EWS of collapse, if sea ice keeps 810 

reducing. Another example of partial timeline can be found in the work of Clements et al.34 , where the authors 811 

analysed data on the historical collapse of, among others species, sperm whale populations due to over har-812 

vesting; the observed collapse in abundance was found to be preceded by a change in body size of individuals 813 

(likely due to the size selective whaling pressure), and subsequently EWS were detected before the decline 814 

(Box 3 Figure C). Similar patterns were found in a historical population of Atlantic cod that, during a fishing 815 

induced critical collapse in abundance, showed a concomitant change in morphology and life history (e.g. 816 

smaller size and earlier age at maturity128). Moreover, despite taxonomic difference in detection rates and 817 

warning times, EWS were observed several times in a large meta-analysis of global fisheries populations129. 818 

Finally, the population of the Bramble Cay melomys was declared extinct in 2016, after a continuous decline 819 

in the abundance estimates observed in scattered monitoring activities130. The oceanic inundation rate increase 820 

due to climate change is hypothesized to have driven a strong habitat and resources reduction responsible for 821 
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the Bramble Cay melomys decline. It seems likely that some change in the movement patterns and in the 822 

condition of individuals would have been observed before the ultimate collapse of this small rodent’s popula-823 

tion. Despite the weight of evidence from these rich partial examples, a complete timeline to collapse has yet 824 

to be observed, given the complexity of collecting such multivariate data on stressed populations. Nevertheless, 825 

current technological advancements increasingly offer opportunities to collect such multivariate data in higher 826 

resolution than have been previously possible73 (see Supplementary Material Table S1).  827 

 828 


