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Abstract

Climate change is causing the intensification of rainfall extremes. Precipitation
projections with high spatial resolution are important for society to prepare for these
changes, e.g. to model flooding impacts. Physics-based simulations for creating
such projections are very computationally expensive. This work demonstrates the
effectiveness of diffusion models, a form of deep generative models, for generating
much more cheaply realistic high resolution rainfall samples for the UK conditioned
on data from a low resolution simulation. We show for the first time a machine
learning model that is able to produce realistic samples of high-resolution rainfall
based on a physical model that resolves atmospheric convection, a key process
behind extreme rainfall. By adding self-learnt, location-specific information to low
resolution relative vorticity, quantiles and time-mean of the samples match well
their counterparts from the high-resolution simulation.

1 Introduction

Climate change is predicted to cause intensification of heavy rainfall extremes in the UK [1], [2].
Understanding rainfall at a local (∼ 2km) scale is important for better adapting to these changes
- for example, to predict where flooding might occur, [3]. Machine learning (ML) techniques can
emulate high-resolution simulations using low-resolution inputs to generate local projections [4],
[5]. This means expensive projections from a climate model could be complemented with further,
cheaper samples with realistic spatial and temporal structure enabling better understanding of the
uncertainty of high-resolution precipitation. This is particularly useful for extreme events which are
poorly sampled by high-resolution simulations due to their infrequent nature.

Numerical simulations of physical processes of the climate can be used to create projections of
rainfall but they are extremely expensive leading to trade-offs. At one end of the scale are global
climate models (GCMs). These produce global-covering projections. Many variants exist with large
ensemble sizes which allow experimenting with different scenarios and uncertainty in the underlying
physics and model. The trade-off is these models restrict their resolution to grids of 25km or more,
which is too coarse to provide actionable insight [6].
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At the other end of the simulation scale are dynamical downscaling models like the Met Office
used to produce 2.2km local projections in their UKCP18 dataset [7]. These used a convection-
permitting model (CPM), a specialised type of regional climate model (RCM), which had a fine
enough resolution to produce local-scale projections that are useful to decision makers. The trade-off
is a small ensemble size (12, all following a single climate change scenario following a single climate
change scenario, SSP5-8.5) with reduced spatial and temporal domain (UK and Ireland for 60 years)
[2].

An alternative approach to produce high resolution projections is called statistical downscaling. This
approach attempts to fit a statistical relationship between a lower-resolution set of climate variables
and higher-resolution values. They are much less computationally expensive than the dynamical
downscaling approach of RCMs.

Many approaches have been tried based on both traditional statistics and machine learning. No
method has proven better than the others in general [4], [6], [8]. Gutiérrez et al. [6] assess the skill of
45 different methods for precipitation alone for a single European collaborative experiment, though
the better-performing methods relevant to this project’s problem are mainly based on generalized
linear models (GLMs) or nearest neighbours (methods of analogs). These only covered point-statistics
at individual observation stations and cannot produce the full spatial structure of a rain field.

Doury et al. [5] use U-Net [9] as the basis for their emulation of a 12km RCM based on GCM
inputs over parts of France and Spain. Vandal et al. [4] found no clear best option when comparing
traditional approaches with some off-the-shelf machine learning approaches (Multi-task Sparse
Structure Learning and Autoencoder Neural Networks) for daily and extreme precipitation over the
Northeastern United States. These systems are deterministic: once trained, the same conditioning
GCM input will produce the high-resolution output. Without a probabilistic element, these models
struggle to predict the small-scale detail of precipitation [10]. This work uses diffusion models
[11]–[13] (aka score-based generative models), a recent development in deep generative models, to
solve these problems with statistical downscaling.

Statistical downscaling of the full grid (rather than just a selection of observation stations) can be
considered as similar to the super-resolution problem of natural images. The grid squares of the GCM
and CPM outputs are like pixels with their intensity corresponding to climate variables such as daily
rainfall (albeit not just integer values between 0 and 255). Common approaches for state-of-the-art
sample generation, probability density estimation and super-resolution of natural images rely on deep
generative models: diffusion models, Generative Adversarial Networks (GANs) [14], Variational
Autoencoders (VAEs) [15], and autoregressive (AR) models like PixelRNN [16]. Diffusion models
have shown competitive results in the natural image domain [17] and offer desirable trade-offs in
sample sharpness (VAEs tend to produce blurry samples) and sample diversity (GANs can suffer
from mode collapse [18]) and sampling cost (computationally cheaper than AR and much cheaper
than a simulation). For more details on diffusions models see Appendix A.

Deep generative models have been successfully applied to problems in weather and climate such
as short-term forecasting (nowcasting) of sequences of rainfall radar fields [10] and downscaling
rainfall [19]. Commonly these use GANs but they can be difficult to train and their limitations imply
they might underestimate the probability of extreme events. Diffusion models instead model the full
data distribution and should not suffer these same problems. To our knowledge this work is the first
application of diffusion models in the domain of climate downscaling.

2 Method

Dataset The Met Office’s UKCP18 dataset contains both the low-resolution GCM global 60km
projections [20] and high-resolution CPM local 2.2km projections [7]. Coarse relative vorticity at
850hPa is chosen as the conditioning input since it is a good predictor of high resolution rainfall [21].
For practical purposes the target data cover a 64x64 region of an 8.8km grid (2.2km grid coarsened
4x). This is small enough to fit on available GPU, fine enough to be useful and covers a large enough
area for samples to be interpretable. For more details of the data see Appendix B.

Model The emulator is a score-based generative model based on NCSN++[13], adapted to allow
conditional training and sampling. For sampling the Euler-Maruyama method is used to solve
the reverse SDE. Location-specific parameters were added in order to tie pixels to the underlying
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physical location of each pixel. This allows the model to learn relevant features for each location
which effect rainfall that may not be available from the coarse relative vorticity inputs alone. Two
models were trained: one based on just the simulation data as the conditioning inputs and one
with an 8-channel feature map of location-specific parameters that are learnt from the data stacked
on top of the vorticity conditioning tensor. Implementation is available on Github: https://
github.com/henryaddison/score_sde_pytorch, which is a fork of https://github.com/
yang-song/score_sde_pytorch [13].

3 Results

Figure 1: Example samples conditioned on data from CPM (top) and GCM (bottom). First column is
the rainfall from the simulation of the conditioning input. Columns 2 to 4 are the samples from the
ML model. The highly variable nature of rainfall means samples should not match the simulation
rainfall but represent the full range of plausible rainfall for the given low resolution conditions, of
which the simulation output is a single example.

Figure 1 shows example high resolution samples from a model conditioned on relative vorticity in
both modes of operation: sampling based on conditioning input of coarsened CPM data or GCM data.
For each model, 3 samples were generated for each of the 4,320 timestamps in the validation set.
Note that the aim is for the model to capture the full range of rainfall that is possible given the low
resolution conditions described by the relative vorticity. Therefore samples should look realistic and
cover a range that plausibly includes the rainfall from the simulation but they shouldn’t all match it
since the simulation output is just one possible occurrence of a highly variable phenomenon.

Figure 2: Per-pixel CPM-driven sample distribution: Log density (left) and Q-Q plot (right). Quantiles
plotted are in three 9-member ranges of centiles: 10th-90th, 91st-99th, 99.1th-99.9th
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Figure 2 shows the per-pixel Q-Q and log density plots of the sample and target distributions. These
are based on samples conditioned on coarsened-CPM inputs for the two models variants. Both plots
show the ML models match the target distribution well. The sample quantiles all match the target
quantiles well and to be out by a constant scale factor of about 10%. Results using GCM inputs are
similar in quality (Appendix C).

(a) Coarsened-CPM-driven sample bias
without location-specific parameters

(b) Coarsened-CPM-driven sample bias
with location-specific parameters

Figure 3: Mean-normalized bias using coarsened-CPM-based inputs with and without the self-learnt
feature map

Figure 3 shows the normalized bias at each pixel. This is defined as sample mean (over time and all
samples) minus target mean (over time) divided by the target mean (over time). The two versions
represent without location-specific parameters (3a) and with self-learnt location-specific parameters
(3b). The biases at each pixel are mostly negative so that on average the ML model is slightly
under-predicting rainfall. Comparison between the two models show a reduction to the bias by adding
the location-specific parameters. This matches the improvement in quantile results with the feature
map (Figure 2) and again the bias of this version lies within about 10% of the target mean at each
pixel.

4 Conclusion

High-resolution projections of precipitation are needed to more effectively adapt to future changes in
precipitation. However, to make these solely with numerical climate simulations is very expensive. A
diffusion model designed for natural images has been adapted to create the first emulator of CPM
rainfall. As a generative model, it can cope with the stochastic nature of rainfall and also produce
more samples without needing new inputs. The result is cheaper, high resolution rainfall samples
with realistic spatial structure based on low resolution relative vorticity.

Further improvements are possible too. Adding conditioning inputs based on temperature and
humidity should provide more information than relative vorticity at 850hPa alone. The extrapolation
properties of the ML model have not been tested to see how it copes with unseen, very extreme
conditions well beyond the 99.9th centile. The performance of the model when transferred to generate
samples based on GCM inputs could be improved by transforming the GCM variables to better match
the distribution of the CPM variables. Further generalization to ensembles of other climate models
will also be valuable, leading to the potential to use the ML model to downscale climate models for
which physics-based downscaling has not been implemented. There may also be value in generating
sequences rather than single snapshots of rainfall and higher temporal frequencies than daily.
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A Diffusion Models

Probabilistic models assume that observed data, such as high-resolution rainfall over the UK, is
drawn from an unknown distribution p∗(x). A conditional model such as high-resolution rainfall
conditioned on coarse GCM inputs p∗(x|g) can also be considered but for simplicity this section will
stick with the context free version.

Song et al. [13] combine earlier approaches [11], [12] into a single framework called Score-Based
Generative Models with Stochastic Differential Equations (SDEs). The idea is to imagine a diffusion
process {x(t)Tt=0} modelled by an SDE:

dx = f(x, t)dt+ g(t)dw (1)

When run forward a sample, x(0), from the data distribution, p0, is gradually perturbed over time
into a sample from a final noise distribution, pT , somewhat like how a structured gas sample will
gradually diffuse randomly across a room. The final distribution is chosen as something tractable for
sampling, usually a Gaussian.

More interesting for us is running the diffusion process backwards:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄ (2)

By solving this, samples from pT (which is easy by design) can be converted into samples from
the original data distribution. This requires two steps: calculating the score, ∇x log pt(x), and then
applying numerical approaches to solve Equation 2.

The score is estimated as a neural net sθ(x, t) where θ are determined by minimizing:

Et{λ(t)Ex(0)Ex(0)|x(t)
[
||sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))||22

}
(3)

where λ is a positive weighting function that is chosen along with f and g.

Song et al. [13] summarize three approaches for solving the reverse SDE. General-purpose numerical
methods can be used to find approximate solutions to the SDE. Predictor-Corrector sampling takes
this a step further by using making use of estimated score at each timestep to apply a correction to
the sample estimated at that timestep by the general purpose solver. Alternatively the problem can
be reformulated as a deterministic process without affecting the trajectory probabilities and in turn
solved using an ODE solver.

B Dataset

The Met Office’s UKCP18 datasets for both the low-resolution GCM global 60km projections [20]
and high-resolution CPM local 2.2km projections [7]. For the whole UK and Ireland domain, the
high-resolution grid is 484 x 606 while the coarse grid is 17 x 23. For practical purposes this study
limits the geographical domain to the area covered by a 64x64 area of an 8.8km grid (so 2.2km
high-resolution coarsened 4x) centred on Birmingham. This covers a large enough area (England
and Wales) to make sample interpretation easier while also boosting the resolution of the 60km
projections. The temporal frequency is daily. Data are available hourly for three 20-year periods
(1981-2000, 2021-2040, 2061-2080). The default CPM ensemble member and its corresponding
GCM were chosen. The dataset is split into a training set (70%, n=15,120) and a validation set (20%,
n=4,320) with a 10% test set reserved once fine-tuning is complete.

It is not possible to train a model using GCM data as conditioning input because the weather conditions
in GCM and CPM are different for the same timestamp [5]. As far are the CPM is concerned, the
GCM stops at the edge of Europe so the two simulations diverge at times. Therefore, the dataset used
in the training phase will the conditioning input data is from the CPM regridded and coarsened to
match the output of the GCM and the target is 4x coarsened precipitation from the CPM. It is also
better preferable to avoid using low resolution rainfall as a conditioning input but rather variables
that are as well-represented in GCM as the CPM, such as wind, temperature and humidity. Based on
work by Chan et al. [21], the first conditioning input variable was chosen to be relative vorticity (a
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derivative of wind field which measures circulation in the atmosphere and correlated with how stormy
or fair conditions are) at altitude corresponding to 850hPa. Once fitted, samples can then be drawn
from the model either using conditioning inputs based on coarsened CPM data or data from a GCM.

C GCM-driven results

Figure 4: Per-pixel GCM-driven sample distribution: Log density (left) and Q-Q plot (right)

(a) GCM-driven sample bias without self-learnt
feature map

(b) GCM-driven sample bias with an 8-channel
self-learnt feature map

Figure 5: Mean-normalized bias using GCM inputs with and without the self-learnt feature map

Comparing the bias between sampling modes (CPM-based samples in 3b with GCM-based samples in
5b) shows a difference between the sample distributions depending on the source of the conditioning
input. The CPM-based bias is smaller overall but there is also an inversion: CPM-based bias is
smallest (and slightly positive) over upland areas like Snowdonia and the Lake District but GCM-
based bias is much larger (and negative) other these same upland region.
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